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Abstract

Recent stereo algorithms have achieved impressive re-
sults by modelling the disparity image as a Markov Random
Field (MRF). An important component of an MRF-based
approach is the inference algorithm used to find the most
likely setting of each node in the MRF. Algorithms have
been proposed which use Graph Cuts or Belief Propaga-
tion for inference. These stereo algorithms differ in both the
inference algorithm used and the formulation of the MRF.
It is unknown whether to attribute the responsibility for dif-
ferences in performance to the MRF or the inference algo-
rithm. We address this through controlled experiments by
comparing the Belief Propagation algorithm and the Graph
Cuts algorithm on the same MRF’s, which have been cre-
ated for calculating stereo disparities. We find that the la-
bellings produced by the two algorithms are comparable.
The solutions produced by Graph Cuts have a lower energy
than those produced with Belief Propagation, but this does
not necessarily lead to increased performance relative to
the ground-truth.

1. Introduction

Two of the more exciting recent results in computational
vision have been the development of fast algorithms for ap-
proximate inference in Markov Random Fields (MRF’s):
Graph Cuts [5] and Belief Propagation [16]. Papers on
both graph cuts and belief propagation have won recent
academic recognition [8, 9, 16] and have been applied to
a number of problems [6, 7]. In the realm of stereo, the
top contenders for the best stereo shape estimation, on the
most common comparison data, either use Belief Propaga-
tion [11] or Graph Cuts [3, 5]. Both algorithms allow fast,
approximate solutions to MRF’s, which are powerful tools
for modelling vision problems, but intractable to solve with

reasonable speed until recently. These algorithms may be-
come the basis for new and powerful vision algorithms, so it
is important to know how they compare against each other.
The stereo problem provides a well-understood test-bed for
comparison.

Unfortunately, the competing stereo algorithms use both
a different inference algorithm and a different formulation
of the MRF. This raises the question of how to understand
differences in systems’ performance. Labelling an MRF has
been shown to be NP-hard, so both Graph Cuts and Be-
lief Propagation approximate the optimal solution. Should
one system’s improvement over the other be attributed to its
choice of an inference algorithm? Alternatively, does most
of the improvement belong to the authors’ unique formula-
tion of the MRF?

The answer to these questions is important because ad-
vancing the field of computer vision and building on these
two systems requires understanding what makes these al-
gorithms different and how these differences affect the sys-
tems’ performance. To answer this question, we show a
controlled comparison of the Belief Propagation and Graph
Cuts algorithms. The two algorithms are examined on iden-
tical MRF’s, allowing us to measure the quality of the solu-
tions produced by the two algorithms and isolate the effects
of the inference algorithms on system performance.

In Section 2 we discuss how the MRF model can be used
to calculate stereo disparities. Section 3 explains the formu-
lation of the MRF’s used in our tests and the implementation
of the Belief Propagation and Graph Cuts algorithms. The
results of our comparison are presented in Section 4 and are
discussed in Section 5.

2. MRF Model for Stereo

Given a rectified stereo pair of images, the goal is to
find the disparity of each pixel in the reference image. In
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[10], Scharstein and Szeliski point out that most stereo al-
gorithms perform four basic steps:

1. Matching cost computation

2. Cost (or support) aggregation

3. Disparity optimization

4. Disparity refinement

In this section, we discuss how steps 1, 2, and 3 can be
accomplished by modelling the disparity image as a Markov
Random Field.

2.1. Matching Cost Computation

The true disparity of each pixel in the disparity image is
a random variable, denoted xp for the variable at pixel lo-
cation p. Each variable can take one of N discrete states,
which represent the possible disparities at that point. For
each possible disparity value, there is a cost associated with
matching the pixel to the corresponding pixel in the other
stereo image at that disparity value. Typically, this cost
is based on the intensity differences between the two pix-
els, yp. This cost is reflected in the compatibility func-
tion, Φ(xp, yp), which relates how compatible a disparity
value is with the intensity differences observed in the im-
age. Smaller intensity differences will correspond to higher
compatibilities and vice-versa.

2.2. Support Aggregation

The next step is to aggregate support for the candidate
disparities. A standard sum-of-squared-differences algo-
rithm accomplishes this by assuming a constant disparity
over a small window surrounding each point and finding the
best matching cost [10]. A MRF approach aggregates sup-
port by introducing a second compatibility function, Ψ(·).
This function expresses the compatibility between neigh-
boring variables. Traditionally, only variables adjacent to a
particular variable are considered its neighbors. Therefore,
every Ψ(·) is of the form Ψ(xp, xn), where the location n is
adjacent to p. This is known as a pair-wise Markov Random
Field. Typically only pairwise Markov Random Fields are
used for stereo problems because considering more neigh-
bors quickly makes inference on the field computationally
intractable. Although the compatibility functions only con-
sider adjacent variables, each variable is still able to influ-
ence every other variable in the field via these pair-wise con-
nections.

2.3. Disparity Optimization

With the compatibility functions defined, the joint prob-
ability of the MRF can be written as [1]:

P (x1,x2, . . . , xN , y1, y2, . . . , yN) =∏
(i,j)

Ψ(xi, xj)
∏
p

Φ(xp, yp) (1)

where N is the number of nodes, (i, j) represent a pair of
neighboring nodes, xn is the variable at location n, and yn

is the variable representing the intensity differences. The y
variables are observed and therefore fized during optimiza-
tion.

The disparity optimization step requires choosing an es-
timator for x1 . . . xN . The two most common estimators
are the Minimum Mean Squared Error (MMSE) estimator
and Maximum A Posteriori (MAP) estimator. The MMSE
estimate of each xi is the mean of the marginal distribu-
tion of xi. The MAP estimate is the labelling of x1 . . . xN

that maximizes Equation 1. For this comparison, we use
the MAP estimator because the Graph Cuts algorithm is de-
signed to compute the MAP estimator. In Section 5.2, we
discuss the advantages of using the MMSE estimator.

2.4. Equivalence to Energy Minimization

As posed above, the best disparities are found by max-
imizing a probability. Taking the log of Equation 1, we
see finding the MAP estimate is equivalent to minimizing
a function of the form

E(x1,x2, . . . , xN , y1, y2, . . . , yN) =∑
(i,j)

− logΨ(xi, xj) +
∑

p

− logΦ(xp, yp) (2)

In [5], this equation is expressed as

E(x1,x2, . . . , xN , y1, y2, . . . , yN ) =∑
(i,j)

V (xi, xj) +
∑

p

D(xp, yp) (3)

The functions V (·) and D(·) are energy functions. The
fact that maximizing the probability in Equation 1 is equiv-
alent to minimizing the energy in Equation 3 is important
because it means that the Belief Propagation and the Graph
Cuts algorithms are attempting to solve the same problem.
Once the MRF has been formulated, one algorithm can be
substituted for the other in the stereo algorithms.

3. MRF Formulation

To determine whether using one algorithm presents
a clear advantage over the other for the stereo prob-
lem, we compared Graph Cuts and Belief Propaga-
tion on identical MRF’s. The comparison was made
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using the stereo framework created by Scharstein and
Szeliski to compare a number of different stereo al-
gorithms [10]. This framework can be found at
http://www.middlebury.edu/stereo. In or-
der to facilitate further experimentation, our implemen-
tation of the Belief Propagation algorithm and modi-
fications to the stereo framework will be available at
http://www.ai.mit.edu/˜mtappen.

The MRF is defined in terms of energy functions,
rather than compatibilities. The energy function D(xp, yp),
which corresponds to the matching cost computation and
Φ(xp, yp), is computed using the Birchfield-Tomasi match-
ing cost [2]. The cost function between nodes V (xi, xj),
which determines how support is aggregated and corre-
sponds to Ψ(xi, xj), is computed in the same fashion as
[12]:

V (xi, xj) =

{
0 if xi = xj

ρI(∆I) otherwise
(4)

This type of energy function is known as a Potts model.
The function ρI(·) is defined in terms of the image gra-

dient between the pixels i and j, which is denoted at ∆I:

ρI(∆I) =

{
P × s if ∆I < T

s Otherwise
(5)

where T is a threshold, s is a penalty term for violating the
smoothness constraint and P is a penalty term that increases
the penalty when the gradient has a small magnitude. Note
that T , P , and s are constant over the whole image.

To use belief propagation, a cost C can be converted into
compatibility by calculating e−C . For numerical reasons,
the cost is converted into a compatibility using e−C/D,
where D is a constant.

3.1. Choice of Belief Propagation Algorithm

To implement the Belief Propagation algorithm, two de-
cisions must be made. First, either the sum-product algo-
rithm or the max-product algorithm must be chosen. The
sum-product algorithm computes the marginal distributions
of each node, while the max-product algorithm computes
the MAP estimate of the whole MRF. More information on
these algorithms can be found in [6, 14, 16]. We use the
max-product algorithm to find the MAP estimate for com-
parison with the Graph Cuts algorithm, which also com-
putes the MAP estimate.

The second choice is the message update schedule. At
each iteration, each node uses the messages it has received
in the previous iteration from neighboring nodes to calcu-
late messages to send to those neighbors. If node i is to
the right of node j, node i sends a message to j at each
iteration of the algorithm. This message contains node i’s

belief about each possible state of node j. This message
is computed from the messages that i has received from its
neighbors. The message from i to j, denoted as mright(xj)
because it is the message that j is receiving from its right,
is:

mright(xj) ←max
xi

Ψ(xi, xj)Φ(xi, yi)×
mright(xi)mup(xi)mdown(xi)

(6)

where mright(xi), mup(xi), and mdown(xi) are the mes-
sages received by i from the nodes above, below, and to its
right.

The message update schedule determines when a mes-
sage sent to a node will be used by that node to compute
messages for the node’s neighbors. In a synchronous update
schedule, each node first computes the message for each
neighbor. Once every node has computed the messages, the
messages are delivered to each node and used to compute
the next round of messages.

An alternative schedule is to propagate messages in one
direction and update each node immediately. For instance
the first node in a row, i would send a message to the node
at its right, i + 1. Node i + 1 would then use this message
immediately, along with the messages it had previously re-
ceived from above and below, to compute a message to node
i+2. Once this has been completed for every row, the same
procedure occurs in the up, down, and left direction. We
refer to this style of updating as “accelerated” updating.

The advantage of this method is that information is
quickly propagated across the field. For a synchronous up-
date schedule on an image with width W , it would take
W iterations for information from one side of the image to
reach the other. The alternative schedule would only require
one iteration for this information to be propagated. This fea-
ture of the “up-down-left-right” message passing schedule
causes the Belief Propagation algorithm to converge very
quickly.

When the max-product algorithms converges on a graph
with loops, it returns an approximate solution for the most
likely labelling of the graph. The probability of this so-
lution is guaranteed to be greater than all other solutions
in a large neighborhood around that solution [15]. Upper
bounds on the difference between the probability of the true
MAP solution and the approximate solution returned by Be-
lief Propagation are shown in [13].

3.2. Graph Cuts Algorithm

We used the Graph Cuts algorithm provided in
Scharstein and Szeliski’s package. In particular, the pack-
age implements the “swap” algorithm described in [5]. Like
the Belief Propagation algorithm, the Graph Cuts algorithm
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(a) Map Image (b) Graph Cuts (c) Synchronous BP (d) Accelerated BP

Figure 1. Results produced by the three algorithms on the map image. The parameters used to
generate this field were s = 50, T = 4, P = 2. Graph Cuts returns the smoothest solution because it
is able to find a lower-energy labelling than the two Belief Propagation algorithms.

Energy of MRF Labelling Returned (×103)
Synchronous % Energy from Occluded

Image Ground-Truth Graph Cuts Belief Prop Matching Costs
Map 757 383 442 61%

Sawtooth 6591 1652 1713 79%
Tsukuba 1852 663 775 61%
Venus 5739 1442 1501 76%

Figure 2. Field Energies for the MRF labelled using ground-truth data compared to the energies for
the fields labelled using Graph Cuts and Belief Propagation. Notice that the solutions returned by
the algorithms consistently have a much lower energy than the labellings produced from the ground-
truth, showing a mismatch between the MRF formulation and the ground-truth. The final column
contains the percentage of each ground-truth solution’s energy that comes from matching costs of
occluded pixels.

finds a local minimum by making local improvements. The
“swap” algorithm makes local improvements by choosing
two of the possible states, α and β, then finding those nodes
labelled α whose label should be change to β, or vice-versa,
in order minimize the energy in the field as much as possi-
ble. Using the min-cut/max-flow formulation, the optimal
swap for the entire graph can be computed.

4. Comparing Belief Propagation and Graph
Cuts

We compared the Graph Cuts algorithm with the max-
product Belief Propagation algorithm, using both syn-
chronous updates and accelerated updates. For each of the
four images used in [10], we generated 10 MRF fields by
varying the T , s, and P parameters of Equation 5. We then
used the Graph Cuts algorithm and the Belief Propagation
Algorithms to estimate the MAP solution of the field. To
compare the two algorithms, we collected the three statis-
tics reported in [11] plus an additional statistic:

• BŌ – The percentage of pixels in non-occluded areas
of the image with a disparity error greater than 1.

• BT̄ – The percentage of pixels in textureless areas of
the image with a disparity error greater than 1.

• BD – The percentage of pixels near discontinuities in
the image with a disparity error greater than 1.

• E – The energy of the solution.

4.1. Results for Map Image

The table in Figure 8 summarizes the results of the three
algorithms on the map image. The performance in terms of
BŌ, BT̄ , and BD is nearly identical; neither algorithm has
a clear advantage.

However, it is useful to examine the energy of the solu-
tion returned by each algorithm. When the error penalty, s,
is 20, the energy of the solutions returned by Belief Prop-
agation and Graph Cuts nearly equal, although Graph Cuts
consistently returns a smaller field energy. After s is raised
to 50, the difference between the two solutions increases.
The reason for this can be seen in Figure 1. The regions on
the left side of the plane are smoother in the results returned
by Graph Cuts than those returned by Belief Propagation.

However, this extra smoothness does not translate into
better performance in terms of the ground-truth data. That
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(a) Tsukuba Image (b) Graph Cuts (c) Synchronous BP (d) Accelerated BP

Figure 3. Results produced by the three algorithms on the Tsukuba image. The parameters used to
generate this field were s = 50, T = 4, P = 2. Again, Graph Cuts produces a much smoother solution.
Belief Propagation does maintain some structures that are lost in the Graph Cuts solution, such as
the camera and the face in the foreground.

(a) Sawtooth Image (b) Graph Cuts (c) Synchronous BP (d) Accelerated BP

Figure 4. Results produced by the three algorithms on the sawtooth image. The parameters used to
generate this field were s = 50, T = 4, P = 2. For this image, the output of the three algorithms is
comparable.

is because the ground-truth solution actually has a higher
energy than either of the solutions returned by Belief Prop-
agation or Graph Cuts. In Figure 2, the energy of the
ground-truth solution for each image is shown for a spe-
cific setting of the parameters of ρI(·). The ground-truth
labelling was produced by choosing the disparity level clos-
est to the ground-truth disparity of each point. The ener-
gies of the labelling produced by Graph Cuts and Belief
Propagation are significantly lower than the energy of the
ground-truth labelling. The large energies for the ground-
truth solution are caused by inaccurate matching costs in
occluded areas. Since occluded pixels have no counterpart
in the other image, the pixel at the correct disparity of an
occluded pixel will likely have a different intensity, lead-
ing to a large matching cost. The significant effect of these
matching costs can be observed in the last column of Fig-
ure 2. This column lists the percentage of the final energy
for each of the solutions shown which can be attributed to
matching costs for occluded pixels. These matching costs
are a significant majority of the final costs.

4.2. Results for Tsukuba Image

The table in Figure 8 lists the results of the three algo-
rithms on the Tsukuba image. For this image, Graph Cuts
is superior. The primary reason for this superiority appears
to be that the Belief Propagation algorithm assigns portions
of the background to have very small disparity. An example
of this can be seen in Figure 3. On the other hand, when
the penalty, P , is higher, Belief Propagation does preserve
some structures that Graph Cuts does not.

4.3. Results for Sawtooth Image

Figure 4 shows the output of the algorithm on the saw-
tooth image. In general, the results for the two algorithms
on this image were comparable.

4.4. Results for Venus Image

Figure 5 shows a sample of the output of the algorithm on
the venus image. Again, the Graph Cuts algorithm seemed
to produce smoother results.
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(a) Venus Image (b) Graph Cuts (c) Synchronous BP (d) Accelerated BP

Figure 5. Results produced by the three algorithms on the venus image. The parameters used to
generate this field were s = 50, T = 4, P = 2. Graph Cuts ability to find a lower energy solutions
produces smoother, cleaner results.

Time (sec.)
Graph Synchronous Accelerated

Image Cuts Belief Prop. Belief Prop.
Map 268 1584 183

Tsukuba 268 1556 130
Sawtooth 272 3664 320

Venus 297 3644 262

Figure 6. The running times for the four exam-
ples shown. The accelerated Belief Propaga-
tion algorithm is generally the fastest. These
results are from a 2.4 Ghz Pentium 4 proces-
sor.

4.5. Computational Time
In both belief propagation implementations, the algo-

rithm ran for a fixed number of iterations. This number was
chosen to be large enough that the algorithm converged for
each of the images. We found that 50 iterations was enough
for the accelerated message update scheme to converge. For
synchronous updates, the number of iterations must be may
need to be as large as the largest dimension of the image
in order to pass information from one side of the image to
the other. In practice, we found that setting the number of
iterations to be equal to half of the largest dimension was
suitable. Figure 6 shows the times for computing the four
results examples shown. In general, the accelerated Belief
Propagation algorithm takes less time to find a solution than
Graph Cuts. It should be noted that there are faster versions
of the Graph Cuts algorithm available [4]. The synchronous
Belief Propagation algorithm takes significantly longer than
the other two algorithms due to the large number of itera-
tions required.

5. Discussion

5.1. Differences in Algorithm Performance
One of the interesting results is that the greatest differ-

ence between the performance of the Graph Cuts and Belief

Propagation algorithms occurs when s = 50 and P = 4.
In this case, the penalty incurred for neighboring deriva-
tives with different disparities is either 50 or 200, depend-
ing on the strength of the image gradient at that point. The
algorithms performed comparably when this penalty was
smaller, such as when P = 1 or P = 2.

For Belief Propagation, the strong interaction penalties
and tightness of the loops in the MRF likely hurt its per-
formance. When applied to a network with loops, Belief
Propagation returns an approximation to the optimal solu-
tion. This occurs because the loops allow the information
propagated from the node to the rest of the MRF to eventu-
ally come back to the node. The strong interaction penalties
in the MRF when s = 50 and P = 4 could exacerbate the
effect of the loops.

The Graph Cuts algorithm’s advantage in the case of the
strong smoothness penalties may come from its construc-
tion. The max-flow/min-cut algorithm allows the Graph
Cuts algorithm to compute the optimal swap for the whole
graph. This global computation may help Graph Cuts cope
with the strong interaction penalties better than Belief Prop-
agation.

5.2. MAP vs MMSE
As described in Section 2.3, the MAP estimates were

used for comparing Graph Cuts and Belief Propagation. A
noticeable artifact of using the MAP estimate is stair-step
effects, such as those seen in 7(a). This effect of having
large flat regions with sudden jumps is caused because the
MAP estimator must assign a single discrete disparity level
to each point. Smoother depth maps can be obtained by in-
stead using the MMSE estimator, which only Belief Propa-
gation can compute. The MMSE estimate weights the dis-
crete dispariy levels according to their marginal probabil-
ity, resulting in sub-pixel disparities being assigned and a
smooth depth-map, such as that shown in Figure 7(b). The
marginal probabilities of each point can be found using the
sum-product variant of the Belief Propagation algorithm,
e.g. [6, 14].
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(a) MAP Estimate (b) MMSE Estimate

Figure 7. Comparison of MAP and MMSE estimates on a different MRF formulation. The MAP estimate
chooses the most likely discrete disparity level for each point, resulting in a depth-map with stair-
stepping effects. Using the MMSE estimate assigns sub-pixel disparities, resulting in a smooth depth
map.

6. Conclusion

In this paper, we have examined how the Belief Propa-
gation algorithm compares with the Graph Cuts algorithm
when applied to the same Markov Random Field. We found
that, in general, the results returned by the two algorithms
were comparable, though the Graph Cuts algorithm was
able to find lower energy solutions for the MRF’s than Be-
lief Propagation. Examining the output of the two algo-
rithms, this was manifested in the fact that the solutions
produced by Graph Cuts tended to be smoother. Neither
the synchronous or accelerated Belief Propagation update
schemes held a clear advantage over the other in terms of
perfomance, while the acclerated Belief Propagation algo-
rithm was significantly faster.

However, the smoother, lower energy solutions produced
by the Graph Cuts algorithm did not necessarily translate
into better performance compared to the ground-truth of
the scene. This is because the solutions produced by both
Graph Cuts and Belief Propagation always had a signifi-
cantly lower energy than labelling the graph according to
the ground truth. The best labelling of the pixels did not
always correspond to the ground-truth. Given this situation,
the greatest increase in performance will be found by im-
proving the formulation of the MRF, rather than improving
the solutions found for the MRF’s currently being used.

For a stereo MRF using the Potts model, the Graph Cuts
algorithm found lower energy solutions. However, we ex-
pect that the comparisons between these inference algo-
rithms will vary as a function of the MRF formulation being
solved. It would be useful to compare the expansion Graph
Cuts algorithms with Belief Propagation using compatibil-
ity functions besides the Potts model, such as a truncated
quadratic energy function.
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0 20 1 0.39 0 4.8 309574 0.37 0 4.9 314166 0.84 0 5.0 315455
4 20 2 0.35 1.4 3.9 313123 0.36 0 4.5 320731 0.41 0 4.9 322334
4 20 4 0.44 1.4 4.2 315770 0.46 0.95 4.83 323910 0.55 1.9 5.2 335110
8 20 2 0.34 0 4.5 320677 0.32 0 3.9 331511 0.36 0 4.7 336503
8 20 4 0.43 0 4.6 331302 0.39 0 3.82 347041 0.45 0 4.5 366189
0 50 1 0.20 0 3.8 366289 0.13 0 1.9 388394 0.14 0 1.9 385652
4 50 2 0.27 1.4 2.8 372693 0.15 0 2.0 400892 0.18 0.14 1.9 405933
4 50 4 0.29 0.14 2.6 375979 0.26 0.95 2.43 406647 0.71 0.95 2.2 427580
8 50 2 0.18 0 2.3 384342 0.14 0 2.0 417745 0.19 0 2.4 442665
8 50 4 0.39 0.4 2.9 399455 0.32 1.4 2.4 518615 0.38 1.9 2.9 518615

Figure 8. The results of applying the Graph Cuts and Belief propagation algorithms to the map
image. Each algorithm returns the best results in terms of bad pixels for at least one setting of the
parameters. However, graph cuts consistently returns the labelling with the lowest energy.

Algorithm
Belief Propagation Belief Propagation

MRF Parameters Graph Cuts (Accelerated) (Synchronous)
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