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Abstract

This paper presents a novel approach for landmark-
based shape deformation, in which fitting error and shape
difference are formulated into a support vector machine
(SVM) regression problem. To well describe nonrigid shape
deformation, this paper measures the shape difference us-
ing a thin-plate spline model. The proposed approach is
capable of preserving the topology of the template shape in
the deformation. This property is achieved by inserting a
set of additional points and imposing a set of linear equal-
ity and/or inequality constraints. The underlying optimiza-
tion problem is solved using a quadratic programming al-
gorithm. The proposed method has been tested using practi-
cal data in the context of shape-based image segmentation.
Some relevant practical issues, such as missing detected
landmarks and selection of the regularization parameter are
also briefly discussed.

1. Introduction

Shape deformation has become a useful tool for many
computer vision applications like face recognition and med-
ical image segmentation, where a template shape of the de-
sired structures is deformed to fit some boundary features
in a target image. By effectively incorporating some prior
shape information of the desired structures into the segmen-
tation process, shape deformation methods are more robust
to the image noise and produce more reliable segmentation
results.

Since the publication of the active contour (or snakes)
model [14], a large group of shape deformation methods
[1, 5, 24, 4] have been developed. Those active contour
methods usually aim to incorporate some general shape as-
sumptions, like boundary smoothness, into shape deforma-
tion. More advanced models are developed to constrain the
shape difference between a given template shape and the
deformed shape. Jain et al. [13] used a Gaussian distribu-
tion of the shape difference to describe the possible template
shape deformation, where the shape difference is defined on
the trigonometric bases with different frequencies. Zhong

et al. [25] applied this technique to segment 3D images
by tracking the desired objects slice by slice. Rueckert et
al. [18] developed a probabilistic deformable model, where
the thin-plate bending energy is used to measure shape
difference. Statistical information extracted from multiple
template shapes has also been used for shape deformation.
Staib et al. [20] represented a shape in the Fourier domain,
where the distribution of each Fourier coefficient is learned
over a training set. Cootes et al.[6] developed a novel active
shape model based on a set of landmarks, in which the joint
distribution of those landmarks is statistically learned from
a set of training samples using principal component analy-
sis. Along the same line, Leventon et al. [16] incorporated
statistical shape information into geodesic active contours
for segmentation of medical images.

One important problem in these methods is the preserva-
tion of shape topology in the deformation as, in many ap-
plications, the shape topology in the target image is known
priorly to be the same as that in the template shape. For
example, the obtained structures from any 3D brain image
should be consistent with brain anatomy. The methods men-
tioned above may destroy the shape topology in two differ-
ent ways. Some of them, like geodesic contour based meth-
ods [4, 16], explicitly allow the topology inconsistency as
they are intentionally designed to do so. In other methods
[14, 13, 18, 20, 6], the shape topology may be implicitly
destroyed in the form of boundary self-intersection.

Because of the importance of shape topology in many
computer vision applications involving shape analysis,
modelling, and visualization, shape deformation with topol-
ogy preservation has attracted many researches in recent
years. Han et al. [11] generalized the traditional geodesic
contour to a topology-preserving version and used it for
medical image segmentation. Some topology correction
methods, either performed on the meshed surface [8, 9] or
digital volume [19, 10], are also developed in medical imag-
ing applications like brain cortex segmentation. However,
most of those methods do not discuss the incorporation of
the template shape information.

This paper presents a new landmark-based shape defor-
mation method which can not only incorporate the prior
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template shape information but also preserve the shape
topology. We first formulate shape deformation as a sup-
port vector machine (SVM) regression problem. To pre-
serve the shape topology, a set of additional points called
semilandmarks are then identified and converted into a set
of linear equality and/or inequality constraints. The under-
lying optimization problem is then solved using a quadratic
programming algorithm.

The proposed algorithm is described in detail in Sec-
tion 2. Section 3 presents some experimental results to illus-
trate its performance, followed by a discussion on some re-
lated practical issues (e.g., missing detected landmarks and
the regularization parameter selection). Section 4 contains
the paper conclusion.

2. Proposed Method

According to the statistical shape theory [15, 2], a shape
instance V is usually represented by a set of ordered land-
marks {vi ∈ R

2, i = 1, 2, . . . , n} or by a n-dimensional
column vector V = (v1,v2, . . . ,vn)T . As illustrated in
Fig.1, those landmarks can be treated as an ordered set of
sampling points along the desired object boundaries, which
can then be approximated using a set of piecewise-linear
curves by connecting those landmarks in a given order.

(a) (b) (c)

Figure 1. An illustration of a shape instance cor-
responding to object boundaries. (a) The bound-
aries of real objects. (b) Corresponding shape in-
stance consisting of sampling landmarks. (c) Ap-
proximated boundaries by connecting landmarks
as piecewise-linear curves.

The proposed method in essence addresses the following
problem: given a template shape V = (v1,v2, . . . ,vn)T

and a set of corresponding, noisy landmarks V′ =
(v′

1,v
′
2, . . . ,v

′
n)T detected from a target image, deform V

to “best” match V′. We formulate the problem as a typical
regularization problem in the following form:

U = arg min

{
1
n

n∑
i=1

Q(ui,v′
i) + λd(U,V)

}
, (1)

where U = (u1,u2, . . . ,un)T is the desired shape, λ is the
regularization parameter, Q(ui,v′

i) is the landmark fitting
error, and d(U, V ) is the shape difference. We next describe
the proposed method to solve this problem.

2.1. Landmark fitting error Q(ui,v′
i)

A popular loss function Q(·, ·) is the squared Euclidean
distance

Q(ui,v′
i) = ‖ui − v′

i‖2 � (x̂i − x′
i)

2 + (ŷi − y′
i)

2,

with ui = (x̂i, ŷi) and v′
i = (x′

i, y
′
i). However, it is well

known that the squared loss function is not robust to possi-
ble outliers in V′. To alleviate this problem, we propose to
use the following loss function

Q(ui,v′
i) = ‖ui − v′

i‖ε � |x̂i − x′
i|ε + |ŷi − y′

i|ε, (2)

where

|x|ε =
{

0 if |x| ≤ ε
|x| − ε else

is the ε-insensitive function proposed by Vapnik [22]. In our
implementation of the algorithm, we set ε = 0. However,
the optimization algorithm described in Section 2.4 can also
handle the case with non-zero ε if that is desirable.

2.2. Shape difference measure d(U,V)

The shape difference between U and V is measured by
deforming V to U using a 2-D thin-plate spline model [3].
This deformation is characterized by t = (f, g) : R

2 → R
2

such that U = t(V), i.e., ui = t(vi), i = 1, 2, . . . , n,
where{

f(v) = a1 + a2x + a3y +
∑n

i=1 ciK(v,vi)
g(v) = b1 + b2x + b3y +

∑n
i=1 diK(v,vi).

(3)

The parameters a = (a1, a2, a3)T , b = (b1, b2, b3)T , c =
(c1, c2, . . . , cn)T , and d = (d1, d2, . . . , dn)T in Eq. (3) can
be calculated by solving the following matrix equation:(

K P
PT 0

) (
c d
a b

)
=

(
x̂ ŷ
0 0

)
, (4)

where kij = K(vi,vj) = ‖vi − vj‖2 log ‖vi − vj‖,
i, j = 1, 2, . . . , n, and P = (1,x,y). Note that
x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T , x̂ =
(x̂1, x̂2, . . . , x̂n)T , and ŷ = (ŷ1, ŷ2, . . . , ŷn)T , where vi =
(xi, yi) and ui = (x̂i, ŷi), i = 1, . . . , n are corresponding
landmarks between V and U . It can be shown that the
above transform minimizes the following so-called bending
energy function [3]

φ(t) =
∫∫ ∞

−∞
(L(f) + L(g))dxdy, (5)

where L(·) = ( ∂2

∂x2 )2 + 2( ∂2

∂x∂y )2 + ( ∂2

∂y2 )2.
Substituting (3) and (4) into (5) yields

φ(t) = cT Kc + dT Kd =
1
8π

(x̂T Lx̂ + ŷT Lŷ),
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where L is the n × n upper left submatrix of

(
K P
PT 0

)−1

. (6)

L is only positive semidefinite because the thin-plate
bending energy is invariant to affine transforms. If we di-
rectly use the bending energy as d(U,V), the cost function
in Eq. (1) may not have a unique optimum. To address this
issue, we add another term to account for the landmark-
to-landmark squared Euclidean distance between U and V.
Consequently, the proposed shape difference metric is given
by

d(U,V) =
1
2

{
x̂T Lx̂ + ŷT Lŷ

}
+

µ

2

{
(x̂ − x)T (x̂ − x)

+(ŷ − y)T (ŷ − y)
}

, (7)

where µ is a very small positive value (e.g., µ = 10−5) such
that d(U,V) is dominated by the bending energy except for
the degenerated case of an affine transform.

2.3. Topology preservation constraints

In many applications, it is desirable to preserve the topol-
ogy of the template shape after deformation. Consider a
shape instance V consisting of K ordered contours/curves,
say {Cv

1 , Cv
2 , . . . , Cv

K}. Assume that each contour (or
curve) Cv

i is not self-crossed and each pair of contours (or
curves) Cv

i and Cv
j do not intersect. Then we say another

shape instance U has the same shape topology as V if and
only if

1. U also consists of K ordered contours (or curves)
{Cu

1 , Cu
2 , . . . , Cu

K}.

2. Cu
i is a closed contour (or open curve) if Cv

i is a closed
contour (or open curve).

3. Cu
i , i = 1, 2, . . . ,K is not self-crossed and each pair

of contours (or curves) Cu
i and Cu

j do not intersect.

4. If Cv
i is surrounded by a closed contour Cv

j , Cu
i is also

surrounded by Cu
j and vice versa.

Some examples of shape instances with destroyed topol-
ogy are shown in Fig. 2. The paper is focused on avoiding
topology destruction caused by boundary crossing shown
in Fig. 2(d) and (e) since the case shown in Fig. 2(f) is not
likely to happen in real applications.

There are two main reasons that may cause shape-
topology destruction in the deformation. The first one
comes from the definition of the shape difference measure.
To preserve the shape topology, one should choose a shape
difference measure d(U,V) which takes very large value
for U and V with different topologies. Thin-plate bending

(c)(b)(a) (d) (e) (f)

Figure 2. Examples of topology destruction when
the template is deformed from (a), (b), and (c) to
(d), (e), and (f), respectively.

energy only partially possesses such a property. As illus-
trated in Fig.3, shape-topology destruction corresponds to
the folding of thin plate [3], which usually requires more
bending energy. However, this required bending-energy
may not be sufficiently large to prevent topology destruc-
tion in many applications.

(a) (b) (c)

Figure 3. An illustration of unfolded or folded thin
plates and the corresponding bending energy. (a)
Template shape, (b) deformed shape with bending
energy 0.5076, and (c) deformed shape with bend-
ing energy 2.0303.

The second reason comes from the boundary approxi-
mation with piecewise-linear curves as shape instances in
this paper are represented by n ordered landmarks. This ap-
proximation may destroy the shape topology even if the thin
plate is not folded. An example is shown in Fig.4, where (a)
is the template shape consisting of seven landmarks {(0, 0);
(1, 0); (1, 2); (2, 1.5); (3, 0); (3, 2); (4, 0)}. Supposing the
deformation transform t = (f, g) only moves landmark
(2, 1.5) to (2, 2.5), while all the other six landmarks are
fixed. The required bending energy φ(t) = 0.6248 and
the deformed template is shown in Fig.4(b) where the thin
plate is not folded. However, when we connect the de-
formed landmarks using straight line segments (as shown in
Fig.4(c)), self-intersections appear and the template shape
topology is destroyed.

(a) (b) (c) (d)

Figure 4. An illustration of semilandmark insertion.

If the thin plate is unfolded but the shape topology is
destroyed in landmark connection, we know that some line
segments between neighboring landmarks in the template
shape are in fact deformed into curve segments with large
curvature, as shown in Fig.4(c). To address this inconsis-
tency, we can insert ”semilandmarks” along those line seg-
ments to constrain their deformation. They are called semi-
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landmarks since they are automatically determined by other
landmarks and not incorporated into the fitting error. An ex-
ample is shown in Fig. 4(d) where we insert a semilandmark
(2, 2) between landmarks (1, 2) and (3, 2) in the template.
The location of this semilandmark is fixed in the deforma-
tion process since both landmarks (1, 2) and (3, 2) are un-
changed. Then the thin plate must be folded to obtain such
a deformation, whose bending energy is φ(t) = 1.1584 that
almost doubles the one without inserting a semilandmark as
shown in Fig. 4(b).

Based on n landmarks {v1,v2, . . . ,vn}, assume m − n
(m ≥ n) semilandmarks are inserted, which are denoted as
{vn+1, . . . ,vm}. Each semilandmark vn+k is assumed to
lie in a straight line segment connecting two neighboring
landmarks vik

and vjk
, i.e.,

vn+k = pk · vik
+ (1 − pk) · vjk

, (8)

where k = 1, 2, . . . , m−n, 1 ≤ ik, jk ≤ n and 0 < pk < 1
are known. These introduce a set of topology-preserving
constraints that are formulated as

un+k = pk · uik
+ (1 − pk) · ujk

, (9)

where un+k = t(vn+k) is the semilandmark after defor-
mation.

The next step is to introduce more topology-preserving
constraints to avoid the folding of thin plates, which cannot
be thoroughly addressed by only inserting semilandmarks.
The basic principle is illustrated in Fig.5. Boundary self-
intersection usually takes place when a landmark point vi is
moved toward and finally get through a line segment vsvt

in the deformation. Therefore, the shape topology can be
effectively preserved if we impose an additional constraint
to prevent vi and a semilandmark vj in vsvt being moved
too close to each other. Projecting the motion of vi and vj

along vivj , this paper adopts the constraint

(ui − vi) · (vj − vi)
‖vi − vj‖ +

(uj − vj) · (vi − vj)
‖vi − vj‖

≤ ‖vi − vj‖ − σ (10)

where σ > 0 is a preselected threshold of the minimum
distance (after projected onto vivj) allowed for deformed
(semi)landmarks ui and uj .

2.4. Proposed deformation algorithm

Combining the above definitions, the shape deformation
problem based on cost function (1) can be written as

min
x̂,ŷ

{
1
n

n∑
i=1

(|x′
i − x̂i|ε + |y′

i − ŷi|ε) + λd(U,V)

}

subject to topology-preserving constraints (9) and (10),
where d(U,V) is defined in (7). Note that here vi =

ui
v

(a) (b)

v
i

uv

u

i i j

v

t

j

d

vs

vj

v

u t

us

uj ut

vs
us

t

Figure 5. An illustration of topology-preserving
constraints. (a) Deformation of vi and vj does not
satisfy constraint (10). (b) Deformation of vi and
vj satisfies constraint (10) if the projected distance
d is larger than the threshold σ. vj is a semiland-
mark between neighboring landmarks vs and vt.

(xi, yi) and ui = (x̂i, ŷi), i = 1, 2, . . . , m have been
expanded to include both landmarks (for 1 ≤ i ≤ n)
and semilandmarks (for n + 1 ≤ i ≤ m). L is the
m × m bending matrix based on all landmarks and semi-
landmarks, i.e., vi, i = 1, 2, . . . ,m. After we obtain the op-
timal x̂ = (x̂1, x̂2, . . . , x̂m)T and ŷ = (ŷ1, ŷ2, . . . , ŷm)T ,
we get the deformed shape U = (u1,u2, . . . ,un)T with
ui = (x̂i, ŷi).

Let ẑ = (x̂T , ŷT )T , a 2m-dimensional column vector
consisting of all the variables to be optimized. Since the
constraints (9) and (10) are linear equalities or inequali-
ties with respect to the vector ẑ, the above problem can be
rewritten as

min
ẑ

{
C

n∑
i=1

(
|x′

i − x̂i|ε + |y′
i − ŷi|ε

)
+

1
2
ẑT Hẑ + cT ẑ

}

subject to

AT ẑ ≤ b (11)

where A2m×l and bl×1 are derived from (9) and (10).
Based on (7), it is easy to see that

H =
(

L 0
0 L

)
+ µI

is a 2m × 2m positive definite matrix and c =
−µ(xT ,yT )T is a known 2m-dimensional column vector.

Using the standard SVM technique [22], we can refor-
mulate the problem as follows.

min
ẑ,ξ,ξ̂,ζ,ζ̂

{
C

n∑
i=1

(ξi + ξ̂i + ζi + ζ̂i) +
1
2
ẑT Hẑ + cT ẑ

}
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subject to

x′
i − x̂i ≤ ε + ξ̂i i = 1, 2, . . . , n

x̂i − x′
i ≤ ε + ξi i = 1, 2, . . . , n

y′
i − ŷi ≤ ε + ζ̂i i = 1, 2, . . . , n

ŷi − y′
i ≤ ε + ζi i = 1, 2, . . . , n

ξi, ξ̂i, ζi, ζ̂i ≥ 0 i = 1, 2, . . . , n
AT ẑ ≤ b,

(12)

where ξ = (ξ1, ξ2, . . . , ξn)T , ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂n)T , ζ =
(ζ1, ζ2, . . . , ζn)T , ζ̂ = (ζ̂1, ζ̂2, . . . , ζ̂n)T , and C = 1

nλ .
Introduce the Lagrange multipliers α = (α1, α2, . . . ,

αn)T , α̂ = (α̂1, α̂2, . . . , α̂n)T , β = (β1, β2, . . . , βn)T ,
β̂ = (β̂1, β̂2, . . . , β̂n)T , γ = (γ1, γ2, . . . , γn)T ,
γ̂ = (γ̂1, γ̂2, . . . , γ̂n)T , η = (η1, η2, . . . , ηn)T , η̂ =
(η̂1, η̂2, . . . , η̂n)T , θ = (θ1, θ2, . . . , θl)T . The Lagrangian
function for (12) is

W(ẑ, ξ, ξ̂, ζ, ζ̂,α, α̂,β, β̂,γ, γ̂,η, η̂,θ) =

C
n∑

i=1

(ξi + ξ̂i + ζi + ζ̂i) +
1
2
ẑT Hẑ + cT ẑ

−
n∑

i=1

αi(ε + ξi − x̂i + x′
i) −

n∑
i=1

α̂i(ε + ξ̂i + x̂i − x′
i)

−
n∑

i=1

βi(ε + ζi − ŷi + y′
i) −

n∑
i=1

β̂i(ε + ζ̂i + ŷi − y′
i)

−
n∑

i=1

(γiξi + γ̂iξ̂i + ηiζi + η̂iζ̂i) + (Aθ)T ẑ − bT θ.

Imposing the first-order necessary conditions (setting the
derivatives of the Lagrangian W with respect to γ, ξ, ξ̂, ζ

and ζ̂ to zero) yields

ẑ = H−1(p − Aθ − c) (13)

and

αi + γi = C
α̂i + γ̂i = C
βi + ηi = C

β̂i + η̂i = C

αi, α̂i, βi, β̂i, γi, γ̂i, ηi, η̂i, θj ≥ 0,

where i = 1, 2, . . . , n, j = 1, 2, . . . , l and

p =
(
α̂T − αT ,01×(m−n), β̂

T − βT ,01×(m−n)

)T

.

Substituting these results into (12) gives the following
equivalent formulation:

min
α,α̂,β,β̂,θ

{1
2
(p − Aθ − c)T H−1(p − Aθ − c)

−pT z′ + eT (α + α̂ + β + β̂) + bT θ
}

(14)

subject to

0 ≤ αi, α̂i, βi, β̂i ≤ C, θj > 0 (15)

where

e = (ε, ε, . . . , ε)T

z′ = (x′
1, . . . , x

′
n,01×(m−n), y

′
1, . . . , y

′
n,01×(m−n))T .

This is a typical quadratic programming problem that
can be solved using standard numerical algorithm [22]. Af-
ter we obtain the optimal values for α, α̂, β, β̂, and θ, the
desired ẑ can be calculated from (13).

3. Experimental Evaluation and Discussion

This section introduces methods to detect landmark V′,
presents some representative results to illustrate the perfor-
mance of the proposed method, and discusses a couple of
practical issues.

3.1. Landmark detection

Given V, we assume that v′
i in an input image falls in a

circular area of radius ri centered at vi. According to the
principle of anisotropic diffusions [17], non-rigid biologic
shape deformation between the template and the input im-
age can be done effectively by moving each landmark vi

along the normal direction of the shape. This means that
we can search for the corresponding V′ only along the nor-
mal directions of V. Denote ni as the unit vector along the
normal direction at vi. Combining the above assumptions,
the corresponding landmark v′

i can be sought from the line
segment Li = {vi + rni, r ∈ [−ri, ri]}.

For different application problems, various methods can
be used to locate vi, i = 1, 2, . . . , n. Generally, they can
be categorized into two classes. (a) Edge detection meth-
ods. The simplest way is to calculate the gradient vector
for each pixel along Li. The point with largest amplitude
will be v′

i. (b) Region matching methods. For any pixel
along Li, if its neighboring area has most similar features
with the neighboring area centered at vi in the template im-
age, it will be v′

i. A number of matching metrics can be
used for this problem [21]. Generally, region matching is
often more robust than edge detection to process noisy im-
age. However, region matching methods usually require the
template landmarks V to be very accurate, which is not nec-
essary for edge detection methods. In many applications,
we may detect multiple candidates for each v′

i. This prob-
lem can be addressed by an iterative algorithm [23], where
template shape information is incorporated to choose the
best candidate. Another possibility is that no candidate can
be detected for some landmarks. This will be discussed in
Section 3.3.
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3.2. Experiments

In the first example, we applied the proposed algorithm
to extract a stria structure from microscopic mice brain im-
ages obtained from the Mouse Brain Library.1 Figure 6(a)
shows a template image and a template shape V with 19
landmarks manually labelled. Based on the detected land-
marks V′ shown in Fig. 6(c), we obtained the deformed
shape in Fig. 6(d) using the proposed method (without any
topology-preserving constraints) with: C = 1.5 × 10−2,
µ = 1 × 10−5, σ = 5, and ε = 0. Note that the thin-plate
model provides some resistance to topology destruction (as
evident by comparing Fig. 6(d) to Fig.6(c)); The topology is
completely preserved using the proposed method (Fig. 6(e))
after imposing a set of topology-preserving constraints as
shown in (9) and (10).

(c)(b)

(e)

(a)

(d) (f)

Figure 6. Extraction of a stria structure from micro-
scopic mice brain images: (a) template image and
template shape; (b) target image overlaid with the
template shape; (c) detected landmarks in the tar-
get image; (d) deformed shape without topology-
preserving constraints; (e) deformed shape with
topology-preserving constraints. (f) deformation
field.

In this paper, we choose all the line segments involved
in topology destruction (intersect with another nonneigh-
boring line segment as shown in Fig. 6(d)) as vsvt in (10),
where a semilandmark vj is set halfway between each of
those selected line segments. The endpoints of the line seg-
ments that intersect vsvt are then selected as vi in (10). In
addition, to detect landmark v′

i as shown in Fig. 6(c), this
paper searches pixels with large intensity gradient around
vi in the target image.

In the second example, we applied the proposed method
to extract the lateral ventricles from a coronal cryosec-
tion brain image. In this example, 28 landmarks were se-
lected to represent the shape, and the parameters used were
C = 8× 10−2, µ = 1× 10−5, σ = 3, and ε = 0. Similar to
the first example, the shape topology of the ventricles as de-
fined by the detected landmarks was destroyed (Fig. 7(c)).
The deformed shapes without and with topology-preserving

1http://www.nervenet.org/mbl.

constraints are presented in Fig. 7(d) and (e). Again, the
proposed method did a good job in extracting the ventricles.

(a) (c)

(d) (e)

(b)

(f)

Figure 7. Shape-based segmentation of lateral ven-
tricles in a cryosection image. For (a)-(f), see cap-
tions of Fig. 6.

In applying the topology-preserving constraints, we need
to check whether the template shape topology has been de-
stroyed after shape deformation and which landmarks are
involved. According to the definition and assumption in
Section 2.3, destruction of a shape topology implies the in-
tersections of some nonneighboring straight line segments.
Detecting such a problem has been well studied [7]. Given
two line segments AB and CD, they intersect if and only
if the endpoints A and B are on opposite sides of the line
CD, and endpoints C and D are on opposite sides of the
line AB. The endpoints A and B are on opposite sides of
the line CD if and only if

[
(ay − cy)(dx − cx) − (dy − cy)(ax − cx)

]
·[

(by − cy)(dx − cx) − (dy − cy)(bx − cx)
]

< 0,

with A = (ax, ay), B = (bx, by), C = (cx, cy), and D =
(dx, dy). An efficient “sweepline” algorithm [7] can be used
to solve this problem with complexity O(N log N), where
N is the number of line segments.

3.3. Missing landmarks

We have so far assumed that a complete set of land-
marks V′ = (v′

1,v
′
2, . . . ,v

′
n)T corresponding to the tem-

plate landmarks V = (v1,v2, . . . ,vn)T are detected in
the target image. In practical application of the proposed
method, we often need to deal with the scenario of missing
detected landmarks because: (a) we may purposely remove
some “bad” or unreliable landmarks, and (b) the object may
be partly occluded. Let Ṽ′ = (v′

1,v
′
2, . . . ,v

′
ñ)T be set of

the useful landmarks. We can reformulate the minimizing
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problem in (1) as

1
n

∑
v′

i∈Ṽ′

‖v′
i − ui‖ε + λd(U,V) (16)

subject to the constraints in (9) and (10). It can be shown
that this problem can still be solved using same quadratic
programming defined by (14) and (15), but with additional
constraints:

αj , α̂j , βj , β̂j = 0; ∀v′
j �∈ Ṽ′. (17)

While v′
j �∈ Ṽ′ is excluded from calculating the fitting

error, it is still used in calculating the shape difference, the
second item of (16). Alternatively, we may use the algo-
rithm described in Section 2.4 to calculate Ũ based only
on the template landmarks Ṽ corresponding to Ṽ′. The
missing uj corresponding to vj �∈ Ṽ can be calculated by
applying the resulting deformation function t = (f, g) to
vj . However, this formulation prevents the uj correspond-
ing to missing landmarks from being used in the topology-
preserving constraints, which may not be desirable. Other-
wise, these two formulations are equivalent.

An example dealing with the case of missing landmarks
is shown in Fig. 8. The proposed algorithm is used to ex-
tract the corpus callosum contour in a brain image shown
in Fig. 8(a), where the template shape consists of 21 land-
marks. The parameters used are C = 4 × 10−3 and
µ = 1 × 10−6. As expected, the missing landmarks (the
gaps of the contour shown in Fig. 8(b)) were accurately es-
timated using the proposed method.

(c) (d)

(b)(a)

Figure 8. Application of the proposed method to
the case of missing landmarks: (a) the target im-
age with the template shape overlaid; (b) detected
landmarks on the target image (notice the gaps
where landmarks are missing); (c) the deformed
shape using the proposed algorithm; (d) the local
enlargement of the deformed shape.

3.4. Selection of the regularization parameter

Selection of the regularization parameter λ or parameter
C in (12) is an important problem, which has been well dis-
cussed in the literature [12]. In our implementation of the

proposed algorithm, we used the L-curve technique [12].
An example is shown in Fig.9, where we tried to extract
the boundary of the corpus callosum in an MR brain image.
The template shape and the detected landmarks are shown
in Fig.9(a) and (b), respectively. Figure 9(e) shows the L-
curve which sequentially connects 12 points corresponding
to 12 values of the regularization parameter. The obtained
corpus-callosum boundaries using 2 of the values are shown
in Figs. 9(c)-(d). As can be seen, the resulting deformed
shape is not overly sensitive to the value of the regulariza-
tion parameter, although it is generally desirable that we
select a value corresponds to the corner of the L-curve.

(c) (d)

(b)

(e)

(a)

0 0.1 0.2 0.3
0

20

40

60

fitting error

differenc
shape

(d)

(c)

Figure 9. An illustration of selecting regularization
parameter using L-curve technique. (a) Target im-
age with the template shape overlaid; (b) detected
landmarks; (c-d) deformed shapes with λ corre-
sponding to points labelled in the Fig. 9(e); (e) L-
curve approximated by 12 uniformly-sampled reg-
ularization parameters.

3.5. Cardiac sequence tracking

The last experiment is designed to segment an MR car-
diac image sequence. The structures of interest in this ex-
periment are the inner and outer myocardial walls. The
accurate segmentation of these structures is a fundamental
step to describe and analyze the cardiac function. This im-
age sequence consists of twelve 256 × 256 frames, which
were acquired in the short-axis plane using a gated cardiac
cine method. These frames capture a complete contraction
process of the left ventricle, i.e., from the diastole (relaxed)
to the systole (contracted). Because of the noise, flow, and
data inconsistency during gated image data collection, the
boundaries of the myocardial walls are blurred.

As shown in the top-left of Fig. 10, the first frame is man-
ually segmented to construct a template shape that consists
of two circular contours. The inner and outer contours con-
sist of 33 and 35 uniformly distributed landmarks (red dots),
respectively. In this figure, only a 130×100 portion around
the heart is displayed for better visual effect. The resulting
segmentation is shown in Fig. 10 in the time order from the
top-left to the bottom-right.

3.6. Other related issues

One may desire the nonrigid biologic shape to deform
only along the normal direction. This may help reduce the
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Figure 10. Segment myocardial walls from an MR
cardiac image sequence.

chance of moving two neighboring landmarks too close and
destroying the shape topology. Let ni = (Nix, Niy) be the
normal direction of the template shape V at landmark vi.
The line connecting ui to vi should be in the same direction
as ni. This can be written as

Nix · (ŷi − yi) = Niy · (x̂i − xi), i = 1, 2, . . . , n,

which are also linear equality constraints on ẑ and the
corresponding deformation can be found using the same
quadratic-programming algorithm.

4. Conclusion

This paper presented a new method for thin-plate spline-
based shape deformation in the presence of noisy land-
marks. The shape deformation problem is formulated as a
regularization problem using an ε-insensitive loss function
to measure the fitting error of landmarks and the thin-plate
bending energy to measure shape difference. Specific linear
constraints are introduced to effectively preserve the shape
topology in the deformation. The underlying optimization
problem is solved using a quadratic programming algo-
rithm. The proposed method can be used for shape-based
image segmentation and object tracking in spatial/temporal
image sequences.
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