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Abstract

This paper presents an approach to build high resolution
digital elevation maps from a sequence of unregistered low
altitude stereovision image pairs. The approach first uses a
visual motion estimation algorithm that determines the 3D
motions of the cameras between consecutive acquisitions,
on the basis of visually detected and matched environment
features. An extended Kalman filter then estimates both the
6 position parameters and the 3D positions of the memo-
rized features as images are acquired. Details are given on
the filter implementation and on the estimation of the uncer-
tainties on the feature observations and motion estimations.
Experimental results show that the precision of the method
enables to build spatially consistent very large maps.

1. Introduction
The main difficulty to build digital terrain maps is to pre-
cisely determine the sensor position and orientation as it
moves. Dead reckoning techniques that integrate over time
the data provided by motion estimation sensors, such as in-
ertial sensors, are not sufficient because they are intrinsi-
cally prone to generate position estimates with unbounded
error growth. Precise visual motion estimation techniques
that use stereovision and visual features tracking or match-
ing have been proposed for ground rovers [1], but their er-
rors also cumulate over time, since they do not memorize
any environment feature. The only solution to diminish the
errors on the position estimates is to rely on stable environ-
ment features, that are detected and memorized as the sensor
moves. In the robotic community, it has early been under-
stood that the problem of mapping such features and esti-
mating the robot location are intimately tied together, and
that they must therefore be solved in a unified manner [2].
This problem, known as the ”SLAM problem1” has now
been widely studied (an historical presentation of the main
contributions can be found in the introduction of [3]).

Contributions on “structure from motion” addresses the
same problem. Successful approaches have been reported,
but they require batch processing (i.e. with the whole se-
quence of the acquired images) and a global optimization

1SLAM stands for “Simultaneous Localization And Mapping”

(e.g. bundle adjustment) to refine the camera positions and
the 3D coordinates of matched features. In contrast, SLAM
is an incremental approach: the 3D feature map and the sen-
sor position are simultaneously built and updated.

Among the different approaches to tackle the SLAM
problem, the Kalman filter based approach is the most popu-
lar. It is theoretically well grounded, and it has been proved
that its application to the SLAM problem converges [3].
Some contributions cope with its main practical drawback,
i.e. its complexity which is cubic in the dimension of the
considered state [4]: such developments are necessary when
mapping very large areas. Other approaches to the SLAM
problem have been proposed, mainly to overcome the as-
sumption that the various error probability distributions are
Gaussian, which is required by the Kalman filter. Set mem-
bership approaches just need the knowledge of bounds on
the errors [5], but they are practically difficult to imple-
ment when the number of position parameters exceeds 3,
and are somehow sub-optimal. Expectation minimization
algorithms (EM) have also been successfully adapted to the
SLAM problem [6]. In terms of sensor modality, solutions
to the SLAM problem has mainly been experimented with
range sensors in indoor environments, in the case of robots
moving on planes, i.e. in 2 dimensions [7, 6, 3]. To our
knowledge, there are very few contributions to the SLAM
problem based on vision (e.g. [8]).

This paper presents an approach to the SLAM problem
in 3 dimensions, using only a set of non-registered low alti-
tude stereovision image pairs. The approach is presented in
the following section, and section 3 summarizes the basic
algorithms on which it relies: stereovision, interest points
detection and matching, and visual motion estimation. Sec-
tion 4 details our implementation of the Extended Kalman
Filter, with a focus on the identification of the various er-
rors. Localization results and the building of digital eleva-
tion maps with a stereovision bench mounted on a blimp
flying at a few tens of meter altitude are then presented.

2. Overview of the approach
Landmarks are interest points, i.e. visual features that can
be matched when perceived from various positions, and
whose 3D coordinates are provided by stereovision. We use
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an extended Kalman filter (EKF) as the recursive filter: the
state vector of the EKF is the concatenation of the stereo
bench position (6 parameters) and the landmark’s positions
(3 parameters for each landmark). The key algorithm that
allows both motion estimation between consecutive stereo-
vision frames (prediction) and the observation and match-
ing of landmarks (data association) is a robust interest point
matching algorithm.

The various algorithmic stages achieved every time a
stereovision image pair is acquired are the following:

1. Stereovision: a dense 3D image is provided by stere-
ovision (section 3.1).

2. Interest points detection and matching between con-
secutive frames, and with past frames in which old land-
marks are visible (section 3.2).

3. Landmark selection: a set of selection criteria are ap-
plied to the matched interest points, in order to partition
them in three sets: an a non-landmark set, a candidate-
landmarks set and observed-landmark set (section 4.2).

4. Visual motion estimation (VME): the interest points
retained as ”non-landmarks” are used to estimate the 6 mo-
tion parameters between the previous and current frames
(section 3.3).

5. Update of the Kalman filter state (section 4).
Finally, after every SLAM cycle defined by these steps,

a digital elevation map is updated with the acquired images
(section 5.2).

Step 3 is necessary for two reasons: first, only non-
landmarks points should be used to to estimate the local mo-
tion, in order to de-correlate the prediction and update steps
of the Kalman filter and second, new landmarks should be
cautiously added to the filter state, in order to avoid a rapid
growth of its dimension and to obtain a regular landmark
coverage of the perceived scenes.

3. Basic algorithms
3.1. Stereovision
We use a classical pixel-based stereovision algorithm, that
relies on a calibrated binocular stereovision bench (fig-
ure 1). A dense disparity image is produced thanks to a
correlation-based pixel matching algorithm, false matches
being filtered out thanks to a reverse correlation. The 3D co-
ordinates of the matched pixels are determined, with an as-
sociated uncertainty whose computation is depicted in sec-
tion 4.1.

3.2. Interest points detection and matching
Visual landmarks must be invariant to image translation, ro-
tation, scaling, partial illumination changes and viewpoint
changes. Interest points, such as detected by the popular
Harris detector, has proven to have good stability proper-
ties [9]. When a there is prior knowledge on the scale
change, even approximate, a scale adaptive version of Har-

Figure 1: A result of the stereovision algorithm, with an image pair
taken at about ��� altitude. From left to right: one of the original image,
disparity map (shown here in a blue/close red/far color scale), and 3D
image, rendered as a mesh for readability purposes. Pixels are properly
matched in all the perceived areas, even the low textured ones.

ris detector yields a repeatability high enough to allow ro-
bust matches [10].

To match interest points, we use a matching algorithm
that relies on local interest point groups matching, impos-
ing a combination of geometric and signal similarity con-
straints, thus being more robust than approaches solely
based on local point signal characteristics (details can be
found in [11]). Figure 2 shows that this algorithm generates
a lot of good matches, even when the view point change
between the considered images is quite high.

Figure 2: A result of our interest point matching between two non regis-
tered aerial images

3.3. VME (Visual Motion Estimation)
The interest points matched between consecutive images
and the corresponding 3D coordinates provided by stereo-
vision are used to estimate the 6 displacement parameters
between the images, using the least square minimization
technique presented in [12].

Conventional techniques to get rid of the outliers using
fundamental matrix estimation, would not cope for stereovi-
sion errors, such as the ones that occur along depth discon-
tinuities. Therefore, matches that imply a 3D point whose
coordinates uncertainties are over a threshold are first dis-
carded (the threshold is empirically determined by statisti-
cal analysis of stereovision errors). Then, a 3D transforma-
tion with the remaining matches is estimated and the 3D
matches of which error is over � times the mean of the
residual errors are eliminated: � should initially be at least
greater than 3. � is set to � � � and the procedure is re-
iterated until � � �.

This outlier rejection algorithm considering both match-
ing and stereovision errors yields a precise 3D motion esti-
mation between consecutive stereovision frames (see results
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in sections 4.1 and 5.1), which is used for the prediction
stage of the Kalman filter.

4. Kalman filter setup
The EKF is an extension of the standard linear Kalman fil-
ter, that linearizes the nonlinear prediction and observation
models around the predicted state. The discrete nonlinear
system and the observations are modeled as:

��� � �� � ������� ��� � ��� � ��� � ��

��� � �� � ����� � ��� � ��� � ��

where ���� is a control input and �, � are vectors of tem-
porally uncorrelated errors with zero mean and covariance
�����, �����.

In our approach, the state of the filter ���� �
������ � � ��� � is composed of the 6 position parameters
�� � ��� �� 	� 
�� 
�� 
�� of the stereovision bench and of
a set of � landmarks 3D coordinates �� � ���� ��� ���,
�  � � � . The associated state covariance � is com-
posed of the the stereo bench pose covariance���, the land-
marks covariance ��� and the cross-covariance between
the bench pose and landmarks��� [3]. In the Kalman filter
framework, the state estimation encompasses three stages:
prediction, observation and update of the state and covari-
ance estimates.
Prediction. Under the assumption that landmarks are sta-
tionary, the state prediction is:

	��� � � � �� � �����	�������� � ���

where ��� ��� � �
��
��
	�

��

��

�� is the vi-
sual motion estimation result between � and ��� positions.
The associated state covariance prediction is written as:

����� � � � �� � ���������������
	 ��� �

�
�����
����
�
	 ��� ����� � �� (1)

����� � � � �� � ������������

where�
 represents the error covariance of the visual mo-
tion estimation result. Note that the covariance of land-
marks is not changed in the prediction stage.
Observation. When observing the ��� landmark, the obser-
vation model and the Jacobian of the observation function
are written as:

	���� � � � �� � ������	��� � � � ���

where ������	��� � � � ��� is a function of the predicted
robot state and the ��� landmark in the state vector of the
filter, which maps the state space into the observation state.
The innovation and the associated covariance is written as:

���� � �� � ���� � ��� 	���� � � � �� (2)

������� � ����������� � �����
	 ����������� (3)

where ������ � ��������� � � � � � ����
������ � � � � ��

and ��, the error covariance of �th landmark observation.
Update. The update stage fuses the prediction and the ob-
servation to produce the state estimate and its associated
covariance:

	��� � � � � � �� � 	��� � � � �� �	��� � ������ � ��

����� � ���� � ����� � ���	�������������	
	
� �����

in which 	������ � ����� � ����	� ����
��

� �����
is the kalman filter gain matrix.

When detecting a new landmark, it is added to
the state vector of the filter, that becomes 	���� �
�	������ 	����� � � � 	������ 	��������. The landmark ini-
tialization model is:

	������� � 
����	������ �������� (4)

���� �

�
�

������ ������ ������
	

���
	 ��� ������ ������

	

������ ������ ������

�
� (5)

������ � ��
���������� ������ � ��
���������

������ � ��
�����������

	 ������
����������


	 ���

where ������� denotes the new landmark, 
��� the ini-
tialization function using the current robot pose estimate
and �� the error covariance of the new landmark.

4.1. Errors identification
Error identification is crucial to set up a Kalman filter, as a
precise determination of these errors will avoid the empiri-
cal ”filter tuning” step. In our context, the following errors
must be estimated:
� the landmark initialization error (��),
� the landmark observation error (�� for the observed

landmark �),
� and the error of the input control �, which is the visual

motion estimation result (�
).
Note that in our approach, the lumped process noise �

is set to �, landmarks being stationary and the robot pose
prediction being directly computed with the current pose
and the result of the visual motion estimation.

Landmark initialization errors. When new landmarks
are detected, their 3D coordinates being computed by stere-
ovision, the covariance matrix �� on new landmarks is to-
tally defined by the stereovision error.

Statistics on image pairs acquired from the same position
show that the distribution of the disparity computed on any
given pixel can be well approximated by a Gaussian [13],
and that there is a correlation between the shape of the simi-
larity score curve around its peak and the standard deviation
on the disparity: the sharper the peak, the more precise the
disparity (figure 3). A standard deviation � associated to
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Figure 3: Left: examples of some probability density functions of dis-
parities computed on a set of 100 image pairs, with the corresponding
Gaussian fit. Right: Standard deviation of the disparities as a function of
the curvature of the similarity score curve at its peak.

each computed disparity � is estimated using the curvature
of the curve at its peak, approximated by fitting a parabola.

Once matches are established, the coordinates of the 3D
points are computed with the usual triangulation formula:
� � ��

 , � � �
� and � � ���, where � is the depth, �
is the stereo baseline, and �, �
 and �� are calibration pa-
rameters (that depends on ��� ��, the considered pixel image
coordinates). Using a first order approximation, it comes:

�� �
�
��

��

The covariance matrix of the point coordinates is then de-
rived from the triangulation equations. When a new land-
mark is observed, its coordinates are added to the filter state,
and the state covariance is updated according to equations
(4) and (5).

Observation error. In our case, landmark observation is
based on interest point matching. Outliers being rejected
(section 3.3), only interest point location errors are consid-
ered to determine the matching error on image plane. With
the precise Harris detector, the location estimate of inter-
est point in two consecutive images taken from a very close
point of view is precise enough to use ��� pixel as the max-
imum error tolerated to asses good matches [9] due to neg-
ligible projective distortion and occlusion. The expected
matching error is therefore of the order of ��� pixel. In con-
trast, under different view point(i.e. when re-perceiving a
landmark after a long loop), a more flexible tolerance limit
is applied(i.e. around ��� pixel) [11]. In such case, the ex-
pected matching error value is then set to � pixel.

The observation error is defined by the reprojection of
the matching error on the 3D plane estimated by stereovi-
sion (with an associated error - figure 4).

When the 2D matching error is set to � pixel, the errors
provided by stereovision for the 3D matching point and its
8 closest neighbors are used to compute the expected 3D
coordinate and associated variance of the matching point as
follows:

� �
�

�

��
���

��� �
�
��
�

�

�

��
���

� �����
� � �

�
�

Figure 4: Principle of the combination of the matching and stereovision
errors. The points located in the square box are the projection of � on the
image plane. Small ellipses indicate stereovision errors, the large dotted
ellipsoid is the resulting observation error.

where�� and�� are the 3D point coordinates of �� and
its neighbors, and �� and �� are the corresponding vari-
ances.

When the matching error is ��� pixel, the 3D coordinates
being only computed on integer pixels by stereovision, we
assume the 3D surface variation is locally linear: ���� �
��� ������ and ���� � ��� � �����. These coordinates
and the associated variances are used in the equations (2)
and (3).

Motion estimation errors. Given a set of 3D matched
points � � ���� � ��� ���� � ��

�

� �, the function which is
minimized to determine the corresponding motion is [12]:

��	�� �� �

��
���

���

� ���	�� 	�� 		��� � �	
�� 	
�� 	
��
	 ��

where 	� � �	�� 	�� 		� 	
�� 	
�� 	
��. 	�. � can be written with
random perturbations (	� � � �
�� � � � �
�) and
the true � and � are not observed. In order to measure
the uncertainty of 	�, the uncertainties of landmarks�� and
their observation��

� are propagated as shown in [14]: con-
sidered that �� and ��

� are not correlated, the covariance
estimate ��� can be also written as:

��� � �
��

��
�	�� 	�������� ������

��

��
�	�� 	�����

where � � ��
��� is the Jacobian of the cost function and

�� �
��
���

��

���
�	��������

�
��

���
�	������

	

��� �
��
���

��

���
�
�	����

�����
�
�

��

���
�
�	����

���
	

��� � �
 is the input covariance matrix which is used in
equation (1) to estimate the state variances during the filter
prediction stage.
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4.2. Landmark selection
As explained in the section 2, the 3D matches established
after the interest point matching step are split into three sets.
The observed-landmarks set is simply the points that corre-
sponds to landmarks already in the state vector of the EKF.
The rest of the matches are then studied, to select the set of
candidate-landmarks according to the following three crite-
ria:
� Observability. Good landmarks should be observable

in several consecutive frames.
� Stability. The 3D coordinates of good landmarks must

be precisely estimated by stereovision.
� Representability. Good landmarks must efficiently

represent a 3D scene. The stereovision bench state esti-
mation will be more stable if landmarks are regularly dis-
patched in the perceived scene, and this regularity will avoid
a rapid growth of the EKF state vector size.

The number of candidate landmarks that are checked is
determined on the basis of the number of new interest point
matches (i.e. the ones that do not match with an already
mapped landmark). We use �� � of the new interest points,
as the visual motion estimation technique requires a lot of
matches to yield a precise result. The landmark selection
is made according a heuristic procedure so that they satisfy
the above three criteria.

5. Results
Our developments have been tested with hundreds of im-
ages taken on-board a blimp, at altitudes ranging from ��
to �� �. The cameras of the ��� � wide stereo bench are
����� �������� pixels CCD sensors, with a a ����� focal
length lens.

5.1. Positioning errors
We do not have any localization mean that could be used
as reference on-board the blimp (such as a centimeter accu-
racy GPS). However, when the blimp flies over an already
perceived area, the VME can provide an precise estimate
of the relative pose between the first and last frame of the
sequence that overlaps.

Figure 5 presents a comparison of the reconstructed loop
trajectory, while figure 6 shows the evolution of the standard
deviation of the 6 position parameters of the stereo bench
when applying the EKF. Until image 25, the standard devi-
ation grows, however much more slowly than when prop-
agating only the errors of the VME. A few old landmarks
are re-perceived in the following images: the standard de-
viations decreases, and stabilizes for the subsequent images
where some old landmarks are still observed.

The quantitative figures summarized in table 1 compare
the results of the final position estimate with respect to
the reference: the precision enhancement brought by the
EKF is noticeable, and the absolute estimated errors are all
bounded by twice the estimated standard deviations. The
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Figure 5: A result of the SLAM implementation with a sequence of 40
stereovision pair. The left image show the reconstructed trajectory in 3D,
the right one shows the 120 landmarks mapped, with �� uncertainty el-
lipses magnified by a factor of 40.
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Figure 6: Evolution of the standard deviations of the camera position
parameters during the flight shown in figure 5.

translation errors are below ���� in the three axes after an
about ��� long trajectory, and angular errors are all below
half a degree.

Figure 7 shows and other trajectory reconstructed with a
set of 100 images.

5.2. Digital elevation maps
Thanks to the precise positioning estimation, the processed
stereovision images can be fused after every update of the
EKF into a digital elevation map (DEM), that describes the
environment as a function � � ���� ��, determined on every
cell ���� ��� of a regular Cartesian grid.

Our algorithm to build a DEM simply computes the el-
evation of each cell by averaging the elevations of the 3D
points that are vertically projected on the cell surface. Since

Reference VME SLAM SLAM
std. dev. abs. error std. dev. abs. error

� ����Æ ����Æ ����Æ ����Æ

� ����Æ ����Æ ����Æ ����Æ

� ����Æ ����Æ ����Æ ����Æ


� ����� ����� ����� �����

� ����� ����� ����� �����

� ����� ����� ����� �����

Table 1: Comparison of the errors made by the propagation of the visual
motion estimation alone and with the SLAM EKF approach, using as a
reference the VME applied between images 1 and 40
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Figure 7: A longer trajectory reconstructed with a sequence of 100 im-
ages. 320 landmarks have been mapped (the magnification factor of the
uncertainty ellipses in the right image is here 20)

a luminance value is associated to each 3D point produced
by stereovision, it is also possible to compute a mean lu-
minance value for each map cell. Figure 8 shows a digital
elevation built from the 100 images during the trajectory of
figure 7: the resolution of the grid is here ��� �, and no
map discrepancies can be detected in the corresponding or-
thoimage.

Figure 8: The DEM computed with 100 images, positioned according to
the trajectory of figure 7: orthoimage and 3D view of the bottom-left area.
The map covers an area of about ������ .

6. Summary

We presented a vision-based SLAM approach that allows
the building of large high resolution terrain maps. To our
knowledge, it is the first attempt to tackle a SLAM prob-
lem in 3D space, using exclusively informations provided
by vision. The use of interest point as landmarks allows an
active selection of the landmarks to properly map the en-
vironment without any prior knowledge. Our interest point
matching algorithm provides robust data associations which
makes possible the matching of already mapped landmark
and the precise visual motion estimation between consecu-
tive frames. A rigorous study and identification of the vari-
ous errors estimates involved in the filter allows to set it up
properly, without any empirical tuning stage.
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