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Abstract

Shape-from-Shading (SfS) is a fundamental problem in
Computer Vision. The vast majority of research in this field
have assumed orthography as its projection model. This
paper re-examines the basis of SfS, the image irradiance
equation, under an assumption of perspective projection.
The paper also shows that the perspective image irradiance
equation depends merely on the natural logarithm of the
depth function (and not on the depth function itself), and as
such it is invariant to scale changes of the depth function.
We then suggest a simple reconstruction algorithm based
on the perspective formula, and compare it to existing or-
thographic SfS algorithms. This simple algorithm obtained
lower error rates than legacy SfS algorithms, and equated
with and sometimes surpassed state-of-the-art algorithms.
These findings lend support to the assumption that transi-
tion to a more realistic set of assumptions improves recon-
struction significantly.

1. Introduction

Shape-from-Shading (SfS) is one of the fundamental prob-
lems in Computer Vision. First introduced by Horn in the
1970s [3], its goal is to solve the image irradiance equation,
which relates the reflectance map to image intensity. Due
to difficulties in solving the equation, most of the works
in the field add simplifying assumptions to the equation.
Of particular importance is the common assumption that
scene points are projected orthographically during the pho-
tographic process.

Many works in the field of Shape-from-Shading have fol-
lowed the seminal work of Horn [4], and assumed ortho-
graphic projection ([2], [5], [6], [14] and many more; see
[13] for a survey).

The few works that did employ the perspective projec-
tion have been too restrictive and have not addressed the
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general problem. [12] and [11] assumed that distance vari-
ations between camera and surface could be ignored. [10]
employed a deformable model for the SfS problem, so re-
construction took place in 3D space. Thus, during the defor-
mation process, the image point onto which a 3D point was
projected changed, and its new location should have been
interpolated, resulting in a nonuniform sampling of the im-
age.

Another approach to perspective SfS is to model the
problem using piecewise planar depth functions ([8], [9]).
But orthographic and perspective reflectance maps of a
plane are identical, as Sect. 5.1 would show. Therefore, the
difference between the two types of projection of a piece-
wise planar surface is confined to the edges, while at the
interior of the faces the orthographic and perspective mod-
els agree with each other.

While the vast majority of the SfS literature assumes or-
thographic projection, and the few perspective-projection
studies are limited in their scopes, no information is avail-
able on the image irradiance equation under the perspective
projection model. The purpose of this research was to im-
prove the image irradiance equation by using the more re-
alistic, perspective projection, and then to solve the Shape-
from-Shading problem under these new assumptions. In or-
der to quantify the possible contribution of modeling the
projection as perspective, we compare the locations of or-
thographic and perspective projections of the same surface
point. The comparison would show that the distance be-
tween the two projections can become significant. Conse-
quently, assuming perspective projection may yield a con-
siderable improvement of the reconstructed surface, as it di-
minishes a major source of error in current SfS techniques.

We suggest an approximate solution of perspective SfS,
which locally recovers the first and second order derivatives.
From the derivatives, a global approximation of the original
3D surface is obtained. We then compare reconstruction by
this algorithm with three existing algorithms.

This paper is organized as follows. Following the pre-
sentation of notation and basic assumptions (Sect. 2), we
motivate the advantages of assuming a perspective projec-
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tion model (Sect. 3). Section 4 then develops the image
irradiance equation under the perspective projection model,
and explains its dependence on the natural logarithm of the
depth function. Section 5 calculates the reflectance map of
simple surfaces (planes and paraboloids). Section 6 sug-
gests a two stage SfS algorithm, which uses local approxi-
mations of the 3D surface. Section 7 describes the a com-
parison of the algorithm with three other well-known SfS
techniques. Finally, Sect. 8 draws the conclusions.

2. Notation and Assumptions

The following notation and assumptions hold throughout
this paper. Photographed surfaces are assumed repre-
sentable by functions of real-world coordinates as well as
of image coordinates. ẑ(x, y) denotes the depth function in
a real-world Cartesian coordinate system whose origin is at
camera plane. If the real-world coordinate (x, y, ẑ(x, y)) is
projected onto image point (u, v), then its depth is denoted
z(u, v). By definition, z(u, v) = ẑ(x, y). f denotes the fo-
cal length, and is assumed known. The scene object is Lam-
bertian, and is illuminated from direction �L = (ps, qs,−1)
by a point light source at infinity. �N(x, y) is surface normal.

3. The Difference Between Perspective
and Orthographic Projections —
Motivation

We begin by introducing motivation for employing perspec-
tive rather than orthographic projection in SfS.

Figure 1(a) shows two quadrilaterals. It can be shown an-
alytically, that perspective projection of the red quadrilateral
onto the image plane is identical to orthographic projection
of the blue parallelogram. Their images (under identical
lighting) would also be the same, as they reside on the same
plane, and therefore have identical normals. This stems
from the image irradiance equation (see [4]) for a Lamber-
tian surface illuminated by a point light source at infinity:
I(u, v) = �N(x, y) · �L. Consequently, the perspective image
of the red quadrilateral is identical to the orthographic im-
age of the blue parallelogram under the same light source
(Fig. 1(b)). This implies that if the red quadrilateral was
photographed by a perspective camera, but reconstructed by
an ideal, orthographic algorithm, the reconstruction would
be the blue parallelogram. Thus, the shape difference be-
tween the two quadrilaterals is a reconstruction error which
is inherent in the orthographic model, and cannot be over-
come by any specific orthographic algorithm. Furthermore,
it can be proved that orthographic reconstruction of a rect-
angular image showing a 3D plane must yield a 3D parallel-
ogram; this need not be the case if the projection is perspec-
tive, as Fig. 1 shows. (The proof is omitted for brevity.)

a. b.

Figure 1: Difference in reconstruction between perspective
and orthographic SfS. a. Perspective projection of the red
quadrilateral is identical to orthographic projection of the
blue parallelogram. b. The image produced by both sur-
faces (�L = (0, 0.5,−1)). Orthographic reconstruction of
this image would produce a 3D parallelogram.

4. The Perspective Image Irradiance
Equation

As a first step in solving the image irradiance equation un-
der the perspective projection model, we convert the equa-
tion into more convenient forms.

4.1. Equation in Image Coordinates
The perspective image irradiance equation is given by:

I(u, v) = �L · �N(x, y) (1)

where:

x = −u · ẑ(x, y)
f

(2)

y = −v · ẑ(x, y)
f

(3)

Substituting Eqs. 2, 3 and �L = (ps, qs,−1) (see Sect. 2)
into Eq. 1 yields:

I(u, v) =
1 + psẑx + qsẑy√

1 + p2
s + q2

s

√
1 + ẑ2

x + ẑ2
y

(4)

We then express ẑx and ẑy in terms of u, v, z, zu, and zv,
and substitute the resultant expressions along with Eqs. 2, 3
into Eq. 4. Deriving these expressions from the projection
equations is nontrivial, but is outside the scope of a confer-
ence paper. We obtain:

I(u, v) =
(u − fps)zu + (v − fqs)zv + z√

1 + p2
s + q2

s

√
(uzu + vzv + z)2 + f2(z2

u + z2
v)

(5)

where z(u, v)
def
= ẑ(x, y) for (u, v) which is the perspective

projection of (x, y, ẑ(x, y)). Equation 5 is the perspective
image irradiance equation.
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4.2. Dependence on ln(z(u,v))

Equation 5 shows direct dependence on both z(u, v) and its
first order derivatives. If one employs ln(z(u, v)) instead
of z(u, v) itself (by definition z(u, v) > 0), one obtains the
following equation:

I(u, v) = (6)

=
(u − fps)p + (v − fqs)q + 1√

1 + p2
s + q2

s

√
(up + vq + 1)2 + f2(p2 + q2)

(7)

where p
def
= zu

z = ∂ ln z
∂u and q

def
= zv

z = ∂ ln z
∂v .

Eq. 7 depends on the derivatives of ln(z(u, v)), but not on
ln(z(u, v)) itself. Consequently, the problem of recovering
z(u, v) from the image irradiance equation reduces to the
problem of recovering the surface ln(z(u, v)) from Eq. 7.
Because the natural logarithm is a bijective mapping and
z(u, v) > 0, recovering ln(z(u, v)) is equivalent to recov-
ering z(u, v) = eln(z(u,v)).

The image irradiance equation under orthographic pro-
jection is invariant to translation of ẑ(x, y), which means
ẑ(x, y) + c (for constant c) produces the same intensity
function as ẑ(x, y). In contrast, the perspective image ir-
radiance equation (Eq. 5) is invariant to scale changes of
z(u, v). That is, the intensity functions of c · z(u, v) and
z(u, v) are identical. This follows from the properties of the
natural logarithm, and can also be verified by Eqs. 5, 7. In-
variance to scaling seems to be a more plausible assumption
than invariance to translation when employing real cameras.

5. The Perspective Irradiance Equa-
tion of Simple Surfaces

This section examines two types of simple real-world sur-
faces (ẑ(x, y)): planes and paraboloids. We calculate
their representation in image coordinate system (z(u, v)),
and their reflectance map (R(u, v)) under the perspective
model. These calculations would sharpen the difference be-
tween the orthographic and perspective models and would
also serve us later for solving the perspective SfS problem
in an approximated manner.

5.1. Planes
Let us consider a general plane:

ẑ(x, y) = z0 + a(x − x0) + b(y − y0)

where a, b, x0, y0, z0 are constants. Substituting image
coordinates (u, v) according to the perspective projection
equations and solving for z(u, v) yields:

z(u, v) = z0
f + au0 + bv0

f + au + bv
(8)

where u0 = − f ·x0
z0

, v0 = − f ·y0
z0

. The last equation states
that the depth of the planar surface at point (u, v) is pro-
portional to the reciprocal of au + bv. The opposite takes
place in orthographic projection: x ∝ u, y ∝ v, and hence
depth is proportional to au + bv = ax + by, by definition
of ẑ(x, y).

Under both perspective and orthographic projections, the
image irradiance equation becomes (the proof is omitted
due to lack of room):

R(u, v) =
psa + qsb + 1

‖�L‖√a2 + b2 + 1
(9)

The image irradiance is constant (i.e., independent of u and
v) for a planar object.

5.2. Paraboloids
5.2.1. Canonical Paraboloids

We first consider a canonical paraboloid of the form:

ẑ(x, y) = ax2 + by2

Its representation in image coordinates under perspective
projection is:

z(u, v) =
{

f
au2+bv2 , if au2 + bv2 �= 0
0, if au2 + bv2 = 0

Again, the perspective and orthographic equations are re-
ciprocal (up to a scale factor).

The reflectance map in this case is:

R(u, v) =
2f(psau + qsbv) − (au2 + bv2)

‖�L‖√au2 + bv2
√

au2 + bv2 + 4f2

5.2.2. General Paraboloids

For a general paraboloid of the form:

ẑ(x, y) = z0 + a(x − x0) + b(y − y0) + c(x − x0)2

+d(y − y0)2 + e(x − x0)(y − y0)

the image coordinate representation is:

z(u, v) =
S(u, v) − √

S2(u, v) − 4T (u, v)P
2T (u, v)

(10)

where:

T (u, v)
def
= cu2 + dv2 + euv

S(u, v)
def
= f2 + u(fa + 2cu0z0 + ev0z0)

+v(fb + 2dv0z0 + eu0z0)

P
def
= z0(f2 + f(au0 + bv0))

+z2
0(cu

2
0 + dv2

0 + eu0v0)
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(assuming T (u, v) �= 0). The reflectance formula in this
case is omitted due to its complexity. Even though there ex-
ists another solution to the quadratic equation, in the general
case that solution is not physical. This is because substitu-
tion of z0 into the other solution results in z(u0, v0) �= z0

(unless f +au0+bv0 = 0), which contradicts the definition
of z0.

6. Approximation over Patches
This section suggests an approximate solution to the per-
spective SfS problem. The suggested algorithm divides up
into two stages, which we hereby present.

6.1. Stage I — Independent Approximation
over Patches

The first stage approximates the original surface locally
by paraboloids. Since paraboloids are arbitrarily curved
surfaces, they can approximate a small enough patch of
ẑ(x, y).

Let us assume that locally ẑ(x, y) can be represented
by a paraboloid. As delineated in Sect. 5.2.2, there exists
an analytic expression for the reflectance map of a general
paraboloid of the form:

ẑ(x, y) = z0 + a(x − x0) + b(y − y0) + c(x − x0)2

+d(y − y0)2 + e(x − x0)(y − y0)

where (x0, y0, z0) is the center of the paraboloid, and a, b,
c, d, e are parameters. Using the analytic expression, we
minimize the double integral:

F (a, b, c, d, e, z0, u0, v0)
def
=

=
∫ ∫

[R(u, v, a, b, c, d, e, z0, u0, v0) − I(u, v)]2dudv

with respect to parameters a, b, c, d, e. Minimization is
currently implemented by gradient descent.

An important advantage of this stage over methods based
on Calculus of Variations is a reduced dimension of the min-
imization space: R

5 (five parameters: a, b, c, d, e) instead of
R

n (where n is the image size). In addition, the dimension
of the minimization space becomes independent of image
size. This simplifies the functional and yields better conver-
gence of the minimization process.

Another advantage of the paraboloidal approximation is
avoiding numerical differentiation, which introduces signif-
icant error into calculations at image boundaries. When em-
ploying Calculus of Variations, numerical differentiation is
inevitable, due to lack of analytic model.

The paraboloidal approximation described above can be
parallelized, because the calculation over each patch is inde-
pendent of other patches. In contrast, Calculus of Variations
makes patches depend on their neighbors due to numerical
differentiations.

6.2. Stage II — Integration of Approximations
over the Patches

Due to the independence of patches in Stage I, the transition
between reconstructed surface patches may not be smooth.
The goal of Stage II is to ensure the consistency of the out-
puts of Stage I. For this, it imposes global constraints.

Stage I introduces irregularity in two ways. First, re-
construction over patches may independently converge to
dual solutions. This duality is inherent in the solution of the
SfS problem (see [1]). The algorithm copes with the du-
ality by a heuristic which flips a solution to its dual based
on the algorithm’s earlier decisions on neighboring patches.
The second phenomenon results from the invariance of the
reflectance map to scaling of the depth function. Due to
the independence of reconstruction, reconstruction at each
patch may converge to a solution with a different scale fac-
tor. The goal of Stage II is to obtain a global solution that
would have a single scale factor.

The inputs for Stage II are the coefficients of the
paraboloids at each patch. At each patch, these coefficients
are identical to coefficients of a second order Taylor series
expansion of ẑ(x, y), up to a scale factor. Formally, for each
patch Pi,j , there exists a constant ki,j , the scale factor, for
which:

ai,j = ki,j ẑx (11)

bi,j = ki,j ẑy (12)

ci,j =
1
2
ki,j ẑxx (13)

di,j =
1
2
ki,j ẑyy (14)

ei,j = ki,j ẑxy (15)

where ai,j , bi,j , ci,j , di,j , ei,j are the coefficients a, b, c, d,
e at patch (i, j), respectively. The patch Pi,j overlaps each
of its neighbors by 1 pixel.

In order to obtain a global solution with a single scale
factor, Stage II re-scales the reconstruction on each patch.
It minimizes the distance between reconstructions of neigh-
boring patches on the boundary between them.

Let the u and v coordinates at patch Pij be: uj
1, . . . , u

j
n

and vi
1, . . . , v

i
m, respectively. The functional constraining

the boundary of a patch1 would be:

F =
n∑

l=1

[
ki,jz(uj

l , v
i
1) − ki+1,jz(uj

l , v
i+1
m )

]2

+
m∑

l=1

[
ki,jz(uj

n, vi
l) − ki,j+1z(uj+1

1 , vi
l )

]2

1Note, that these expressions are for internal patches (i.e., patches hav-
ing 4 neighbors). For the rest of the patches, the constraints at sides of
image boundaries should be omitted.
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+
n∑

l=1

[
ki,jz(uj

l , v
i
m) − ki−1,jz(uj

l , v
i−1
1 )

]2

+
m∑

l=1

[
ki,jz(uj

1, v
i
l ) − ki,j−1z(uj−1

n , vi
l )

]2

At the minimum ∂F
∂ki,j

= 0, which yields the iterative
scheme:

ks
i,j =

1
A

[
ks−1

i+1,j

n∑
l=1

z(uj
l , v

i+1
m )z(uj

l , v
i
1)

+ks−1
i,j+1

m∑
l=1

z(uj+1
1 , vi

l )z(uj
n, vi

l )

+ks−1
i−1,j

n∑
l=1

z(uj
l , v

i−1
1 )z(uj

l , v
i
m)

+ks−1
i,j−1

m∑
l=1

z(uj−1
n , vi

l )z(uj
1, v

i
l)

]

where:

A
def
=

n∑
l=1

(
z2(uj

l , v
i
1) + z2(uj

l , v
i
m)

)
+

m∑
l=1

(
z2(uj

n, vi
l ) + z2(uj

1, v
i
l )

)
and ks

i,j is the value of ki,j in the sth step. For all i and
j, ki,j is initialized to 1 (i.e., the scale factor at the end of
Stage II). After each step we divide all scale factors by the
scale factor of a specific patch (e.g., the central), thus fixing
the scale factor of this patch at 1. This prevents the trivial
solution (∀i, j, ki,j = 0).

7. Experimental Results
7.1. The Experiments
This section describes experiments conducted with the sug-
gested two-stage algorithm.

To evaluate the contribution of perspective SfS, we jux-
taposed it with three other SfS algorithms: Lee & Kuo [7],
Zheng & Chellappa [14], and the “Fast Marching Method”
of Kimmel & Sethian [6]. We selected the first two algo-
rithms for the comparison ensuing the comparative study
by Shah et al. [13], which found them best among six well-
known SfS algorithms. The algorithm of Kimmel & Sethian
is newer than the paper of Shah et al. [13], and is a state-of-
the-art method.

We evaluated the performance of the algorithms accord-
ing to three criteria adopted from Shah et al. [13]: mean
depth error, standard deviation of depth error, and mean

gradient error. For completeness, we also supply the stan-
dard deviation of gradient error, although it is considered
not physical.

All input images used in the comparison were synthetic,
and were produced from an original surface ẑ(x, y) in the
real world. The surface was projected onto plane [uv] ac-
cording to the perspective projection equations (Eqs. 2, 3).
A rectangular area bounded by this projection and symmet-
ric about the optical axis was uniformly sampled. The orig-
inal surface ẑ(x, y) was then interpolated to the sampling
points. The orthographic image irradiance equation then
served to create the intensity at each point. This procedure
was applied to avoid direct usage of the perspective formula,
which the proposed algorithm attempts to recover.

For the algorithms of Lee & Kuo and Zheng & Chel-
lappa, we employed the implementations by Shah et al.,
and kept their parameters unchanged, except for the num-
ber of iterations, where we tested a wider range of values.
The number of iterations for Zheng & Chellappa was: 10k

where k = 1, . . . , 6, and for Lee & Kuo2: 10, 100, 1000,
10000, 50000. Due to lack of space, we provide the evalu-
ation measures only for the number of iterations which ob-
tained best results according to the mean depth error cri-
terion. For the algorithm of Kimmel & Sethian, we ex-
tended the implementation of the “Fast Marching Method”
by the Technical University of Munich3 to accommodate the
oblique light source case as well.

7.2. Comparative Evaluation
The comparison was performed on various images. We pro-
vide all evaluation measures, but for brevity we can provide
merely a single reconstruction example.

Two simple surfaces we examined were: ẑ(x, y) =
3x3 + 100 and ẑ(x, y) = 5y4 + 100 (light source direc-
tion: �L = (0, 0, 1)). Table 1A,B presents the error mea-
sures in the reconstruction of these surfaces by each of the
algorithms. According to all measures, perspective SfS re-
constructed the surfaces significantly better than the algo-
rithms of Lee & Kuo and Zheng & Chellappa, and its error
rates were more than an order of magnitude lower. On these
simple surfaces, perspective SfS equates with the algorithm
of Kimmel & Sethian, both resulting in an accurate recon-
struction of the surfaces.

Fig. 2 presents a synthetic 3D model of a vase, which
was employed by Shah et al. in their comparison. There, the
projection was orthographic; in our case it is perspective.
Similarly to them, we produced two images of this model
with light source directions �L = (0, 0, 1) and �L = (1, 0, 1)

2The narrower range of iterations for [7] is due to recursive implemen-
tation, which exhausted computer memory.

3Folkmar Bornemann, Technical University of Munich, WiSe 00/01,
11.12.2000, http://www-m8.mathematik.tu-muenchen.de/m3/teaching/
PDE/begleit.html
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z(x, y) = Algorithm: No. of Mean Std. Dev. Mean Std. Dev.
Iterations: Depth Err: Depth Err: Grad. Err: Grad. Err:

A. 3x3 + 100 Zheng & Chellappa: 1000 0.42352 0.32406 2.61627 2.15849
Lee & Kuo: 50000 0.44826 0.33895 2.38544 2.02043
Kimmel & Sethian: 0.04653 0.02846 0.21047 0.14556
Perspective: 12000 0.03107 0.02095 0.16477 0.16158

B. 5y4 + 100 Zheng & Chellappa: 10 0.55947 0.46398 2.86092 3.67477
Lee & Kuo: 100 0.65923 0.69168 3.02086 3.60862
Kimmel & Sethian: 0.02079 0.01265 0.20461 0.17987
Perspective: 83000 0.02180 0.01665 0.19086 0.18918

C. Vase (�L = (0, 0, 1)) Zheng & Chellappa: 100 9.68647 6.33322 12.54433 19.23475
Lee & Kuo: 1000 9.38542 5.82842 12.92186 17.77593
Kimmel & Sethian: 7.59557 4.29684 5.47410 11.44314
Perspective: 275000 5.03358 3.41015 10.07100 17.00462

D. Vase (�L = (1, 0, 1)) Zheng & Chellappa: 100 7.47118 6.08315 12.09654 15.38705
Lee & Kuo: 10 5.95292 4.23241 11.39574 13.98842
Kimmel & Sethian: 6.52139 3.67772 17.03632 15.24355
Perspective: 226000 5.36811 3.59976 9.80671 15.68329

E. 2 cos(
√

(x2 + (y − 2)2)) Zheng & Chellappa: 100 0.84550 0.59294 3.37294 1.98929
+100 Lee & Kuo: 1000 0.98423 0.57303 3.97802 1.92809

Kimmel & Sethian: 0.88806 0.61702 3.40021 1.99505
Perspective: 180000 0.17116 0.13830 1.09588 1.05075

Table 1: Errors in reconstruction.

a. b. c.

Figure 2: Synthetic vase. a. Depth map. b. The syn-
thetic image of (a) assuming a Lambertian surface, perspec-
tive projection, and light source direction �L = (0, 0, 1). c.
�L = (1, 0, 1).

(Fig. 2 (b),(c)). Table 1C,D presents the evaluation mea-
sures for these images. On both images, perspective SfS
gained lower error rates than Lee & Kuo and Zheng &
Chellappa (except for the standard deviation of gradient
for �L = (1, 0, 1), but this measure is not physical). For
�L = (0, 0, 1), perspective SfS achieved higher error rates
than Kimmel & Sethian according to gradient measures,
but lower error rates according to depth measures. For
�L = (1, 0, 1), perspective SfS equates with Kimmel &
Sethian in the standard deviations, but achieves lower error
rates for mean depth error and mean gradient error.

The last example is the trigonometric surface: ẑ(x, y) =
2 cos(

√
x2 + (y − 2)2) + 100. Figure 3 presents the sur-

face and its image. Figure 4 (Top Row) shows the recon-

−2
0

2

−2
0

2

99

100

101

xy

z(
x,

y)

a. b.

Figure 3: Original surface. a. ẑ(x, y) =
2 cos(

√
x2 + (y − 2)2) + 100. b. The synthetic im-

age of (a) assuming a Lambertian surface under perspective
projection, �L = (0, 0, 1).

structed surface from three points of view. The reconstruc-
tion shows similarity to the original. It seems upside-down,
as the solution converged to the dual of the original surface
(an inevitable problem unless more data is incorporated into
the basic equation). To verify the similarity, Fig. 4 (Bottom
Row) introduces the reconstruction on top of the real sur-
face. A change of sign was applied to the reconstructed
surface to avoid the duality of solutions. The surfaces were
close to one another, and similar in shape.

Figure 5 compares the boundaries of the original and re-
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Figure 4: Perspective reconstruction of surface ẑ(x, y) =
2 cos(

√
x2 + (y − 2)2) + 100 (Fig. 3). Left Column: Re-

construction from three points of view. Right Column:
Real surface (green) vs. its reconstruction (red), again, from
three points of view.
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(by perspective SfS).

Figure 5: Boundaries of original and reconstructed surfaces
(orthographic projections of the surfaces on plane [xy]).
The boundaries are curved, so no orthographic algorithm
can recover them correctly. The perspectively reconstructed
boundary is similar in shape to the original.

constructed surfaces. In all sides of the surface, the bound-
aries of the original [xy] domain were curved, not straight
lines. This kind of boundaries cannot be recovered by or-
thographic SfS, because domain boundaries reconstructed
orthographically must be straight lines parallel to the axes
(for rectangular images). Therefore, orthographic SfS is un-
able to recover the boundaries of the surface of Fig. 5 cor-
rectly. Nevertheless, the perspectively recovered boundaries
closely resembled the original.

Figure 6 compares the surfaces reconstructed from
ẑ(x, y) = 2 cos(

√
x2 + (y − 2)2)+100 by perspective SfS

and the other three algorithms. Table 1E provides the error
measures. As can be seen from the figure, the distance from
the original surface to the reconstructed surfaces of Lee &
Kuo and Zheng & Chellappa was notably larger than to the
surface recovered perspectively. The algorithm of Kimmel
& Sethian reconstructed part of the surface correctly, but the
other part was almost flat rather than hill-like (see top row
of Fig. 6). Perspective SfS achieved lower error rates than
any other method according to all error measures examined.
These low error rates obtained by a very simple algorithm
(gradient descent) suggest that solving the perspective in-
stead of the orthographic image irradiance equation yields
an important improvement in reconstruction.

While the three orthographic algorithms rival the best
numerical way to solve the classic equation, the suggested
one does not compete in the numerical domain. Instead, it
shows the perspective equation is better suited for the task.

In its current implementation, our algorithm converges
rather slow and is thus more suitable to offline applications
where the accuracy it provides in reconstruction is crucial
(while some orthographic ones could be less accurate, but
real time). However, further optimization of the implemen-
tation might remove this limitation.

8. Conclusions

This research re-examined the roots of the field of Shape-
from-Shading, the image irradiance equation. We devel-
oped a new formulation of the equation for the case of per-
spective projection and showed its relation to the logarithm
of the depth function. We then suggested an algorithm for
reconstruction of images based on the new equation. The al-
gorithm was based on approximation of the original surface
using independent paraboloidal patches (Stage I). Follow-
ing that, global constraints were used (Stage II) in order to
make all reconstructed patches refer to a single solution (of
the possible dual solutions) and have a common scale factor.
Finally, we supplied experimental reconstruction results on
synthetic images, and a comparison of the perspective SfS
algorithm with three other orthographic SfS methods (Lee
& Kuo [7], Zheng & Chellappa [14], and Kimmel & Sethian
[6]). It appears that despite the simplicity of the algorithm
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Lee & Kuo: Zheng & Chellappa: Kimmel & Sethian: Perspective:
1000 iters. 100 iters. 180000 iters.
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Figure 6: Comparison of perspective SfS with three other algorithms in reconstruction of surface: ẑ(x, y) =
2 cos(

√
x2 + (y − 2)2) + 100. Top Row: Reconstructed surfaces. Bottom Row: Comparison with original surface (green

— original; red — reconstructed).

(gradient descent), perspective SfS improves performance
of legacy SfS techniques, and equates with (and sometimes
surpasses) state-of-the-art methods, due to the change of un-
derlying assumptions. Thus, the transition to a more real-
istic projection model, the perspective model, is the cause
of the improvement, rather than the specific numerical al-
gorithm employed.
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