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Abstract

This paper describes a novel application of Statistical
Learning Theory (SLT) to control model complexity in flow
estimation. SLT provides analytical generalization bounds
suitable for practical model selection from small and noisy
data sets of image measurements (normal flow). The method
addresses the aperture problem by using the penalized risk
(ridge regression). We demonstrate an application of this
method on both synthetic and real image sequences and use
it for motion interpolation and extrapolation. Our experi-
mental results show that our approach compares favorably
against alternative model selection methods such as the
Akaike’s final prediction error, Schwartz’s criterion, Gen-
eralized cross-validation, and Shibata’s model selector.

1. Introduction
Statistical Learning Theory (SLT) [13, 5] provides the
mathematical framework for estimating motion models
from finite training data; it enables a better understanding of
problems related to generalization and facilitates the devel-
opment of rigorous learning algorithms; it provides analyti-
cal generalization bounds for model selection, which relate
unknown prediction risk (generalization performance), and
known quantities such as the number of training samples,
empirical error, and a measure of model complexity called
the Vapnik-Chervonenkis (VC) dimension. In this setting,
model selection amounts to model complexity control.

Many computer vision problems, including motion anal-
ysis, registration, segmentation, and stereo, require optimal
estimation using regression. Motion estimation from im-
age sequences is “a difficult problem that involves pool-
ing noisy measurements to make reliable estimates”, it “as-
sumes some model of the variation within the region” [3].
The goal of this paper is to choose, from a small noisy data
set, an optimal model that would yield minimum error for
unseen inputs (i.e., minimum prediction risk). Model selec-
tion criteria are used to select a correct motion model from
several possible motion models; its assumed that one of the
available models is the true motion model. This setting

is much simpler than the general problem of model selec-
tion [5], where the set of possible models may not contain
the true model.

This paper describes an application of an SLT-based
model selection to the problem of estimating optimal mo-
tion models from small sets of image measurements (nor-
mal flow). We address the aperture problem using the SLT
formalism of penalized risk (ridge regression). We present
the results of applying the estimated motion models to mo-
tion interpolation and extrapolation on both synthetic and
real image sequences for both motion interpolation and ex-
trapolation; these results demonstrate the feasibility and
strength of our approach. Experiments on synthetic data
show that our approach compares favorably against alter-
native model selection methods, such as the Akaike’s final
prediction error (fpe), Schwartz’s criterion (sc), Generalized
cross-validation (gcv), and Shibata’s model selector (sms).

Section 2 briefly reviews model selection in predictive
learning and VC-based analytic methods for model selec-
tion; it introduces the SLT-based model selection criterion
used in this paper. Section 3 describes our approach. It
discusses motion estimation and describes the application
of the SLT to motion model selection. Section 4 reviews
the experimental results on a synthetic and a real image se-
quence. Finally, Section 5 presents the conclusions.

2. Model Selection for Regression
A learning method is an algorithm that estimates an un-
known mapping (dependency) between system’s inputs and
outputs from the available data—i.e., known (input,output)
samples. Once such a dependency has been estimated it can
be used for prediction of system outputs from the input val-
ues. The usual goal of learning is the prediction accuracy,
i.e. generalization.

In the regression formulation, the goal of learning is to
estimate an unknown (target) function g(x) in the relation-
ship y = g(x) + ε, where the random error (noise) is zero
mean, x is a d-dimensional vector and y is a scalar output. A
learning method selects the best model f(x, ω0) from a set
of possible models f(x, ω) specified a priori. The quality
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of an approximation is measured by the loss (discrepancy)
measure L(y, f(x, ω)). A common loss function for regres-
sion is the squared error. Thus learning is the problem of
finding the function f(x, ω0) that minimizes the prediction
risk functional

R(ω) =
∫

(y − f(x, ω))2p(x, y)dxdy

using only the training data (xi, yi), i = 1, . . . , n, generated
according to some unknown joint probability density func-
tion (pdf) p(x, y) = p(x)p(y|x). Prediction risk functional
measures the accuracy of the learning method’s predictions
of the unknown target function g(x).

The standard formulation of the learning problem de-
fined above amounts to function estimation from a set of
admissible functions. Here the best function (model) is
the one minimizing the prediction risk. The problem is
ill-posed since the prediction risk functional is unknown
(by definition). Most learning methods implement the idea
known as empirical risk minimization (ERM), which is
choosing the model minimizing the empirical risk, or the
average loss for the training data:

Remp(ω) =
1
n

n∑
k=1

(yk − f(xk, ω))2. (1)

The ERM approach is only appropriate when the parametric
form of unknown dependency is known. In such a para-
metric approach the unknown dependency is assumed to
belong to a narrow class of functions specified by a given
parametric form. In most practical applications parametric
assumptions do not hold true and the unknown dependency
is estimated in a wide class of possible models of varying
complexity.

Since the goal of learning is to obtain a model provid-
ing minimal prediction risk, it is achieved by choosing a
model of optimal complexity corresponding to smallest pre-
diction (generalization) error for future data. Existing pro-
visions for model complexity control include [5] penaliza-
tion (regularization), weight decay (in neural networks), pa-
rameter (weight) initialization (in neural network training),
and various greedy procedures (a.k.a. constructive, growing
or pruning methods). Classical methods for model selection
are based on asymptotic results for linear models. Recent
approaches based on approximation theory extend classical
rate-of-convergence results to nonlinear models (e.g. multi-
layer perceptrons); they are, however, still based on asymp-
totic assumptions. Non-asymptotic guaranteed bounds on
the prediction risk for finite-sample settings have been pro-
posed in VC-theory [13].

There are two general approaches for estimating predic-
tion risk for regression problems with finite data: analytical
and data-driven. Analytical methods use analytic estimates

of the prediction risk as a function of the empirical risk pe-
nalized by some measure of model complexity. Once an ac-
curate estimate of the prediction risk is found, it can be used
for model selection by choosing the model complexity that
minimizes the estimated prediction risk. In the statistical lit-
erature, various analytic prediction risk estimates have been
proposed for model selection (for linear regression). These
estimates take the form of:

Rest(ω) = r

(
d

n

)
1
n

n∑
k=1

(yk − f(xk, ω))2, (2)

where r is a monotonically increasing function, d is the
model complexity (number of degrees of freedom), and n
is the training sample size. r is often called a penalization
factor because it inflates the average residual sum of squares
for increasingly complex models.

SLT provides analytic upper bounds on the prediction
risk that can be used for model selection [13]. To make
practical use of such bounds for model selection, one has
to choose the practical values for theoretical constants in-
volved [5, 6]; this gives the penalization factor, r(p, n),
called the Vapnik’s measure (vm):

r(p, n) =

(
1 −

√
p − p ln p +

ln n

2n

)−1

+

(3)

where p = h/n, h denotes the VC-dimension of a model
and (·)+ = 0, for x < 0. In SLT Rest(ω) is obtained
by substituting r(p, n) for r(d/n) in Eq. (2). For linear
estimators with m degrees of freedom, the VC-dimension
is h = m. The model providing minimal prediction risk
Rest(ω) = r(p, n)Remp(ω) (see Eqs. (1-3)) is then chosen.

3. Controlling Motion Model Com-
plexity

The regression problem in motion estimation has a training
set of examples consisting of image points xn and measure-
ments yn, which put in correspondence image points in two
or more consecutive frames frames from a video sequence.
The goal of training is to learn how to model the dependency
of the measurements on the inputs. The objective is to make
accurate predictions on image points that were not included
in the training set (interpolation), or on image points from
unseen future frames (extrapolation). We will demonstrate
our approach on an image sequence of a moving arm (see
Fig. 1).

3.1. Normal Flow
Normal flow is the projection of image motion (optical
flow) onto the edge gradient direction [2]. It is usually com-
puted from image derivatives resulting in very noisy mea-
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Figure 1: Frames 2,4,6,8,10, and 12 from a 13-frame se-
quence of a moving arm.

surements. In addition, since it corresponds to edge mo-
tion in the normal direction only it gives rise to the aper-
ture problem—i.e., in a small region along a straight edge
it does not contain any information about tangential motion
of the edge. This problem is usually solved by assuming
that the motion in a sufficiently large region, that includes
edges of varying orientations, obeys some simple model so
that the information over the whole region can be used to
recover the missing information. The method used here es-
timates the normal flow from pairs of successive color im-
age frames without image derivatives [8]. The normal flow
computed from images in Fig. 1 is shown in Fig. 2. The SLT
assumes that all outlier measurements have been rejected
before parameter estimation. We use the folowing method
that appears quite effective in rejecting most outliers. A
connected component algorithm is applied to all points at
which normal flow was computed. Two pixels with nor-
mal flows �u1, �u2 are connected if they are 8-neighbors and
‖�u1−�u2‖ ≤ ε, where ε = max{c1, c2‖�u1 +�u2‖}. All con-
nected components smaller than five pixels are removed as
outliers. In the experiments presented in this paper c1 = 2
and c2 = 0.2 were used.

3.2. Motion Model Estimation
A hierarchy of parametric flow models has been proposed
including pure translation, image rotation, 2D affine flow,
and 2D homography (8-parameter or simplified quadratic
flow). We will consider all those models here. 8-parameter
flow corresponds to the instantaneous projected image mo-
tion field generated by a moving plane. Other models used
here can be obtained by setting some of the eight param-
eters to zero. In the 8-parameter model coordinates of a
point (x, y) in the first frame will move to (x′, y′) in the
next frame:(

x′

y′

)
=

(
w1

w4

)
+

(
w2 w3

w5 w6

) (
x
y

)

Figure 2: Normal flow computed from pairs of frames 2-3,
4-5, 7-8, and 10-11 of the moving arm sequence.

+
(

x2 xy
xy y2

) (
w7

w8

)
(4)

Eq. (4) relates corresponding points in successive image
frames. To obtain the displacement �u(x, y) = (δx δy)T

of (x, y) we subtract (x y)T from both sides of (4). The
left hand side of (4) is replaced by (δx δy)T and on
the right hand side w2 and w6 get replaced by w1

2 =
w2 − 1 and w1

6 = w6 − 1. The normal displacement
field at (x, y) is given by un(x, y) = δ�rn · �n = nxδx +
nyδy = w1nx + w1

2xnx + w3ynx + w7x
2nx + w8xynx +

w4ny + w5xny + w1
6yny + w7xyny + w8y

2ny = w · p,
where �n = nx�ı + ny� is the gradient direction, p =
(nx xnx ynx ny xny yny x2nx+xyny xynx+y2ny)T ,
and w = (w1 w1

2 w3 w4 w5 w1
6 w7 w8)T is the vector

of affine parameters.
We use the method described in the previous section to

compute the normal flow. For each edge point �ri we have
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one normal flow value un,i, that we use as an estimate
of the normal displacement at the point, a vector pi com-
puted from (xi, yi) and �ni, and an approximate equation
w ·pi ≈ un,i. Let the number of edge points be N ≥ 8. We
need to find a solution of Pw − b = e, where b is an N-
element vector with elements un,i, P is an N × 8 parameter
matrix with rows pi, and e is an N-element error vector. We
seek the affine model w that minimizes ‖e‖ = ‖b − Pw‖;
the solution satisfies the system PT Pw = PT b and corre-
sponds to the linear least squares (LS) solution.

3.3. Model Selection
Training data consists of normal flow displacements. Affine
and quadratic models are responsible for data generation.
The motion estimation (learning) problem corresponds to
choosing the best motion model from a given set of possi-
ble motions using the observed (training) data. The goal is
to choose a model that will yield the lowest error at the im-
age points not used at training. In this section we combine
the SLT regression (see Sec. 2) and motion estimation tech-
niques described in the preceding sections to choose a flow
model that has the best predictive performance.

We use the square loss function—i.e., the squared dif-
ference Rest(wm) = 1

n

∑N
i=1(un,i − um

n,i)
2 between the

computed normal flow un,i and the predicted normal flow
um

n,i = wm · pi, where wm corresponds to the estimated
model. The task of model selection corresponds to choosing
the best predictive model from a given set of linear paramet-
ric models, using a small set of noisy training data. We use
VC-generalization bounds (3). The VC-dimension h (com-
plexity) of a linear model is given by the number of degrees
of freedom (DoF) of the model plus one.We choose from
the following five models that we obtain by setting various
elements of w to zero:

M1: pure translation: w1
2 = w3 = w5 = w1

6 = w7 = w8 =
0, 2 DoF, h = 3;

M2: translation, shear, and rotation: w1
2 = w1

6 = w7 =
w8 = 0, 4 DoF, h = 5;

M3: translation and scaling: w3 = w5 = w7 = w8 = 0; 4
DoF, h = 5;

M4: 6-parameter affine: w7 = w8 = 0. 6 DoF, h = 7;

M5: full affine, quadratic flow: 8 DoF; h = 9.

3.4. Scaling and the Aperture Problem
In Section 3.2 we showed how to estimate the flow param-
eters w by solving the LS problem min ‖Pw − b‖. Con-
dition number κ2(P ) is computed as the ratio of the largest

and the smallest singular values of P :

κ2(P ) =
σmax(P )
σmin(P )

. (5)

The sensitivity in estimating w is roughly proportional to

ε(κ2(P ) + ρLSκ2
2(P )) (6)

where ρLS is the magnitude of the residual of the LS so-
lution and ε = ‖∆b‖/‖b‖ is the relative error in b. The
normal flow is computed with sub-pixel accuracy [8] and
ε = O(0.01). Since in the examples presented here ρLS =
O(1) it can be seen that condition numbers greater than 10
are undesirable. A large condition number typically corre-
sponds to either inappropriate scaling of columns of P or to
the aperture problem.

Scaling of columns P is handled as follows. The original
problem is replaced by min{‖(PG)y−b‖}. G is chosen to
be a diagonal matrix whose elements are ‖P (:, i)‖−1, where
P (:, i) is the ith column of P . If the matrix PG is well
conditioned, y is estimated using the LS method and w =
Gy is computed. In the experiments with a moving forearm
(see Figs. 1 and 2 and Sec. 4.3) typical values of κ2(P ) are
in the range 1 to 2 for M1, in the range 30 to 40 for M2 and
M3, in the range 40 to 50 for M4, and in the range 3000
to 4000 for M5. Scaling brings all these condition numbers
below 5, i.e. κ2(PG) < 5. This scaling procedure has been
implemented and used for the experiments using real image
sequences (see Sec. 4.3).

When the condition number after scaling, κ2(P ), is still
too large, it can be said that the data is not appropriate for
the parameter estimation due to the aperture problem [2].
Note that the aperture problem refers to the fact that the
flow cannot be estimated from the given normal flow due
to the inappropriate distribution of feature points. This dis-
tribution is reflected in the data matrix P . In this case the
solution is not provided by standard LS. The problem has to
be solved by minimizing the penalized risk functional

Rpen(y) =
1
n

(‖(PG)y − b‖2 + yT Φy) (7)

where Φ is a symmetric and nonnegative definite penalty
matrix [5]. A reasonable choice of the penalty term is the
ridge regression penalty function Φ = λI , where I is an
identity matrix [9]. Solving the following modified least
squares problem minimizes Rpen(y) (Eq. (7)):

• Create the modified data matrices U =
(

PG√
λI

)
,

v =
(

p
0

)
, where 0 is a column vector of zeroes.

• Minimize the empirical risk functional Remp =
1
n‖Uy − v‖. The minimization is done by solving for
y by LS method. Finally, compute w = Gy.
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• Compute the effective DoF for the penalized problem

as DoF =
∑m

i=1
σ2

i

σ2
i
+λ

where σi are the singular val-

ues of PG.

243 244 245 246 247 248 249 250 251
−180

−175

−170

−165

−160

−155

−150

−145

−140

−135

Figure 3: Normal flow vectors from a small region along
the arm in Fig. 2.

λ is chosen to make κ2(P ) small. For illustration pur-
poses an experiment with κ2(U) = 10 and κ2(U) = 100
was performed for the example shown in Fig. 3. The
data comes from a small region along the arm shown
in Figs. 1 and 2. In this example the models M1, M2,
and M3 have small values of the condition numbers
of the PG matrices. The condition numbers of data
matrices PG for both M4 and M5, however, are very
large (> 1016) and their effective ranks are 5 and 7,
respectively. The estimated empirical risk for models
M1 − M5 are (0.552, 0.015, 0.3, 0.0139617, 0.0131344)
and the corresponding prediction risks are
(1.364, 0.049, 0.978, 0.059, 0.072). Note that based
on Eqs. (2) and (3) M2 would be chosen. However, if there
were more feature points, either M4 or M5 could have
been chosen since they have smaller empirical risk values
than the other models; since they are poorly conditioned,
however, penalized solutions have to be used. (Note that
the penalization factor is heavy for small numbers of
feature points.) The relevant results are as follows. In the
case of the affine model M4 the penalization coefficients
λ = (0.017, 0.17) result in condition numbers (100, 10),
empirical risk values (0.0139622, 0.0190552), effective
DoF values (4.9969, 4.7258), and prediction risk values
(0.052, 0.068). The effective DoF are a crude estimate
of the VC-dimension. It can be seen that the larger the
penalization term more bias is introduced. In the case
of the quadratic model (M5) the penalization coefficients
λ = (0.020, 0.203) result in condition numbers (100, 10)
empirical risk values (0.0131595, 0.022909), effective
DoF values (6.1726, 5.2896), and prediction risk values
(0.057, 0.088). Note that for small penalization factors the
empirical risk goes up slightly, but the prediction risk goes
down due to the lowered effective DoF.

4. Experimental Results

We performed experiments on both synthetic and real image
sequences. In addition we compared our approach to four
well-known model selection criteria.

4.1. Experiments on a Synthetic Image Se-
quence

A synthetic image sequence consisting of 11 frames of a
128-point moving square was generated using the following
6-parameter affine motion model:

(
x′

y′

)
=

(
2.7

−2.47

)
+

(
0.991562 0.129631
−0.129631 0.991562

)
.

A noisy sequence was generated by corrupting all displaced
by a Gaussian noise with a zero mean and variance 0.5.
We performed both interpolation and extrapolation exper-
iments on this sequence. In the interpolation experiment we
randomly choose n = 32, 64 correspondences (out of 128)
from pairs of successive frames and estimate the parameters
for each of the motion models using LS (see Sect. 3.2). The
bounds on prediction is computed for each model M1−M5

using the LS error and its VC-dimension (h = m + 1).
The corresponding interpolating total error is calculated us-
ing all the 128 points based upon ground truth information.
The experiment is repeated 100 times with different random
realizations of training data, for both non-noisy and noisy
image sequences. The experimental results show that the
prediction risk is a good model performance predictor for
motion estimation for both non-noisy and noisy sequences.
In addition, the prediction risk is a better predictor than the
empirical risk. Ground truth M4 is consistently found as the
optimal motion model; its interpolation error is minimum.
The quadratic model M5 is a very close runner-up to the
ground truth model M4. In the extrapolation (“tracking”)
experiment we randomly subsample n = 32, 64 pixel cor-
respondences from the first five frame pairs, and estimate
the parameters for each of the models M1 − M5 using the
LS method. Note that the data available for extrapolation is
much less than the data available for the interpolation ex-
periment. The prediction risk for each model is derived as
before. The extrapolation error for each model for all the re-
maining frames (7-11) is calculated using the truth starting
from frame 6. The experiment is repeated 300 times with
different random realizations of training data for non-noisy
and noisy image sequences. M4 is chosen as the optimal
model for motion tracking and its extrapolated error is min-
imum. The quadratic model M5 is again a very close second
to M5.
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4.2. Comparative Analysis of Model Selection
Criteria

A comparative analysis of model selection criteria was per-
formed for different forms of penalty r, which have been
proposed in the statistical literature. They are listed below
and compared to the Vapnik measure (vm), p = h/n.

• Final prediction error (fpe) [1]:

r(p) = (1 + p)(1 − p)−1.

• Schwartz’s criterion (sc) [12]:

r(p, n) = 1 +
ln n

2
p(1 − p)−1.

• Generalized cross-validation (gcv) [7]:

r(p) = (1 − p)−1.

• Shibata’s model selector (sms) [11]:

r(p) = 1 + 2p.

All these classical approaches are motivated by asymptotic
arguments for linear models and therefore apply well for
large training sets. In fact, for large n, prediction estimates
provided by fpe, gcv, and sms are asymptotically equiva-
lent. The penalization factor r inflates the average residual
sum of squares for increasingly complex models. Our ex-
perimental results show that the Vapnik measure compares
favorably against these criteria (see Table 1). The entries
show the accuracy of predictions provided by each of the
criteria for the synthetic image sequence.

Samples vm fpe gcv sc sms
32 99.0% 91.0% 94.2% 89.3% 81.9%
64 96.8% 86.0% 87.0% 87.0% 82.6%
32 100% 98.2% 99.7% 98.3% 93.7%
64 100% 98.5% 99.0% 98.7% 96.7%
32 99.6% 91.3% 96.3% 90.8% 78.7%
64 99.5% 83.5% 88.1% 80.4% 74.4%
32 100% 95.6% 98.0% 96.0% 89.3%
64 100% 94.5% 96.3% 92.3% 88.0%

Table 1: Comparison of model selection criteria on the syn-
thetic image sequence. Rows 1 and 2 show the interpolation
results for the non-noisy sequence. Rows 3 and 4 show the
extrapolation results for the non-noisy sequence. Rows 5
and 6 show the interpolation results for the noisy sequence.
Rows 7 and 8 show the extrapolation results for the noisy
sequence.
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Figure 4: Interpolation results for the moving arm sequence.
Top: prediction risk, bottom: square error.

4.3. Experimental Results for Real Image Se-
quence

Training data comes from eleven frames drawn from a real
image sequence of a moving arm and the corresponding
normal flow (see Figs. 1 and 2). We report the results ob-
tained for both interpolation and extrapolation. The ground
truth is not known and the images are inherently noisy. In
the interpolation experiment we randomly subsampled 25%
of image flow values (out of approximately 400 points); the
experiment is repeated 100 times with different random re-
alizations of training data. Training data is drawn from two
frame pairs: (i, i + 1) and (i + 2, i + 3); interpolation is
performed for frames (i + 1, i + 2). Fig 4 summarizes the
prediction risk and interpolation error for the whole exper-
iment. The prediction risk ranks the motion models so that
its optimal choice, M2, yields the minimum total interpola-
tion error.
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Figure 5: Extrapolation results for the moving arm se-
quence. Top: prediction risk, bottom: square error.

In the extrapolation experiment we randomly subsam-
pled 10% of image flow values (out of approximately 400
points); the experiment is repeated 100 times with differ-
ent random realizations of training data. Training data was
drawn from the first five pairs of frames: (i, i + 1) starting
with i = 1. Extrapolation is performed for the remaining
five frames of the sequence. Fig. 5 summarizes the predic-
tion risk and extrapolation error for the whole experiment.
The prediction risk ranks the motion models so that its op-
timal choice, M2, yields the minimum total extrapolation
error.

5. Conclusions

This paper a novel application of Statistical Learning The-
ory (SLT) to optimal model selection, with applications to
single motion estimation and tracking from small data sets

of image measurements (flow). This is accomplished with-
out using restrictive assumptions such as asymptotic set-
tings and/or Gaussian noise. The experimental results, us-
ing both synthetic and real image sequences, demonstrate
the feasibility and strengths of our approach for motion
model selection using SLT. Our experimental results also
show that our approach compares favorably against alterna-
tive model selection methods regarding the confidence they
offer on motion estimation. The paper also shows how to
address the aperture problem using the SLT formalism of
(ridge regression) penalized risk.
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