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Abstract

This paper presents a framework to reconstruct a scene
captured in multiple camera views based on a prior model
of the scene geometry. The framework is applied to the
capture of animated models of people. A multiple camera
studio is used to simultaneously capture a moving person
from multiple viewpoints. A humanoid computer graphics
model is animated to match the pose at each time frame.
Constrained optimisation is then used to recover the multi-
ple view correspondence from silhouette, stereo and feature
cues, updating the geometry and appearance of the model.

The key contribution of this paper is a model-based com-
puter vision framework for the reconstruction of shape and
appearance from multiple views. This is compared to cur-
rent model-free approaches for multiple view scene cap-
ture. The technique demonstrates improved scene recon-
struction in the presence of visual ambiguities and provides
the means to capture a dynamic scene with a consistent
model that is instrumented with an animation structure to
edit the scene dynamics or to synthesise new content.

1. Introduction

The challenge of achieving computer generated scenes
that are visually indistinguishable from the real world is
leading to an increasing use of real-world observations to
create and animate models in computer graphics. This is
demonstrated by the wide spread use of 3D scanning tech-
niques to reconstruct detailed character models from clay
maquettes and the use of marker based motion capture to
produce believable movement in character animation. An
exciting new area of research lies in capturing dynamic 3D
models from real world events using multiple cameras. This
has the potential to allow for the rapid creation of 3D con-
tent with the visual realism of conventional video, unen-
cumbered by the restricted capture environment of 3D scan-
ning systems and the invasive use of markers required for
motion tracking.

Three-dimensional production from multiple view video,
or 3D video, was first popularised by Kanade et. al. [9, 15]
who coined the term “Virtualized Reality”. Conventional
video provides only a 2D view of a scene in a linear form
defined by a director. Presenting an event in 3D allows vi-
sualisation in the same way as virtual reality, providing an
immersive 3D experience. Systems for multiple view re-
construction have been developed [9, 14, 21] and applied to
reconstruct sequences of moving people. These techniques
make no assumptions on the structure of the captured scene
and produce a new scene model for each frame of a se-
quence. The advantage of this approach is that there are no
restrictions on the dynamic content of the scene. The dis-
advantage is that the structure of the scene is not consistent
over time and reconstruction is not robust to visual ambigu-
ities. Inconsistencies in the models at different time frames
become apparent when viewed as a sequence. There is also
no consistent structure to edit or reuse the dynamic content
limiting the techniques to replaying the captured event.

In this paper we introduce model-based reconstruction
of people using a generic model of human shape and kine-
matic structure. This approach enables anatomically correct
estimation of whole-body shape and imposes a consistent
structure for sequences of reconstructed models of a moving
person. The model-based approach provides prior knowl-
edge of human shape to overcome visual ambiguities inher-
ent in multiple view reconstruction. Reconstruction of mod-
els with a common underlying structure provides temporal
correspondence between models for a dynamic sequence.
The use of a model animation structure allows for reuse of
captured models to synthesise new dynamic events or the
editing of the dynamic content of a captured sequence.

A novel model-based reconstruction algorithm is intro-
duced to optimise the triangulated surface mesh of a generic
humanoid model to simultaneously match stereo, silhouette,
and feature data across multiple views. Stereo correspon-
dence is used to optimise surface shape to sub-pixel accu-
racy for recovery of colour texture. The shape of the model
is used to constrain the search for stereo correspondence in a
coarse-to-fine framework that enables shape recovery from
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noisy stereo data. Multiple shape cues are incorporated in
the framework to complement the stereo data which can fail
in regions of poor image texture and occlusion boundaries.
The surface mesh is treated as a shape constrained surface to
regularise optimisation and preserve the surface parameter-
isation with respect to kinematic structure. Preservation of
surface parameterisation is important for subsequent anima-
tion using the predefined kinematic structure of the model.
A shape constraint is presented for an arbitrary triangu-
lar mesh, a common representation used to model surface
shape in computer graphics. The resulting surface model
is optimised to sub-pixel accuracy and constrained by the
generic humanoid shape where visual ambiguities arise be-
tween multiple camera views.

2. Related Work

Acquisition of visually realistic models of objects and
scenes from images has been a long standing problem
in computer vision and computer graphics. This has re-
sulted in formulation of the projective geometry for recon-
struction of shape from multiple view images of unknown
scenes. Common techniques for shape reconstruction in-
clude: voxel carving from image silhouettes to obtain the
maximal bounding volume or visual hull for a given set of
segmented foreground images [11]; photo-consistency be-
tween views which reconstructs the maximal volume inside
the visual hull which is consistent with the observed im-
age colour or photo hull [18, 10]; and multiple view stereo
[9, 15] where local surface appearance is used to estimate
correspondence between views.

Previous research has achieved reconstruction of 3D
shape, appearance and movement of a person from multiple
view video sequences using image silhouettes [14], photo-
consistency [21] and stereo [9]. These techniques recon-
struct a sequence of independent surface representations of
a person which are then textured to achieve realistic appear-
ance. However, due to the inherent visual ambiguity such
techniques may fail to accurately reconstruct complex self-
occluding objects with areas of limited surface texture such
as people. Object-centred and model-based techniques have
been introduced to overcome visual ambiguities by making
use of approximate scene geometry to constrain reconstruc-
tion.

Object-centred surface reconstruction was introduced by
Fua and Leclerc [5] in which an initial surface model is de-
rived from stereo data and then optimised to match stereo
and shading cues between images, accounting for geomet-
ric distortions and occlusions between views. Vedula et. al.
[22] proposed a model-enhanced stereo system where an
initial reconstructed scene model is used to refine the search
range for stereo correspondence to improve stereo matches
for reconstruction. Faugeras and Keriven [4] present a volu-

metric reconstruction technique posed in a level-set frame-
work where the estimated scene geometry from the evolv-
ing surface of the level-set is used to account for geometric
distortions and occlusions between camera views. These
techniques make use of reconstructed geometry to improve
the estimation of image correspondence. However they re-
main susceptible to problems such as lack of image texture
that makes correspondence ambiguous.

Model-based techniques use prior knowledge of the
scene geometry to constrain shape recovery in the presence
of visual ambiguities and can reduce the influence of noisy,
sparse or outlier data in shape estimation. Debevec et. al.
[2] describe a model-based stereo system, in which manu-
ally defined planar sections of architectural scenes are used
to recover dense geometric detail from stereo. Kakadiaris
and Metaxas [8] infer a segmented body model for a per-
son from the deforming contour of image silhouettes and
construct 3D shape of body parts from orthogonal views.
Hilton et. al. [7] present model-based shape from silhouette
to recover whole-body models of people. Plankers and Fua
[16] adopt a model consisting of implicit volume primitives
to recover the gross upper-body shape and pose from both
stereo and silhouette data.

In this paper a model-based technique for reconstruction
is introduced that recovers the shape of a whole-body an-
imated human model. The model-based framework inte-
grates shape information from silhouette, stereo and feature
cues across multiple views and uses prior knowledge of hu-
man shape in the model to constrain shape recovery. This
new model-based approach provides the integration of dif-
ferent visual cues in a coarse-to-fine optimisation with the
use of a novel local shape constraint for arbitrary triangular
surface meshes. This is the first example of a model-based
framework integrating multiple visual cues for whole-body
human modelling in an arbitrary pose.

3. Model-Based Reconstruction

The model-based approach to scene reconstruction in-
troduced in this paper takes a generic animated humanoid
model and matches it to available shape, appearance and
feature data. The generic model is first registered with
the images using a sparse set of manually defined feature
points. The shape of the model is then optimised to match
the images in a coarse-to-fine, model-based framework, in
which the model shape is used to constrain and regularise
the multiple view reconstruction process. The model is then
textured to generate a final representation that matches the
shape and appearance in the multiple view images.

The generic model used in this work consists of a single
seamless mesh defining the surface shape of the body, con-
nected to a skeleton structure for animation. The mesh con-
tains 8000 polygons and the skeleton 17 articulated joints,
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providing the gross shape and pose of the human body. A
single texture map is generated for the generic model pro-
viding an intuitive representation of appearance that can be
easily edited. A vertex weighting scheme is used for model
animation.

3.1. Data acquisition

A multiple camera studio is used for data acquisition. A
backdrop is used for foreground segmentation and diffuse
light sources are used to provide an even ambient lighting
environment. The studio contains 9 cameras, 8 of which
form 4 stereo pairs that are positioned to give 360o cover-
age of the subject at the centre of the studio with 1 camera
placed overhead to increase the intersection angle between
views for shape from silhouette. One additional camera is
also placed to provide a viewpoint for comparison and is
not used in reconstruction or texture recovery. Sony DXC-
9100P 3-CCD colour cameras are used, providing PAL-
resolution progressive scan images. Intrinsic and extrinsic
camera parameters are calibrated using the Camera Calibra-
tion Toolbox for Matlab from MRL-Intel [1].

3.2. Model Registration

The generic model is aligned with the subject in the stu-
dio using a manual interface. A user first defines a set of
feature points consisting of skeleton joints and mesh ver-
tices on the model. The corresponding image locations are
then selected on the captured images and the 3D feature
locations are reconstructed from the multiple views. The
skeleton pose and dimensions are finally updated to register
the model with the features, aligning the model with the im-
ages. Feature points are typically specified at the articulated
joints and the facial definition points such as the eyes, ears,
nose and mouth.

The alignment process is performed in a least-squares
framework widely used in human pose estimation [19]. The
generic model is parameterised with 6 degrees of freedom
(DOF) for global position and orientation, 9 DOF for the
skeletal bone-lengths, with left and right-sides constrained
to be symmetric, and 25 DOF for the articulation of the
skeletal joints [19]. These model parameters, φ, are esti-
mated to minimize the squared error between the model fea-
tures, xf (φ), and the reconstructed manually defined fea-
ture locations, of .

arg minφ
∑

f

‖of − xf (φ)‖2 (1)

The problem is non-linear, requiring close initial values
for convergence to the correct solution [19]. The pose of the
model is therefore initialised using an analytical solution for
the position and orientation of the trunk given the locations

of the hip and shoulder joints, and an analytical solution for
the limb rotations given three joint locations on each limb,
such as the hip, knee and ankle. The model parameters are
then optimised using an iterative bound-constrained solver,
allowing for inclusion of constraints on joint rotations and
bone-lengths [19].

3.3. Multiple View Shape Reconstruction

Once the generic model is aligned to match the subject
in the studio, the shape of the model is optimised to satisfy
the appearance in each of the captured images. The objec-
tive function for optimisation is formulated with three data
terms, the cost of fitting to silhouette data EV , fitting stereo
data ES and fitting the features EF , and a regularisation
term ER across the surface of the model governed by the
factor α. The function is discretized at the vertices of the
mesh, xv, and energy minimization is performed using gra-
dient descent. The deformation of the model mesh is then
given by:

E = EV + ES + EF + αER (2)

dxv

dt
= − dE

dxv

= −
(
dEV

dxv

+
dES

dxv

+
dEF

dxv

+ α
dER

dxv

)

(3)
Each data fitting term in the objective function is de-

fined in terms of a squared 3D error between the vertex
location and the corresponding reconstructed vertex posi-
tion from the data, giving a least-squares solution in data
fitting. Gradient-descent optimisation is performed in a
model-based coarse to fine fashion. Optimisation starts at
the coarsest resolution corresponding to the initial expected
error in the shape of the model, and vertex positions are re-
constructed for the stereo, silhouette and feature data up to
the expected error in the shape. The model vertices are then
deformed by gradient-descent to match the data. Optimisa-
tion and data reconstruction is then scheduled to progress to
finer levels of resolution, and finishes at the reconstruction
accuracy of the cameras. The advantage of this coarse-to-
fine model-based approach is that the reconstructed vertex
locations are iteratively updated as the model deforms, al-
lowing the reconstructed vertex positions to converge to a
solution in the presence of noisy data and incorrect matches.

3.3.1. Model-based stereo

Stereo matching is used between camera images to provide
the shape data that aligns the appearance in the images. The
stereo energy term is defined as the squared error between
a vertex and the reconstructed location obtained by stereo
matching between adjacent cameras in the studio. A model-
based approach to stereo is adopted in which the shape of
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Key-view

Position
Error

Figure 1. Stereo matching between a key view for a ver-
tex and adjacent cameras, showing the search region along
each epipolar line in adjacent views.

the model is used to constrain the search range for matches
between cameras.

For each mesh vertex we first determine the key view
with the greatest surface visibility according to the camera
with the closest viewpoint to the direction of the vertex nor-
mal. We then recover the disparity in each camera adja-
cent to the key view that forms a stereo pair as illustrated
in Figure 1. Here we make the simplifying assumption of
a fronto-parallel surface at each vertex and match along
epipolar lines in rectified camera images [6]. The search
range along an epipolar line is defined by the expected er-
ror in the position of the model vertex, and the search range
perpendicular to an epipolar line is defined by the maxi-
mum reprojection accuracy of the cameras. We use a nor-
malised cross-correlation matching score to allow for a lin-
ear change in intensity between images with non-lambertian
surfaces or inexact intensity matched cameras.

For each vertex we obtain a reconstructed 3D position
from the disparity in each camera c that forms a stereo pair
with the key view. We define our stereo matching energy
term at each vertex as the squared error between the vertex
position and each of the reconstructed 3D positions zv,c as
follows:

ES =
∑

v

1
nc

v

nc
v−1∑
c=0

‖zv,c − xv‖2 (4)

dES

dxv

= − 1
nc

v

nc
v−1∑
c=0

(
zv,c − xv

)
(5)

It is important to account for occlusion in stereo match-
ing to remove unfeasible matches between occluded re-
gions. Stereo matching is therefore only performed be-
tween camera images in which a vertex is unoccluded. Here

we use the visibility algorithm introduced by Debevec et.
al. to determine vertex visibility [3]. Hardware acceler-
ated OpenGL rendering is used to render the model to each
camera view with mesh polygons colour coded for identifi-
cation. A vertex is then defined as visible in a camera view
if it is unoccluded by the rendered polygon at the projected
location in the camera.

3.3.2. Shape from silhouette

The visual-hull gives a robust shape estimate, complement-
ing the stereo data that can be noisy where image texture
is lacking or where there is a significant distortion in ap-
pearance between images. Here we use a volumetric voxel-
carving technique to generate the visual-hull from the seg-
mented image silhouettes. The capture volume is divided
into a discrete set of voxel elements at a 1cm resolution.
All voxels that project outside the foreground silhouettes
are then carved, leaving the visual-hull. The surface voxels
are extracted as the set of foreground elements with one or
more faces connected to a background voxel.

The visual-hull data fitting term EV is defined as the
squared error between each vertex position and the closest
surface element on the visual hull y

v
.

EV =
∑

v

‖y
v
− xv‖2 (6)

dEV

dxv

= −
(
y

v
− xv

)
(7)

3.3.3. Surface feature matching

In model registration, exact feature locations are defined for
the model. In fitting we seek to satisfy these constraints
on the shape of the model. The feature fitting term EF is
defined as the squared error between each vertex position
and the feature correspondence for the vertex, ov .

EF =
∑

v

‖ov − xv‖2 (8)

dEF

dxv

= − (ov − xv) (9)

Here we use sparse data interpolation with radial basis
functions to generate the 3D error term, (ov − xv), at the
vertices where no feature correspondence f is defined. The
interpolated error term is given by Equation 10 using the
the 3D thin-plate spline function ψf (x) = ‖x− xf‖3. The
interpolation includes an explicit affine basisR, t to account
for any global error terms. The parameters λf are obtained
by the solution to the linear system given in Equation 11, in
terms of the known error terms at the defined feature points,
under an additional set of constraints that remove the affine
contribution from the radial basis functions, Equation 12.
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barycentric
coordinate

local frame

Figure 2. Local parameterization of triangle vertices in
terms of barycentric coordinates and height in the frame de-
fined by the vertices edge-connected to the triangle.

ov = xv +
∑

f

λfψf (xv) +Rxv + t (10)

(
of − xf

)
=

∑
f ′
λf ′ψf ′(xf ) +Rxf + t (11)

∑
f ′ λf ′ = 0

∑
f ′ λ

T
f ′xf ′ = 0 (12)

3.3.4. Shape regularisation

The internal energy of the model is designed to preserve
the prior shape information of the generic model in order to
regularise shape fitting in the presence of noisy or irregular
data. Regularisation energy, ER, is defined as the squared
error between each vertex and the reconstructed position of
the generic vertex location in terms of a local parameteri-
zation that is invariant to position and orientation. Here we
adopt a polygon based parameterization that can describe
the local shape on an irregular triangular mesh [19]. This lo-
cal shape constraint preserves the local parameterisation of
the surface mesh and hence the animation structure for the
surface in relation to the underlying skeletal control struc-
ture.

A vertex on a triangle can be defined in terms of the
barycentric coordinates in a local coordinate frame given
by the vertices edge-connected to the triangle, as depicted
in Figure 2. A vertex position can then be reconstructed in
each of the local frames for the triangles sharing the ver-
tex. The error metric for regularisation is defined as the
squared error between the vertex location and the recon-
structed location in each local frame, Equation 13, where
(αv,j , βv,j , hv,j) are the barycentric coordinates (α, β) and
height offset h in the jth triangle-based frame for a vertex
with valence Nv on the generic model.

ER =
∑

v

1
Nv

∑
j

‖x(αv,j , βv,j , hv,j) − xv‖2 (13)

dER

dxv

= − 1
Nv

∑
j

(x(αv,j , βv,j, hv,j) − xv) (14)

3.4. Texture Recovery

For texture recovery each polygon in the model is as-
signed to the camera image with the greatest surface visi-
bility, according to the camera with the closest viewpoint
to the direction of the polygon normal. Occlusion is ac-
counted for in camera selection using the mesh visibility
algorithm to ensure that a polygon is not textured from a
camera view for which it is occluded [3]. For each cam-
era image in turn the model texture is recovered for all the
visible polygons. Stereo correspondence between camera
images in optimisation provides sub-pixel accurate image
locations for the model vertices. Texture resampling is per-
formed here using OpenGL rendering to the model texture
from a camera image. The textures derived from each cam-
era are then composited onto the single texture map for the
model using image masks corresponding to the polygons
selected for texturing from each camera. Texture blending
is required to ensure a smooth transition between regions of
texture recovered from different camera images. Blending
is performed using a multi-resolution spline [12] ensuring
that the extent of blending between images corresponds to
the spatial frequency of the image features.

4. Results and Discussion

4.1. Shape reconstruction

Model-based scene reconstruction is first compared with
current model-free techniques including shape from silhou-
ette [14], voxel colouring [21], and stereo vision [9]. The
visual-hull is derived using a volumetric voxel carving tech-
nique as describe in section 3.3.2. Colour carving is per-
formed using the Voxel-Coloring algorithm [18] with the
exception that RGB colour values are normalised by inten-
sity in testing colour consistency to allow for intensity vari-
ations between viewpoints with non-lambertian surfaces in
the scene. A triangular surface model is generated from
the volume representation through iso-surface extraction.
Stereo depth-maps are derived from camera pairs using a
maximal surface technique [20] with the added constraint
that the search range for disparity is restricted to lie within
the visual-hull, removing outliers in stereo correspondence.
Multiple depth maps are fused into a single surface model
using volumetric fusion and iso-surface extraction [15].

Figure 3 shows the reconstructed geometry for several
captured frames. The visual-hull provides a good estimate
of shape as the human body has few concavities. Inaccu-
racies tend to arise where there is self-occlusion with artic-
ulation of the limbs leading to extraneous sections in the
reconstructed volume. Colour carving provides only lim-
ited improvement on shape due to the quality of reconstruc-
tion from silhouettes and the consistent colour across many
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sections of the body. Stereo vision provides a noisy esti-
mate of shape due to the inherent ambiguity in establishing
stereo correspondence across uniform regions of colour tex-
ture on the body. The model-based technique demonstrates
improved shape recovery, integrating silhouette and stereo
data, and making use of prior knowledge to regularise shape
where data is ambiguous. The disadvantage here is that the
prior shape of the model constrains the set of feasible shapes
that can be recovered and the detailed geometry at the hands
and the hair is missing.

4.2. View generation

The goal of multiple view scene capture is not necessar-
ily accurate surface reconstruction, instead it can be the gen-
eration of visually realistic virtual views. View-dependent
rendering techniques have been developed [3, 13, 17] to
synthesise realistic views with only approximate scene ge-
ometry. We therefore compare the reconstructed models for
the synthesis of a virtual view. View-dependent rendering
is performed by texturing the models from the camera im-
ages adjacent to the virtual view. A view-dependent vertex
weighting [17] is used that favours the closest camera views
to smoothly blend between the texture derived from each
camera. Multi-pass texturing is used to blend the weighted
texture derived for each camera image in rendering to the
virtual view.

Figure 4 shows view-dependent rendering to the tenth
camera image not used in reconstruction for the geometry
shown in Figure 3. This camera is placed equidistant be-
tween two adjacent stereo pairs in the studio. The triangu-
lated surfaces for the visual-hull and voxel-colouring gen-
erate a “blocky” rendered view. This arises due to the dis-
crete nature of the surface normals leading to non-smooth
view-dependent weighting of texture. The surface of the
voxel-coloured volume is also noisy which further degrades
the visual-quality of the rendered view. The merged stereo
depth-maps provide an improved result due to the smooth
nature of the merged surface geometry. However, visual
artifacts are apparent where stereo matching fails leading
to missing regions of the geometry. The model-based ap-
proach provides a complete surface model that can be used
to interpolate the camera views in view-dependent render-
ing and demonstrates improved visual quality in compari-
son with the model-free techniques.

4.3. Motion editing and synthesis

One of the advantages of the model-based approach is
that we are free to instrument the model with an animation
structure to control the captured scene dynamics. An ex-
ample is given in which a series of models is constructed
with texture for a sequence in which a subject jumps in the

Figure 5. Synthesis of new motions, showing the recon-
structed and texture-mapped human model on the left with
three novel poses.

air. The motion of the limbs are then retargeted to different
locations using inverse kinematics and the models rendered
as shown in Figure 6. We also demonstrate that models
captured from a single frame can subsequently be used to
synthesise new motion sequences as shown in Figure 5.

5. Conclusions

In this paper we have presented a model-based technique
for multiple view scene reconstruction. A humanoid com-
puter graphics model is used to reconstruct static frames
and dynamic sequences of people in a multiple camera stu-
dio. The model is animated to match the pose of a subject
at each time frame. The model shape is then optimised in
a regularised coarse-to-fine stereo framework in which the
search range for stereo matches is gradually reduced to the
calibration accuracy of the camera system, enabling conver-
gence in the presence of noisy stereo data. The model-based
framework incorporates silhouette and feature cues to com-
plement the stereo data. Regularisation is performed using
a local constraint that preserves the shape and parameter-
isation of the surface mesh of the model. This approach
provides improved shape reconstruction when compared to
model-free techniques in the presence of visual ambiguities
by making use of prior shape information in the model and
multiple shape cues.

The principal drawbacks of the technique are the require-
ment for manually defined feature points in order to pose
the model, and the restriction on the content of the scene
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(a) Camera image (b) Visual-hull (c) Voxel-colouring (d) Merged stereo (e) Model-based

Figure 3. Shape reconstruction.

(a) Camera image (b) Visual-hull (c) Voxel-colouring (d) Merged stereo (e) Model-based

Figure 4. View-dependent rendering in comparison to camera view not used in reconstruction.
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Figure 6. Editing a captured sequence (top row) using the
animation structure of the model (bottom row).

imposed by the shape of the generic model. This can how-
ever form the basis to analyse, edit or synthesise new data
from a limited set of captured frames. Model-free tech-
niques for multiple view reconstruction allow the capture
of arbitrary scenes. A model-based approach provides the
means to deal with visual ambiguities in scene reconstruc-
tion and provides a temporally consistent scene model for
analysis of dynamic sequences.
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