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Abstract

The robust regression technigquesin the RANSAC family are
popular today in computer vision, but their performance de-
pendson a user supplied threshold. We eliminate this draw-
back of RANSAC by reformulating another robust method,
the M-estimator, as a projection pursuit optimization prob-
lem. The projection based pbM-estimator automatically de-
rivesthe threshold fromunivariate kernel density estimates.
Nevertheless, the performance of the pbM-estimator equals
or exceeds that of RANSAC techniques tuned to the opti-
mal threshold, a value which is never availablein practice.
Experiments were performed both with synthetic and real
data in the affine motion and fundamental matrix estima-
tion tasks.

1. An Analysisof Robust Regression

Robust regression is the generic name of techniques which
estimate a parametric regression model in the presence of
significant number of data points not belonging to that
model, i.e., outliers. The ‘secret’ of robust estimation is
the use of valid additional assumptions about the data. The
scale of the data of interest, i.e., a measure of the noise cor-
rupting the inliers (such as standard deviation or range), is
the most frequently used additional assumption. The ro-
bust regression technique most popular in computer vision
RANSAC [4] and its improved versions MSAC and MLE-
SAC [15], [16], impose an upper bound on the scale, and the
parameter estimates are found by maximizing the number of
points (inliers) which can be placed within this bound. The
additional assumption behind the least median of squares
(LMedS) estimator [12] and similar techniques is equiva-
lent. A lower bound is imposed on the required percentage
of inliers in the data, and the parameter estimates are found
by minimizing the scale of data subsets of this size.

In real applications, however, often there is not enough a
priori knowledge to reliably define additional information.
Embedding the robust estimator into a second optimization
process over the range of possible bounds, e.g., [10], is not
a general enough solution. Indeed, whenever the employed
assumptions are not valid, the robust regression may yield
erroneous results, which in turn can corrupt the compari-
son across different operating conditions. The technique
described in this paper does not require the user to provide

any scale estimate, instead it exploits an intrinsic relation
between the optimization criterion and the data space.

Probabilistic sampling is the search technique of choice
to minimize the optimization criterion of the robust regres-
sions in the RANSAC family and LMedS. Elemental sub-
sets containing the smallest number of data points which
uniquely define a model parameter candidate are drawn
without replacement from the data. The quality of the can-
didate is then assessed using all the data points and the fi-
nal estimate is found by comparison over a number of such
candidates [12, p.198]. This number, however, becomes un-
feasible large when the outliers dominate in the data or the
data is high dimensional. A possible solution is guided sam-
pling, in which additional information about the probability
of a data point being an inlier is integrated into the sampling
process, e.g., [14].

It is very important to recognize that while probabilis-
tic sampling is a computational tool with no relation to the
optimization criterion, guided sampling is a robust proce-
dure since it also exploits additional information. But re-
liable information to guide sampling cannot be guaranteed
in many computer vision applications, and the robust re-
gression method proposed in this paper shifts the emphasis
from sampling in the input space to an efficient search in
the space of the parameters.

In Section 2 by reformulating the M-estimator optimiza-
tion criterion, we introduce a new generic technique, the
pbM-estimator, which does not require the user to provide
the scale estimate. A multidimensional direct search tech-
nique using simplex, described in Section 3, keeps the com-
putational burden at a satisfactory level. In Section 4 the
performance of pbM-estimator is compared to techniques
from the RANSAC family for synthetic data and two vision
applications: affine motion and fundamental matrix estima-
tion.

2. M-estimate Computation Using
Projection Pursuit

The principle behind the method discussed in this section
was first proposed in [1], as part of a different approach lim-
ited to low-dimensional data. See also Section 5. Here we
provide the implementation for arbitrary dimensional data,
and introduce a new robust regression technique, the pbM-
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estimator.

The class of linear errors-in-variables (EIV) models is
adequate for many computer vision problems. Let y, be
the true values of the p-dimensional measurements y;. The
following EIV model is of interest to us

yiTOB—a:()
Vi = Yio + 0y;

1=1,...,n
(Syi ~ GI(O,UZIP)

ey

where the additive zero-mean measurement noise dy; is in-
dependent and identically distributed (i.i.d.), with an arbi-
trary symmetric distribution. Note that in general the scale
of the noise, the standard deviation o, is unknown.

The ambiguity up to a multiplicative constant of (1) can
be eliminated by taking ||@|| = 1. This is the Hessian nor-
mal representation of the linear constraint and it is easy to
prove that in this case the algebraic and geometric distance
of y; from the hyperplane have the same value

ly: —3ill = lyi 6 — a 2)

where y; is the orthogonal projection of y; on the plane.

We have shown in [2], that all the major robust regression
techniques used in computer vision can be expressed as M-
estimators. Taking into account (2) the M-estimator of the
EIV model parameters is

A 1= (1,
[&,0] = argmin - ;p <E|Yi 6 — al> A3)

subject to yjé-@:o i=1,...,n
where s is the scale parameter, and p(u) is a nonnegative,
even symmetric loss function, nondecreasing with |u| and
having the unique minimum p(0) = 0. The redescending

M-estimator with biweight loss function

_ 1—(1—u??
py={ 170,

is a satisfactory choice for most applications. The optimiza-
tion criterion (3) of the M-estimator can be rewritten as

if |ul <1

it ju>1 @

Consider a direction in R? specified by the unit vector
6. The orthogonal projection of a data point y; on the line
through the origin oriented along 6 defines the coordinate
x; = y; 0 in this one-dimensional subspace. The points
z;, ¢ = 1,...,n, obey the an unknown probability den-
sity fg(x), where the dependence on projection direction
is made explicit. The most popular approach for density
estimation is the kernel density estimator, also known as
the Parzen window method in pattern recognition. See [3,
Sec.4.3] for an introduction, and [17] for a more complete
discussion. The density estimate at location x, computed
with the kernel % (u) scaled to bandwidth hg is

iﬂ(yﬁ—l‘) '

=1 ho

fo(@) .

- nhg ©)

The cardinal observation of our approach is the close sim-
ilarity between (5) and (6). This allows us to replace the
scale parameter s in (5) with the bandwidth hg, and the
computation of the M-estimator becomes the process of
finding a projection direction 6 such that
0= argmgx [hO max fo(x) 7
The inner maximization process searches for the mode of
the density estimate and also provides
& = argmax fé(m) . 8)
T
The optimization procedure has a simple geometric inter-
pretation. A hyperplane with normal 6 is placed in the dens-
est region in RP such that the points located in the proxim-
ity of the plane, i.e., the inliers, are most clustered when
projected on the direction of the normal. Since orthogonal
projection is used, the center of this “best” cluster provides
the location of the hyperplane in R?, that is &.

The relation (7) is the projection pursuit definition of
an M-estimator. Projection pursuit solves estimation prob-
lems by seeking “interesting” low-dimensional projections
of multidimensional data. The informative value of a pro-
jection is measured with a projection index, such as the

n
[&, é] = argmax ll _ l Z p (3’:6’7_“)] quantity inside the brackets in (7). The papers [5] [6] are
a0 gt § surveys of all related topics.
l — yi0—«a .
IR X; K (f) ®)  2.1. Adaptive Mode Search

where k(u) = ¢,[1—p(u)] will be called the M-kernel func-
tion. Note that k(u) = 0 for |u| > 1, and that the even
symmetry of the loss function (4) allows dropping the abso-
lute values. The positive normalization constant ¢, assures
that x(u) integrates to one and has no bearing on the opti-
mization. Expressing the M-estimator as in (5) yields a new
approach for its computation.

An adaptive sampling strategy is employed for a computa-
tionally efficient search for the mode of fg (z) in (8). This
is illustrated through an example.

The 2D data in Figure la contains 100 inliers and 500
uniformly distributed outliers. The employed projection di-
rection was chosen close to the normal of the true inlier
structure (a line), to emphasize the idea behind the proposed
method. The inliers are corrupted with noise N (0, 2%I5).
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(b)

Figure 1: An example of robust analysis through projection.
(a) 2D data. Solid line: the projection direction. Dashed
lines: bounds of the detected inlier region. (b) The ker-
nel density estimate of the projected points. Open circles:
coarse sampling. Filled circle: the largest estimate. Star:
the mode detected by fine sampling in the interval marked
with brackets on the abscissa. Vertical dashed lines: the
basin of attraction of the mode. The bar at the top represent
the size of a window with half-width 1.96 6 4p.

Let T @ i =1,...,n, be the ordered sequence of the
projections, i.e., Tin@ < T(it1)m,0" In the coarse sam-
pling step, the density is estimated at ten locations defined
by equidistance indices 7 = k * [%] ,k=1,...,10, where
[] rounds to the nearest integer. This sampling strategy as-
sures that denser regions are better represented in the anal-
ysis (Figure 1b).

Kernel density estimation, a standard technique is em-
ployed. See for example, [17] for a complete survey. The
bandwidth, i.e., the size of the employed kernel is the pa-
rameter of this technique. It can be shown that the optimal
bandwidth value requires the knowledge of the density to be
estimated. Several practical methods were proposed in the
statistical literature to avoid this contradiction. Taking into
account that we use the M-kernel corresponding to the bi-
weight loss function (4), the following bandwidth selection
formula can be derived from the results presented in [17,
Sec.3.2.2]

OMAD

1.483n1/5 ©)

hg = n~t/® mj@d |z 9 — mzcdxiﬂ |=

where the dependence of the x; on the projection direction 8
was made explicit. The bandwidth (9) is proportional to the
robust median absolute deviations (MAD) scale estimate,
0 M AD, frequently used in computer vision.

For the fine sampling step a narrow range is delineated
around the location j, of the largest density estimate found
at the previous step, [:”jo:n,ﬂ —hg, ©; .0+t hg]. Again
ten sample points are defined, but this time at equidistance
intervals. To increase the accuracy of the mode localization
the bandwidth of the kernel density estimator is reduced to
0.5hg. The mode corresponds to the largest density among
the 10 estimates (Figure 1b).

The basin of attraction of the mode is delimited by the
nearest left and right significant local minimum in the den-
sity estimate. They are evaluated using a simple heuris-
tic about their magnitudes. The density estimation process
starts from the location of the mode and uses 0.5hg as band-
width. If the first minimum corresponds to at least a 70
percent drop from the mode, it is accepted independent of
the value of the subsequent local maximum, otherwise that
value is also taken into account.

The boundaries of the basin of attraction are used as
thresholds for separating inliers from outliers. Indeed, for
a projection direction close to the true normal of the hyper-
plane, the two minima represent two low density regions
in RP where the inlier structure relinquishes its dominant
presence. Note that in general the two thresholds are not
symmetric relative to the location of the mode. The basin
of attraction is delineated in Figure 1b. The corresponding
band in the input space (Figure 1a) contains mostly points
from the inlier structure and can be further processed with
traditional robust regression methods.

The detection of the right bound in Figure 1b is fragile.
A slight change in the projected location of a few data points
could have changed this bound to the next, much more sig-
nificant local minimum. However, this sensitivity is toler-
ated by the method. First, by the nature of the projection
pursuit many different projections are investigated and thus
with high probability a satisfactory band will be delineated
at least for a few of the projection directions. Second, from
any reasonable inlier/outlier dichotomy of the data postpro-
cessing can recover the correct estimates.

The technique introduced above, the projection based M-
estimator will be called pbM-estimator.

2.2. The Advantage of pbM -estimator

Interpretation of robust estimators as a search for the loca-
tion of the densest (or narrowest) band is not new. Indeed,
RANSAC determines the parameter estimate by trying to
place a band of user defined width over the data such that
the band contains the most number of points. In MSEC and
MLESAC the data is also weighted with a function mono-
tonically decreasing with the distance from the center of the
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band. The LMedS estimator can be described as search-
ing for the narrowest band containing at least half the data
points [12, p.126]. In this case the user set scale value is
substituted with a preset minimal percentage of inliers.

In our approach, the scale s of the M-estimator is re-
placed by the bandwidth of the kernel density estimator hg.
Thisis more than a simple substitution!  Under the original
formulation, in redescending M-estimators the scale param-
eter determines a band centered on the current fit, and only
the data points within this band are taken into considera-
tion (3). The same observation is valid for the RANSAC
family. If the value of the scale is chosen too large the deci-
sion about in which position does the band contain the most
points will always be based at least in part on outliers. This
can yield to an erroneous final estimate.

In the pbM-estimator the bandwidth hg has a much
weaker influence on the final result since it is only used
in estimating the density of the projected points. The in-

the performance of LMedS.

The optimization criterion (7) is nonlinear and nondif-
ferentiable and therefore only search methods which do not
rely on derivatives can be considered. Several such mul-
tidimensional unconstrained optimization techniques exist.
In our context, where a search is to be performed for many
elemental subsets, the ease of computations is of more con-
cern than a high accuracy of the result. We have cho-
sen the simplex based direct search technique proposed in
1965 by Nelder and Mead [11, Sec.10.4]. Recently signifi-
cant progress was reported in the literature for this class of
search methods, e.g., [9], but based on our experience there
is no need to use more sophisticated (and more computa-
tionally intensive) techniques.

The vector @ is a unit vector. The search therefore has to
be restricted to the p-dimensional unit sphere in RP. This
condition is satisfied by expressing the elements of 8 in the
polar angles 3 = [B1 B2 -+~ Bp—1]", where 0 < B3 < 7

lier/outlier dichotomy is determined from the shape of this forj=1,...,p—2,and 0 < 1 < 2m,
density. The bandwidth is not the threshold for acceptance . . .
or rejection of data points in the processing. As long as the 0u(B) = sinf---sinfp—s sinfp
first significant local minima around the mode are related to 0:(8) = sinPi---sinfp_zcosfp_
the trough in RP between the inliers and outliers, satisfac- 0:(8) = sinpy---sinfp_zcosPp_2
tory estimates can be obtained for both 8 and «.
The MAD scale estimate of the residuals from an initial : (10)
fit, a4 p is a frequently used choice for tuning RANSAC Op—1(B) = sinfycosPs
[15]. However, for heavily corrupted data even when 0,(8) = cosP

based on the true fit, 67 4p 1s an overestimate of the in-
lier noise. Compare the size of the band having as half-
width 1.966 7 4 p —the value recommended in [15]- shown
at the top of Figure 1b, with the band detected by the pbM-
estimator, marked by vertical bars on the density. In prac-
tice the true fit is not available and the residuals of a nonro-
bust total least squares (TLS) estimate are used to compute
oy ap- This yields to even more severe overestimation of
the scale and to a decrease in performance is shown in Sec-
tion4.1.

The pbM-estimator requires a search in R? for the opti-
mal direction of projection 6. To be computationally feasi-
ble in higher dimensions, the pbM-estimator thus must in-
corporate an efficient way to implement the maximization
(7). This is described next.

3. Multidimensional Direct Search

Probabilistic sampling, discussed in Section 1, will be em-
ployed. For each elemental subset, i.e., a p-tuple of points in
general position drawn without replacement from the data,
the parameters of the model (1) are computed analytically.
From @ the value of the projection index is obtained. To
refine the estimate a local search around the neighborhood
of @ € RP is then performed. In [13], a similar idea of re-
finement, the use of line search, was advocated to stabilize

The search is then performed in the space of 8 € RP~ 1.

A simplex in RP~! is the volume delineated by p ver-
tices in a nondegenerate position. For example, in R? the
simplex is a triangle, in R? it is a tetrahedron. In our case,
the vertices of the simplex are defined by the polar angle
vectors B, € RP™L, k = 1,...,p, representing p projec-
tion directions @, € RP. Each vertex is associated with the
corresponding value of the projection index

g1 = 9(By) = hg, max fg, (x) (11)
i.e., the value of the function to be maximized. We can
always consider that initially the vertices are labeled such
that g1 < go <--- < gp.

The Nelder-Mead method is a heuristic to improve the
least favorable value of the optimization criterion, g; in our
case. This is achieved by finding a new location 3] for the
vertex 3, such that g(3,) < g(f3}). First, B the centroid of
the other vertices, 8;,, k = 2, ..., p, is computed. The new
location is derived by one of the following operations along
the direction ,B —p,: reflection, expansion, contraction. The
(uninvolved) technical details are not be presented here due
to lack of space, please consult one of the mentioned refer-
ences.

The update procedure is now repeated for the new sim-
plex having the vertices 31, B, . . . , B, The search evolves
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Figure 2: The role of direct search. (a) 3D data and a plane
estimated from an elemental subset. (b) The 3D data with
the final plane estimate. (c) The evolution of the simplex
based search in the (31, #2) space of polar angles. The filled
circles mark the input and the output of the search.

iteratively till the variance of the function values associated
with the vertices in the current simplex and/or the volume
of the simplex falls below a threshold. In our context the
stopping criterion is of lesser influence. Since most of the
computational effort is spent at the final steps of the search,
in all our experiments we limited the number of iterations
to 25. At convergence, the vertex associated with the largest
projection index value is taken as the output of the search.

The initial simplex is derived from the polar angle 3 rep-
resenting the projection direction @ defined by the elemental
subset. The remaining p — 1 vertices are then

Bi=B+er+— k=1,..,p-1) (12)

12
where e, € RP! is a vector of 0-s except a 1 in the k-th
element. Since 6 is a projection direction during the search
the polar angles are allowed to wander outside the limits
assuring a unique representation in (10).

To illustrate the effectiveness of the simplex based direct
search a 3D example was used. In Figure 2a the data and the
plane yielded by an arbitrary elemental subset (three-tuple
of data points) are shown. Two polar angles are needed to
define a projection direction in 3D, and in Figure 2c the
evolution of the search is shown. The initial simplex is
the triangle at the bottom left, the starting vertex 3 being
marked with the filled circle. The search converges in ten
iterations to the correct estimate shown in Figure 2b. How-

ever, it should not be concluded that in general the search is
always so successful.

4. Experimental Results

Three different tasks were used to assess the performance of
the pbM-estimator. In all the experiments, when the pbM-
estimator is compared with estimators from the RANSAC
family both use the same number of computational units.
For RANSAC this is measured as the number of employed
elemental subsets. For the pbM-estimator, to account for
the iterations of the direct search procedure, it is 25 times
the number of employed elemental subsets. Since often the
search ends before 25 steps the number used for the pbM-
estimator is actually an upper bound.

4.1. Comparison with RANSAC

In [15] the performance of different estimators in the
RANSAC family is studied. It is shown that MLESAC and
MSAC have very similar performance and are superior to
RANSAC.

The performance of the pbM-estimator was compared
with RANSAC and MSAC for eight-dimensional synthetic
data obeying the EIV model (1). The 100 inlier points were
normally distributed with covariance matrix 52Ig around a
hyperplane. The true sample standard deviation of the in-
liers o, was computed in each trial. A variable percentage
of outliers was uniformly distributed within the bounding
box of the region occupied in R® by the inliers. Restricting
the outliers to the bounding box of the inliers is the worst
case situation for the ppbM-estimator.

For each percentage of outliers 100 trials were run. A
trial for the ppbM-estimator was based on 200 elemental sub-
sets, thus at most 5000 projection index computations. A
trial for RANSAC or MSAC used 5000 elemental subsets.

The output of each technique is a band containing the
points declared inliers. The residuals of these points from
the true fit have the standard deviation &;,. The perfor-
mance of an estimator is then measured through the ratio
Gin/ot. For a satisfactory result, the ratio should be very
close to one.

While the pbM-estimator does not require any user set
threshold, two different scale estimates were supplied to
MSAC. As the best possible threshold we used s, =
1.960;. To emulate the situation in practice we also used
Smad = 1.966 p7 Ap computed in each trial based on a TLS
estimate of the parameters. The graphs in Figure 3 show
that for any percentage of outliers the pbM-estimator per-
forms at least as well as MSAC tuned to the optimal scale.

4.2. Affine Motion Estimation

An M-estimator is a robust version of the total least squares
(TLS) estimator, the optimal parameter estimation tech-
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percentage of outliers

Figure 3: RANSAC vs. pbM-estimator. The relative stan-
dard deviation of the residuals function of the percentage
of outliers. Eight dimensional synthetic data. The em-
ployed scale threshold: RANSAC-s,,44; MSACM-5,44;
MSACO-5,,:. The pbM-estimator has no tuning parame-
ter. The vertical bars mark one standard deviation from the
mean.

nique for the linear errors-in-variables model (1). The
optimality of the M-estimator thus requires that the mea-
surement noise dy; be i.i.d. with covariance matrix o*I,.
In computer vision applications this situation appears only
when the elements of the vector y; are measured quantities.

In the second experiment the problem of estimating the
2D affine transformation associated with a moving object
was considered. Let X, = [Zk1, Z’kgo]T, k= 1,2, be
the (unknown) true coordinates of a pair of salient points
in correspondence. The six parameter affine transformation

between them

=) e[

T220 (2

can be decoupled into two three-dimensional problems, in
ai1,a12,t1 and a1, as2,ts respectively [7], each obeying
the EIV model (1). Thus, the noisy measurements of cor-
responding points are distributed around two planes in two
different 3D spaces. The parameters of the affine transfor-
mations are estimated separately, while the points obeying
the transformation must be inliers in both estimation pro-
cesses.

The two images used in the experiment are shown in Fig-
ure 4a. Note the movement of the bus and car in the center.
To obtain the data points, first a large number of point corre-
spondences were established. As customary, a Harris corner
detector was combined with correlation score maximiza-
tion. Next, the point matches on the static background were
identified by having zero displacement and removed. The
estimation process used the remaining 87 point correspon-

Tilo
T120

a12
a22

a11
@21

] 13)

6

(b)

©

Figure 4: Estimation of an affine transformation. (a) Two
frames from an image sequence with marked salient points.
(b) Background registration, i.e., superposition of the two
images. (c) Registration using the estimated affine motion
parameters.

dences of which about 60% were not related to the move-
ment of the vehicles. Since the data is low dimensional,
only 10 elemental subsets, i.e., less than 250 projection in-
dex computations were needed for each ppM-estimator.
The affine motion parameters were computed using the
22 points declared inliers by both pbM-estimators. The
quality of this estimate is shown by registering the images
(Figure 4c). Note the alignment of the bus and compare
with the case when the background is aligned (Figure 4b).

4.3. Fundamental Matrix Estimation

The constraint capturing geometric relations in many com-
puter vision tasks is a nonlinear function of the measure-
ments, and to obtain an unbiased estimate of its parameters
nonlinear minimization techniques must be employed. Of-
ten, the minimization starts from an initial solution com-
puted with a TLS estimator applied to the linearized con-
straint.

Linearization is the process of embedding the nonlinear
constraint into a higher dimensional space. As an example
the estimation of the fundamental matrix F is considered.
The epipolar constraint [XITO 1]1F [)(2T o 1 ]T = 0 is a bilin-
ear expression which can be rewritten under a linear form
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by defining the vectorin y, € R®

(vec[xlox;o])T ]

where the operator vec[-] replaces the 2 x 2 matrix with a
column vector. The model parameters « and 6 are elements
of the fundamental matrix. The linearized model however
has an important difference relative to (1). It can be shown
that the noise process associated with the “measurements”
y is point dependent, i.e., heteroscedastic, and therefore the
TLS estimator is no longer the optimal technique [8]. The
role of the ppM-estimator is thus limited to discriminate in-
liers from outliers. Furthermore, the rank two constraint of
F is also not taken into account.

First, two far apart frames from the popular corridor se-
quence (Figure 5a) were used. From the established corre-
spondences 265 point pairs were retained. Ground truth is
available for this sequence, and the histogram of the resid-
uals (computed in 8D) is shown in Figure 5b. From the
histogram 105 points were defined as inliers (Figure 5c),
having the standard deviation o; = 0.88.

The pbM-estimator, was based on 600 elemental subsets,
less than 15000 projection index computations. Using the
15000 elemental subsets, MSAC was tuned to the optimal
scale and to the scale derived from the MAD estimate. The
number true inliers among the points selected by an esti-
mator and the ratio between the standard deviation of the
selected points and that of the true inlier noise, are used as
performance measures. The pbM-estimator clearly outper-
forms the MSAC in spite of being completely autonomous.

T T T
Yo = |X10 X20 (14)

Performance Comparison - Corridor Image Pair

The points detected by the ppM-estimator were used to
obtain an unbiased fundamental matrix estimate with a non-

linear method in the package [18] discussed in [19]. The av- selected points/true inliers | 6, /0¢

erage error computed by the program relative to the ground MSAC (Smad) 243/102 25.38

truth was 2.4 pixels. MSAC (sopt) 102/97 1.07
No ground truth is available for the castle sequence (Fig- pbM 100/99 0.99

ure 6a). To have a reference fundamental matrix, first 30
reliable point matches were defined by inspection and the
matrix was computed with the nonlinear estimation method.
The histograms of the residuals computed in 8D from this
synthesized ground truth are very similar to the ones in Fig-
ures S5b and 5c. A total of 297 point pairs were chosen from
the possible matches, among which 102 were defined as in-
liers and 195 outliers. The inliers had oy = 0.56. Using the
same procedure as for the corridor images the following re-
sults were obtained.

10 I

[

-150 -100 E: 0

residuals

(b)

(d

Figure 5: Estimating the epipolar geometry for two frames

selected points/true inliers | 6;, /0t of the corridor sequence. (a) The input images with the

MSAC (Smad) 219/105 42.32 point correspondences marked. (b) Histogram of the resid-
MSAC (Sopt) 08/87 1.69 uals from the ground truth. (c) Histogram of the inliers.
pbM 95/88 1.36 (d) The retained points, the estimated epipoles and epipolar

lines.

Performance Comparison - Castle Image Pair

The performance of pbM-estimator exceeds that of
MSAC tuned to the optimal scale which is not available in
practice. The error associated with the nonlinear estimate
computed starting from the pbM-estimate is only 0.25 pix-
els, probably due to the synthesized ground truth.

The influence of guided sampling was investigated by
using only 200 subsets for the pbM-estimator and 5000 for
RANSAC tuned with s,,:. When guided, the sampling was
restricted to point pairs with a correlation score of at least
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(b)

Figure 6: Estimating the epipolar geometry for two frames
of the castle sequence. (a) The input images with the point
correspondences marked. (b) The retained points, and a few
epipolar lines.

0.7. Guided sampling improved the relative residual error
for RANSAC from 11.73 to 2.61, and for the pbM-estimator
from 3.15 to 1.32. We used a less sophisticated strategy than
in [14], but for the castle image pair even this proved to be
effective.

5. Discussion

The pbM-estimator can be used as a computational module
in the robust analysis of data containing multiple structures.
Prior to the analysis, however, a subset of data points must
be selected in which only one structure dominates. In [1]
we used for selection the density assumption, i.e., the local
density in any inlier structure exceeds that of the outliers.
The final parameter estimates were then obtained by robust
clustering in the parameter space.

There are two serious limitations with that approach.
First, the density assumption is clearly violated by lin-
earized models since a mapping like (14) induces a noneu-
clidean metric in the linearized space where the projections
are to be computed. Second, employing clustering requires
that significant support was gathered for every inlier struc-
ture to be detected. This puts unnecessary burden on the
data analysis. Currently we are investigating an approach
which will avoid these two limitations.
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