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Abstract

The presence of highlights, which in dielectric inhomoge-
neous objects are linear combination of specular and dif-
fuse reflection components, is inevitable. A number of meth-
ods have been developed to separate these reflection com-
ponents. To our knowledge, all methods that use a single
input image require explicit color segmentation to deal with
multicolored surfaces. Unfortunately, for complex textured
images, current color segmentation algorithms are still
problematic to segment correctly. Consequently, a method
without explicit color segmentation becomes indispensable,
and this paper presents such a method. The method is based
solely on colors, particularly chromaticity, without requir-
ing any geometrical parameter information. One of the ba-
sic ideas is to compare the intensity logarithmic differenti-
ation of specular-free images and input images iteratively.
The specular-free image is a pseudo-code of diffuse com-
ponents that can be generated by shifting a pixel’s intensity
and chromaticity nonlinearly while retaining its hue. All
processes in the method are done locally, involving a maxi-
mum of only two pixels. The experimental results on natural
images show that the proposed method is accurate and ro-
bust under known scene illumination chromaticity. Unlike
the existing methods that use a single image, our method
is effective for textured objects with complex multicolored
scenes.

1 Introduction

Separating diffuse and specular reflection components is an
essential subject in the field of computer vision. Many algo-
rithms in this field assume perfect diffuse surfaces and deem
specular reflections to be outliers. However, in the real
world, the presence of specular reflection is inevitable, since
there are many dielectric inhomogeneous objects which
have both diffuse and specular reflections. To properly ac-
quire the diffuse only reflection, a method to separate the
two components robustly and accurately is required. Once
this separation is done, the specular reflection component
becomes advantageous, since it conveys useful information
of the surface properties such as microscopic roughness.
Many works have been developed for separating reflec-

tion components. Wolff et al. [19] used a polarizing filter to
separate reflection components from gray images. Nayar et
al. [12] extended this work by considering colors instead of
using the polarizing filters alone. They identified the illumi-
nation color vector in RGB space indicated by specular in-
tensity variation produced by the polarizing filter. The com-
bination of polarizing filter and colors is feasible even for
textured surfaces; however, utilizing such an additional fil-
ter is impractical in some circumstances. Sato et al. [15] in-
troduced a four-dimensional space, temporal-color space, to
analyze the diffuse and specular reflections based solely on
colors. While this method requires dense input images with
variation of illuminant direction, it has the ability to sep-
arate the reflection components locally, since each location
contains information of diffuse and specular reflections. Re-
cently, instead of using dense images, Lin et al. [11] used
sparse images under different illumination positions to re-
solve the separation problem. They proposed an analytical
method that combines the finite dimensional basis functions
[14] and dichromatic model to form a closed form equation,
by assuming that the sensor sensitivity is narrowband. This
method is also able to separate the reflection component lo-
cally. Other different methods using multiple images can
also be found in the literature [13, 9, 10].

Shafer [16], who introduced the dichromatic reflection
model, was one of the early researchers who used a single
colored image. He proposed a separation method based on
parallelogram distribution of colors in RGB space. Klinker
et al. [7] then extended this method by introducing a T-
shaped color distribution. This color distribution represents
reflectance and illumination color vectors. By separating
these color vectors, the reflection equation becomes a closed
form equation and directly solvable. Unfortunately, for
many real images, this T shape is hardly extractable due to
noise, etc. Bajscy et al. [1] proposed a different approach by
introducing a three dimensional space composed of light-
ness, saturation and hue. In their method, the input image
has to be neutralized to pure-white illumination using a lin-
ear basis functions operation. For every neutralized pixel,
the weighting factors of the surface reflectance basis func-
tions are projected into the three-dimensional space, where
specular and diffuse reflections can be identifiable, due to
the differences of their saturation values.

All above methods that use a single input image require
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color segmentation to deal with multicolored images. For
non-complex multicolored images, current segmentation al-
gorithms can give reasonably correct results. However, in
the real world with complex scene and textured surfaces,
these algorithms are still problematic. To overcome this
problem, we offer a method that does not require explicit
color segmentation; hence, it is applicable for textured sur-
faces in complex multicolored scenes. Briefly, our method
is as follows: given a single colored image, we normalize
the illumination color using known illumination chromatic-
ity. The normalization produces an image that has pure-
white specular component. Using this image, a pseudo-
code of the diffuse component we call specular-free image
can be generated by simply shifting the intensity and chro-
maticity of the pixels non-linearly while retaining their hue.
The specular-free image has diffuse geometry exactly iden-
tical to the diffuse geometry of the input image; the dif-
ference is only in the surface color. Thus, by using inten-
sity logarithmic differentiation on both normalized image
and its specular-free image, we can determine whether the
normalized image contains only diffuse pixels. This abil-
ity plays an important role as a termination condition in our
iterative framework, which removes specular components
step by step until no specular component exists in the image.
All processes are done locally, involving only a maximum
of two neighboring pixels.

Our method offers several advantages: first, the separa-
tion is done without requiring explicit segmentation; sec-
ond, the method uses simple and hands-on illumination
color normalization; third, the specular-free image that has
identical geometrical parameters to diffuse components is
probably useful for many algorithms in computer vision.
In order to separate reflection components correctly, our
method requires several assumptions: first, diffuse pixels
must occur in one color area, regardless of their quantity;
second, illumination chromaticity is known; third, all pixels
of the input image must be chromatic pixels (R # G # B).

The rest of the paper is organized as follows. In Section
2, we discuss the dichromatic model, image color formation
and normalization. In Section 3, we elaborate the method
in detail, describing the derivation of the theory for separat-
ing reflection components. We provide a description of the
implementation of the method and experimental results for
real images in Section 4. Finally, we offer our conclusions
in Section 5.

2 Reflection Models

Reflection on most inhomogeneous materials is usually de-
scribed by the dichromatic reflection model, which states
that the light reflected from an object is a linear combina-
tion of diffuse and specular reflections:

j(Aa )_() = wd()_()sd()‘a )_()E()‘a )_() +ws ()_()SS ()‘a )_()E()‘a )_()

1
where X = {r,s,t} is the position of a surface point in
a three-dimensional world coordinate system; wq(X) and
wg(X) are the weighting factors for diffuse and specular re-

flection, respectively; their values depend on the geomet-
ric structure at location X. Sy()\, X) is the diffuse spec-
tral reflectance function; Ss(A, X) is the specular spectral
reflectance function; F (A, X) is the spectral energy distri-
bution function of the illumination.

The spectral energy distribution of the specular reflec-
tion component is similar to the spectral energy distribution
of the incident light [8]. Researchers usually assume that
both of them are identical [3, 18], which is named the
neutral interface reflection (NIR) assumption by Lee et al.
[8]. As a result, we can set Ss(\,X) as a constant, and
Equation (1) becomes:

I\ X) = wa(X)Sa(\, X)E(\,X) +0s(X)EN\, %) (2)

where w;(X) = ws(X)ks(X), with ks(X) is a constant scalar
w.r.t. the wavelength.

Image Formation. By ignoring camera noise and gain,
an image taken by a digital color camera can be described
as:

L.(%) = wa(x) / Sl ) BN g (\)dA +
a(x) / EWNeNVdr ()

where x = {z, y}, the two dimensional image coordinates;
q. is the three-element-vector of sensor sensitivity and in-
dex c represents the type of sensors (R, G, and B). In this
paper, we assume a single uniform illumination color, so
that the illumination spectral distribution £()\) becomes in-
dependent from the image coordinate (x). The integration
is done over the visible spectrum (€2).
For the sake of simplicity, Equation (3) is written as:

I.(x) = ma(x)Ae(x) + mq(x)T 4)

where mg(x) = wq(x)L(x)kq(x), with L(x) is the spec-
tral magnitude of the surface irradiance on a plane perpen-
dicular to the light source direction; k4(x) is the scene
radiance to surface irradiance ratio of diffuse surface;
M (x) = ws(x)L(x); Ac(x) = [ sa(X x)e(N)ge(N)dX;
with sq(\, x) is the normalized surface reflectance spectral
function, e(\) is the normalized illumination spectral en-
ergy distribution. T = [, e(X)ge(A)dA. The first part of
the right side of the equation represents the diffuse reflec-
tion component, while the second part represents the spec-
ular reflection component.

Normalization. In our method, to separate reflection
components correctly, the color of the specular compo-
nent must be pure white (I'y = I'; = I'). However,
in the real world, finding a pure white specular compo-
nent is almost impossible. Most light sources are not
wavelength-independent. Moreover, even if the light source
is wavelength- independent, because of different sensitivi-
ties in color filters, the intensity value of the specular com-
ponent for every color channel becomes varied, depending
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on camera sensitivity. Thus, to obtain a pure white specular
component we need to normalize the input image. Here we
propose a simple method of normalization without requir-
ing approximated linear basis functions such as in [1].

Mathematically, illumination chromaticity can be writ-
ten as: 1. = n [, e(N)ge(N)dA, where the value of n is a
positive real number (0 < n < 1). In fact, the exact value
of n is unknown, as the magnitude of incident light is un-
recoverable using either chromaticity of a white reference
captured by a CCD camera, or current illumination chro-
maticity algorithms. Fortunately, this magnitude is unnec-
essary, since we require only the ratio of illumination color.
Then, the normalized image is computed using:

I.(x) = ma(x)Ac(x) + ms(x) Q)
— jc(x). — j\c(x) . —
where Io(x) = == Ac(x) = T e mg(x) =
ULICIR (x) = () The equation shows that the spec-

n A n .
ular reflection component becomes pure-white color.

Later, when the separation is done for the normalized im-
age, to obtain the actual reflection components, we need to
renormalize the separated components, simply by multiply-
ing them with 1)..

3 Separation Method

3.1 Specular-to-diffuse mechanism

Specular-to-diffuse mechanism bases its techniques on
chromaticity and intensity value of specular and diffuse pix-

els. Chromaticity is usually defined as ¢(x) = ;;(22) Ac-

cordingly, we define maximum chromaticity as:

(x) = max(I(x), I;(x), Iy(x))
EIi(x)

(6)

where X1, (x) = I.(x) + I4(x) + Iy(x). By assuming a
uniformly colored surface lit with a single colored illumi-
nation, in a two-dimensional space: chromaticity intensity
space, where its x-axis representing ¢ and its y-axis repre-
senting I, with I = max(I,, Iy, I;), the diffuse pixels are
always located at the right side of the specular pixels, due
to maximum chromaticity definition (6). In addition, using
either the chromaticity or the maximum chromaticity defi-
nition, the chromaticity values of the diffuse points will be
constant, regardless of the variance of mg(x). In contrast,
the chromaticity values of specular points will vary with re-
gard to the variance of m(x), as shown in Figure 1. From
these different characteristics of specular and diffuse points
in the chromaticity intensity space, we devised specular-to-
diffuse mechanism. The details are as follows.

When two pixels, a specular pixel I.(x1) and a diffuse
pixel I.(x2), with the same diffuse color (A.) are pro-
jected into the chromaticity intensity space, the location of
the diffuse point will be at the right side of the specular
point. If the color of the specular component is pure white:
I (x1) = Iy(x1) = T'p(x1), by subtracting all channels

specular

max. chromaticity

Figure 1: a. Synthetic image b. The projection of the synthetic
image pixels into the chromaticity intensity space

specular point
-

diffuse point

Intensity

intersection
point

o 0.1 0.z 0.3 0.4 0.5 0.6 0.7

max. chromaticity

Figure 2: Specular-to-diffuse mechanism. The intersection point
equals to the diffuse component of the specular pixel. By knowing
diffuse chromaticity of the diffuse pixel, the intersection point can
be obtained.

of the specular pixel’s intensity using a small scalar number
iteratively, and then projecting them into chromaticity in-
tensity space, we will find that the points form a curved line
in the space, as shown in Figure 2. This curved line follows
this equation (see the Appendix for complete derivation):

c

I. = mg(AXT; — FczAi)(m

) )
We can observe in Figure 2 that a certain point in the curved
line intersects with a vertical line that represents the chro-
maticity value of the diffuse point. At this intersection, m
of the specular pixel equals to zero. Therefore, the intersec-
tion point is crucial, because it indicates the diffuse compo-
nent of the specular pixel.

Mathematically, the intersection point (the diffuse com-
ponent of the specular pixel) can be calculated as follows.
In the previous section, A, and I'. have already been de-
fined as integral functions of normalized reflectance spec-
tral, normalized illumination spectral and camera sensitiv-
ity. Besides this definition, we can also define both of them
in terms of chromaticity. In this term, for all diffuse pixels,
A, = cand my = XI;. In contrast, for specular pixels,
as myg cannot be canceled out, A, # c and mq # XI;.
In addition, for both diffuse and specular pixels we can set
Sy = ¥A; = Land I, = 3 as T, = Iy = I',. Hence,
from Equation (7) we can derive the total diffuse intensity
of specular pixels as:

n1dif = M (8)
¢(BA—1)
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where A = maz(A,, Ay, Ay), and 1977 is the diffuse com-
ponent.

Thus, to calculate Elfiff (x1), the value of A(xl) is
required, which can be obtained from the diffuse pixel;
since if the two pixels have the same surface color, then

A(x1) = &(x2). Having obtained Elfiff (x1), the specular
component is calculated using:

SIi(x1) — SIP (x4)
3

©))

ms(xl) =

Finally, by subtracting the specular pixel intensity with the
specular component, the diffuse component is obtainable:

1907 (x1) = I(x1) — my(x1) (10)

To compute 1%/7 correctly, the mechanism needs linearity
between the camera output and the flux of incoming light
intensity.

In the case of the above two pixels, the mechanism can
successfully obtain reflection components because the dif-
fuse chromaticity (¢(x2)) is known. Unfortunately, given a
multicolored image, the diffuse chromaticity for each color
is unknown, which in fact, is the main problem of separating
reflection component using a single multicolored image.

Nevertheless, although it cannot directly separate the re-
flection component, from the mechanism, we know that the
diffuse component of a specular pixel lies somewhere in the
curved line. This phenomenon is important in our separat-
ing method and is useful for generating a pseudo-code of
diffuse component.

Specular-Free Image. To generate a pseudo-code of dif-
fuse component or, as we call specular-free image, we sim-
ply set the diffuse chromaticity (A in Equation (8)) equal to
an arbitrary scalar value (0 < A < 1), for all pixels regard-
less their color. For instance, Figure 3.a shows an image
of a multicolored scene. By setting A = 0.5 for all pixels,
we can obtain an image that is geometrically identical to
the diffuse component of the input image (Figure 3.b). The
difference of both is in their surface colors.

This technique can successfully remove highlights
mainly because the saturation values of all pixels are made
constant with regard to the maximum chromaticity, while
retaining their hue [2, 1]. However, in the case of two adja-
cent objects that have the same hue but different saturation,
using this technique will cause the color boundary of the
two objects to disappear.

Formally, the specular-free image can be described as:

I.(x) = ma(x)Ae(x) (11)

where my is exactly identical to mg4 in Equation (5). In or-
der to avoid negative values of I.(x), the arbitrary scalar

value of maximum diffuse chromaticity (/~X) is obtained
from the smallest maximum chromaticity of the input im-
age.

Figure 3: a. Normalized image after removing achromatic pixels,
below-camera-dark pixels and saturated pixels. b. Specular-free
image by setting A = 0.5. The specular components are perfectly
removed; the difference is only in the surface color.

Generating the specular-free image using the specular-
to-diffuse mechanism is a one-pixel-based operation that
requires only a single colored image without any segmen-
tation process. Therefore, it is simple and probably useful
for many applications in computer vision that do not need
actual surface color but suffer from highlights.

3.2 Intensity Logarithmic Differentiation

Given only one colored pixel, to determine whether it is
diffuse or specular pixel is an ill posed problem. Since, in
a linear equation such as Equation (5), only from a single
value of I., we cannot determine whether mg is equal to
zero. Thus, instead of using a single pixel we use two pixels
that are spatially adjacent. We will show that using only
two adjacent pixels that have the same diffuse chromaticity
(A.), whether they are diffuse is determinable. This kind of
local operation is indispensable for our method to deal with
textured surface.

Our technique is principally based on intensity logarith-
mic differentiation of the normalized image and the specu-
lar free image. First, by assuming uniform color pixels (A,
becomes independent from x), we apply the logarithm and
spatial differentiation operations on Equation (5):

Llog(1.(x)) = ~loglma(x)Ac +ma(x)) (12

For diffuse pixels where m, = 0, the equation becomes:

Llog(.() = Sloglma(x)  (13)

The partial differentiation is applied w.r.t. both x and y; yet
the operations are done independently. For diffuse pixels
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(ms = 0), the logarithmic differentiation produces an equa-
tion that is independent from the surface color (A.), while
for specular pixels (mg # 0), the dependence still prevails.

If we apply the same assumption and operations on the
specular-free image (Equation (11)), which m for all pix-
els equal to zero, then we will obtain an identical result to
Equation (13). Therefore, by computing the difference be-
tween the logarithmic differentiation of the normalized im-
age and the logarithmic differentiation of the specular-free
image, whether two neighboring pixels are diffuse pixels is
determinable.

Ax) = dlog(I.(x)) — dlog(I.(x)) (14)
=0 diffuse
Ax) { #0 specular or boundary (13

Furthermore, by examining every pixel of an image, the log-
arithmic differentiation can be used to determine whether
the image contains only diffuse pixels.

In multicolored surfaces, as shown in Equation (15),
there is still an ambiguity between specular and boundary
pixels. Since using two neighboring pixels that have dif-
ferent surface color, the difference of the logarithmic dif-
ferentiation does not equal to zero, even though the pixels
are diffuse pixels. Theoretically, by extending the number
of pixels into at least four neighboring pixels, it is possible
to distinguish them. However, in real images, camera noise
and surface noise (surface variance) [5] make such identi-
fication become error-prone; thus, we need another more
robust analysis, which will be described in the next subsec-
tion.

3.3 Color Boundary

A number of methods have been proposed to solve the color
boundary problem, which is also known as the problem of
material changes [6, 4]. Unlike those methods, we use a

simple chromaticity-based method to handle the problem.
We define r = Mﬁ and g = ﬁ, and apply the
below decision rule to solve the problem:

(Ar(x) > thR and Ag(x) > thG) { oioundary dary

(16)
where thR and thG are the small scalar numbers. Ar =
Tin — Tspec and Ag = Gin — Yspecs with 7;, and Tspec

are red channel chromaticity of normalized input image and
specular-free image. While, g;,, and g,pe. are green channel
chromaticity of normalized input image and specular-free
image.

This simple chromaticity thresholding is sufficient for
two neighboring pixels. Since if two neighboring pixels
have the same surface color, the chromaticity difference is
small, even for specular pixels. This is one of the advan-
tages of our local, two-neighboring-pixels operation. More-
over, the above thresholding can also solve the problem of
two adjacent objects that have the same hue but different
saturation, as long as the saturation difference is not less

I 1 1
a
'\ L
/ \
b \ . ’/o\
\ \
specular / specular
/ \ / \\ b 2
¢ \ ¢ \\ ¢ *—
diffuse diffuse diffuse
xy) (xy) ®y)
b ¢
1 a I I
[ §
s ~la
. ; - : ,
b - ' o al
= $ L]
T P ‘.
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“* c * < *
I | I
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max. chromaticity max. chromaticity ma. chromaticity
d B

Figure 4: Basic idea of the iterative framework using local 2-
pixels operation. Top row, spatial-intensity space: a. Initial condi-
tion b. First looping c. Final condition; Bottom row, chromaticity
intensity space: d. Initial condition e. First looping f. Final condi-
tion

than the thresholds. Fortunately, in practice, even if the
saturation difference is less than the thresholds, it does not
affect the result much; since it means that the objects al-
most have the same color, so that it is unnecessary to dis-
tinguish them. In addition, we have no problem even if the
above thresholding wrongly deems the shadow boundary as
a color boundary, since we have nothing to do with shadow.

3.4 Iterative Framework

Figure 4 illustrates the basic idea of our iterative framework.
For the sake of simplicity, the illustration assumes uniform
surface color of three neighboring pixels: one diffuse pixel
(c) and two specular pixels (a and b), as shown in Figure 4.a.
If the pixels are transformed into the chromaticity intensity
space, we will obtain the distribution of the maximum chro-
maticity as illustrated in Figure 4.d.

In considering a two-pixel operation, the iteration be-
gins with comparing the maximum chromaticity of point
a and point b. From the maximum chromaticity definition
in Equation (6), it is known that the smaller m, the big-
ger maximum chromaticity value. In other words, point b
is more diffuse than point a. Thus, by shifting point a us-
ing the specular-to-diffuse mechanism w.r.t the maximum
chromaticity of point b, the more diffuse pixel a can be ob-
tained, i.e., the intensity of pixel a becomes decreased and
its chromaticity becomes identical to point b’s, as illustrated
in Figure 4.b and 4.e respectively. Using the same process,
in the second iteration, the maximum chromaticity of point
b and point c are compared and then shifted. When the max-
imum chromaticity of point b equals to the maximum chro-
maticity of point ¢, the intensity of pixel b becomes equal
to its diffuse component. The same operation is done for
all pixels iteratively until their maximum chromaticity be-
comes the same (Figure 4.f), which as a result, produces the
diffuse components of the three pixels (Figure 4.c).
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However, the above termination condition: looping un-
til the maximum chromaticity of all pixels are the same,
is workable only for a uniform colored surface. In multi-
colored surfaces, such termination condition will produce
incorrect separation results. Thus, instead of using same
maximum chromaticity condition, we use the logarithmic
differentiation, as explained in the subsection 3.2, to ver-
ify whether the image contains only diffuse pixels. Algo-
rithm 4.1 shows the pseudo-code of the iteration method for
both uniform and multicolored surface; a detailed explana-
tion will be provided in Section 4.

4 Implementation and Results

Algorithm 4.1: ITERATION(N, S, €)

comment: N=normalized-image; S= specular-free-image

A =delta(N, S, ¢);
while any(A(x) > ¢)
for x < 0 to sizeof(N)-1
if x. flag == dif fuse
then next(x);
if IsBoundary(x,x + 1) == true
x. flag = boundary;
then {(x + 1).flag = boundary;
next(x);
if ¢(x) == &(x + 1)

x.flag = noise;

then {(x + 1).flag = noise;
next(x);

N(x) = Specular2Dif fuse(I.(x), I.(x + 1));

next(x);

A = delta(N, S, €);

return (N)

comment: N = normalized diffuse component

Algorithm 4.1 begins with executing function
delta(N, S,¢), which calculates the difference of the
intensity logarithmic differentiation of the normalized
image (V) and the specular-free image (S). In a discrete
operation, the logarithmic differentiation is done using:
dlog(I1(x)) = log(XL;(x + 1)) — log(XI;(x)). After
calculating the difference of dlog, the function labels the
pixels of the normalized image: for pixels that have A
more than € (= 0), they are labeled “specular”’; otherwise
“diffuse”.

Then, if there are some pixels labeled “specular”, for
each of them, the algorithm examines whether the pixel and
its neighbor are boundary pixels. If so, they are labeled
“boundary”; else, at least one of them must be a specular
pixel.

At this point, ideally we can start to use the specular-to-
diffuse mechanism. However, before we apply the mech-
anism to both pixels, additional checking is useful, i.e.,
whether both pixels’ maximum chromaticity are the same.
If they are the same, then the pixels are labeled ’noise”. The

reason that they are noise and not specular pixels is because
specular pixels never have the same maximum chromaticity.

After verifying that the pixels are not noise, using the
specular-to-diffuse mechanism, the intensity and maximum
chromaticity value of the pixel that have smaller ¢ is shifted
w.r.t. the pixel with bigger ¢. This is applied to all pixels,
and produces a more diffuse normalized image. Using this
image, function delta(N, S, €) is executed once again. This
time, pixels labeled “boundary” and “noise” are ignored.
Finally, if there is still any A larger than ¢, then the itera-
tion continues; if not, the separation terminates, which as
a result, produces a diffuse component of the normalized
image.

Algorithm 4.2: CONTROLLEDTHRESHOLD(/V, S)

comment: N=normalized-image; S= specular-free-image

stepT H = InitialThreshold,
while stepTH > ¢
A =delta(N, S, ¢);
if any(A(x) > stepT H)
then Iteration(N, S, stepTH);
stepTH = stepT H — §;
Reset All Labels();
Renormalization(N);
return (N);
comment: N=actual diffuse component

In our implementation, we define ¢ = 0. For color
boundary thresholds (thR and thG), we set both of them
with the same number ranging from 0.05 to 0.1. The num-
bers are chosen by considering camera noise, illumination
color variance, ambient light (some considerably small in-
terreflections) and surface color variance (although human
perception deems that the color surface is uniform, in fact
there is still color variance due to dust, imperfect painting,
etc.). In computing the normalized specular reflection com-
ponents, practically we remove pixels that do not have pure-
white color, since they are possibly produced by influence
of noise.

For a more stable and robust algorithm we add an al-
gorithm that controls the decrease of the threshold of A
step-by-step, as described in Algorithm 4.2. In function
Tteration(N, S, €), stepTh will replace ¢, which in our im-
plementation its initial value equals to 0.5. In fact, the ini-
tial should be set as large as possible, yet by considering the
computational time the number is chosen. To obtain more
accurate results, the smaller subtracting number () is better
and, in our implementation, we set it equal to 0.01. To avoid
saturated pixels, HDR (High Dynamic Range) images can
be used.

The experiments were conducted using a CCD camera:
SONY DXC-9000 (a progressive 3 CCD digital camera) by
setting the gamma off; while the illumination chromaticity
was estimated using a color constancy algorithm [17]. Fig-
ure 5 shows the separation result of Figure 3.a., where the
objects were lit with solux halogen lamp. Figure 6 to Figure
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Figure 5: a. Diffuse component of Figure 3.a b. Specular compo- Figure 7: a. diffuse component b. specular component
nent of Figure 3.a
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Appendix

A complete derivation of the correlation between illumination
chromaticity and image chromaticity is described as follows:

I.(x) = ma(x)Ac(x)+ ms(x)Te
Ie(x)
c(x) =
% S T L6 T L
) _ ma(x)Ae(x) + ms(x)l'e
Figure 6: a. a complex textured surface of a cup lit with fluores- o(x) = ma(x)D(Ai(x)) + ms(x)S(T))
cent lights. b. the specular-free image by setting A = 0.5

For local (pixel based) operation the location (x) can be removed:

ms(cXl; —Te) = malc — cmaXA;
cmaX ;i — male
I'c—cXT;

9 show complex textured images, specular-free images, and
separation results. All images were taken under fluorescent ms =
lamps in uncontrolled-indoor environment.

Substituting m s in the definition of 1. with m in the last equation:

C

[c = md(AcEFZ - FczAz)(ﬁ)
5 Conclusion e
We have proposed a novel method to separate diffuse and
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Figure 8: a. a complex multicolored scene lit with fluorescent
lights. b. The specular-free image by setting A = 0.5
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