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Abstract

A new calibration algorithm for multi-camera systems
using a planar reference pattern is proposed. The algorithm
is an extension of Sturm-Maybank-Zhang style plane-based
calibration technique for use with multiple cameras. Rigid
displacements between the cameras are recovered as well as
the intrinsic parameters only by capturing with the cameras
a model plane with known reference points placed at three
or more locations. Thus the algorithm yields a simple cal-
ibration means for stereo vision systems with an arbitrary
number of cameras while maintaining the handiness and
flexibility of the original method. The algorithm is based on
factorization of homography matrices between the model
and image planes into the camera and plane parameters.
To compensate for the indetermination of scaling factors,
each homography matrix is rescaled by a double eigenvalue
of a planar homology defined by two views and two model
planes. The obtained parameters are finally refined by a
non-linear maximum likelihood estimation (MLE) process.
The validity of the proposed technique was verified through
simulation and experiments with real data.

1 Introduction

Recovering the three-dimensional (3D) structure of the
scene from multiple images has been one of the most fun-
damental topics and attracting much attention in the vision
community for a long time. Knowing both the intrinsic and
extrinsic camera parameters, referred to as camera calibra-
tion, is an essential prerequisite for the reconstruction pro-
cess. To meet the demands, many calibration techniques
have been developed aiming at attaining high accuracy with
minimum elaboration.

Classical camera calibration is performed by capturing a
3D reference object with a known Euclidean structure[14].
This type of technique yields the best results if the 3D ge-

ometry of the reference object is known with high accuracy.
In addition, it is directly applicable to multi-camera systems
by simply repeating the calibration process independently
for each camera. However, setting up the 3D reference ob-
ject with great accuracy is an elaborate task that requires
special equipment and becomes more difficult as the dimen-
sions of the view volume increase.

To avoid such difficulties, a simple and practical camera
calibration technique using a model plane with a known 2D
reference pattern was proposed by Sturm-Maybank[10] and
Zhang[16] independently. The user freely places the model
plane or the camera at two or more locations and captures
images of the reference points. Camera parameters are re-
covered from homographies between the model plane and
the image plane computed from correspondences between
the reference points and their projections. Since the motion
of the model plane or the camera need not be known, this
technique is very handy in practice because the extent of the
reference object is a 2D plane instead of a 3D volume.

Although this algorithm is very practical and yields good
results when calibrating a single camera, a problem arises
when applied to multi-camera systems by simply repeat-
ing the calibration procedure for each camera; calibrating
each camera gives, as by-products, the positions and orien-
tations of the model planes relative to the camera as well
as the camera intrinsic parameters. Using this information,
rigid transformations between any pairs of cameras could
be determined through an arbitrarily chosen model plane.
These transformations should be invariant, irrespective of
the plane through which they are computed (see Fig. 1).
However this constraint may not be necessarily satisfied in
the presence of noise because the calibration is performed
for each camera independently. This inconsistency can de-
grade the estimation accuracy of the relative displacements
between the cameras, potentially causing a serious problem
for multi-camera systems.

Sturm[8] proposed a pose estimation technique from
multiple planar patterns with known metric structure incor-
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Figure 1. Consistency constraint in relative
displacements between cameras

porating this consistency constraint. This method, however,
assumes that all the cameras are calibrated beforehand. We
show this restriction can be relaxed so that both camera cal-
ibration and pose estimation are solved simultaneously.

Proposed in this paper is integrating the Sturm-
Maybank-Zhang style calibration technique[10, 16] with
Sturm’s pose estimation method[8] into a factorization-
based multi-camera calibration algorithm implicitly in-
corporating the above-mentioned geometric constraint.
Though the factorization technique was originally devel-
oped for 3D reconstruction of point features[11], recently
it has also been applied to lines or planes[13, 7] since hav-
ing been introduced in the extended version of a pioneer
work[12] proposing self-calibration from planar scenes.
In those works, a measurement matrix is constructed by
stacking inter-image homographies induced by 3D planes
and then factored into camera motions and object shapes.
Though not categorized as a factorization method, Malis
and Cipolla[4, 5] have proposed relevant self-calibration al-
gorithms for planar scenes exploiting the constraints exist-
ing in the measurement matrix consisting of inter-image ho-
mographies. In contrast, our proposed algorithm factor the
measurement matrix made from plane-to-image homogra-
phies into camera and plane parameters as in [8].

We first show that the homography between the model
plane and the image plane is a composition of a cam-
era projection matrix and a plane parameter matrix (sec-
tion 2). This naturally leads us to constructing a measure-
ment matrix by stacking homography matrices and then
decomposing it into the camera projections and the plane
parameters[11]. However, since each homography matrix
can be determined only up to an unknown scale, we have
to know the appropriate scaling factors that make the mea-
surement matrix decomposable. To solve this problem, we
use the recent findings on multi-view constraints on homog-
raphy of Zelnik-Manor and Irani[15]. After factorization,
the obtained projection matrices and plane parameter ma-
trices are transformed from projective to Euclidean coordi-

nate frames using the metric information of the reference
planes. Finally all the estimation parameters are refined
by non-linear optimization to achieve a statistically optimal
and unbiased result (section 3). The validity of our proposed
technique was verified by simulation and real experiments
(section 4).

Notation Throughout this paper, vectors and matrices are
denoted in bold-face. Especially, 0 and I represent the zero
vector and identity matrix, respectively. Symbol � repre-
sents the transposition of vectors or matrices. Therefore
x�y is a scalar product of two vectors, x and y. The equal-
ity of two vectors or matrices up to a non-zero scalar is de-
noted by the symbol �.

2 Plane-to-image Homographies

Suppose that we have I cameras. The position and the
orientation of the i-th camera are represented by a 3-vector
ti and a 3 × 3 orthogonal matrix Ri, respectively. With-
out loss of generality, we assume that the world coordi-
nate system is fixed to the first camera, i.e. t1 = 0 and
R1 = I. The image plane of the i-th camera is denoted by
Ii (i = 1, . . . , I). Then a point in 3-space with inhomoge-
neous coordinates X ∈ R3 is observed by the i-th camera
as a 2D point on Ii at

 u
v
1


 � KiR�

i

[
I −ti

]
︸ ︷︷ ︸

Pi

[
X
1

]
(1)

where Ki is a 3×3 upper triangular matrix given by

Ki =


 aiki siki u0i

0 ki v0i

0 0 1


 (2)

with the focal length ki, the principal point (u0i, v0i), the
aspect ratio ai and the skew parameter si[1]. The 3 × 4
matrix Pi in (1) is called the camera matrix.

Next we consider J planes πj (j = 1, . . . , J) called the
model planes with known 2D reference points. Let pj and
qj be unit 3-vectors parallel to the horizontal and vertical
axes of the 2D Euclidean coordinate frame fixed to πj , and
dj be a 3-vector representing the position of its origin (see
Fig. 2). From the orthogonality of the two axes and unity
of pj and qj , we have

pj�pj = qj�qj = 1, pj�qj = 0. (3)

Then a point on πj with coordinates (x, y) with respect to
the 2D frame is located at[

X
1

]
=

[
pj qj dj

0 0 1

]
︸ ︷︷ ︸

Qj


 x

y
1


 (4)
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Figure 2. Geometrical configuration of cam-
eras and model planes

in 3-space where Qj is a 4×3 matrix representing the model
plane πj and is referred to as the plane matrix.

Combining equations (1) and (4), we have
 u

v
1


 � PiQj︸ ︷︷ ︸

Hj

i


 x

y
1


 . (5)

Equation (5) means that a point (x, y) on πj is mapped
to a point (u, v) on Ii through a projective transformation
(homography) represented by a non-singular 3 × 3 matrix
Hj

i which is a composition of the camera matrix Pi and
the plane matrix Qj . Each Hj

i can be recovered up to an
unknown scale factor from the correspondences between
the reference points on πj and their projections on Ii, i.e.
{(x, y) ↔ (u, v)}.

3 Multi-camera Calibration Algorithm

3.1 Rescaling and factoring homography matrices

Stacking homography matrices Hj
i in (5) with all the

cameras and model planes, we have




H1
1 · · · HJ

1
...

...
H1

I · · · HJ
I




︸ ︷︷ ︸
W

=




P1

...
PI




︸ ︷︷ ︸
P

[
Q1 · · · QJ

]
︸ ︷︷ ︸

Q

.

(6)
The 3I × 3J matrix W is called the measurement matrix.
Equation (6) says that this matrix is rank 4 and can be de-
composed into a 3I × 4 matrix P representing the cam-
eras and a 4 × 3J matrix Q representing the model planes.
Therefore, if all the plane-image homography matrices Hj

i

are known including their absolute scales, we can recover
the camera and the plane matrices (up to a common 4 × 4

π1

πj

I1 Ii

Ai1
1

Ai1
j

Gi1
j1 = (Ai1

j)-1Ai1
1

Figure 3. Inter-image and relative homogra-
phies

non-singular matrix) using SVD in a manner similar to the
factorization method proposed by Tomasi and Kanade[11].

Unfortunately, we can determine each homography ma-
trix Hj

i from point correspondences only up to an unknown

scale; all we have is H̃
j

i = λj
iH

j
i , where λj

i is an unknown

scale factor. The measurement matrix W̃ composed of H̃
j

i

instead of Hj
i is not necessarily rank 4 and cannot be de-

composed into the camera and plane matrices.
This situation is exactly the case where the factoriza-

tion technique has been applied to perspective cameras in
a structure-from-motion context[9, 3]. If cameras are cali-
brated, computing the scale factors λj

i is straightforward be-
cause the first two columns of the homography matrices are
orthonormal[8]. In our case, however, recovering the scale
factors is not simple because calibration is unknown. There
are two solutions for this difficulty; one is to search for a set
of scale factors {λj

i} which makes W̃ nearly rank 4 by iter-
ative non-linear minimization[3]. Non-linear minimization,
however, is computationally expensive and suffers from an
initialization problem. We thus adopted another approach
similar to [9] that exploits constraints on scale factors.

The model plane πj induces an inter-image homogra-
phy from I1 to Ii represented by Aj

i1 = Hj
i (H

j
1)

−1.
Then a homography from I1 onto itself represented by
Gj1

i1 = (Aj
i1)

−1A1
i1 is a “relative homography” which

maps a point from the first image to the i-th image through
π1 and then projects it back to the first image through πj

(see Fig. 3). Recently Zelnik-Manor and Irani[15] have
shown that Gj1

i1 is a planar homology[2] with a special form
Gj1

i1 = I + ef� for some 3-vectors e and f (see appendix
A), which means that Gj1

i1 has a unit eigenvalue of mul-
tiplicity two1. Thus the relative homography matrix com-
puted from the non-scaled plane-image homography matri-

1Associated subspace is of dimension two and perpendicular to f .
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ces G̃
j1

i1 = H̃
j

1(H̃
j

i )
−1H̃

1

i (H̃
1

1)
−1 = (λ1

i λ
j
1)/(λ1

1λ
j
i )G

j1
i1

has an eigenvalue µj
i = (λ1

i λ
j
1)/(λ1

1λ
j
i ) of multiplicity two

which can be directly computed from G̃
j1

i1 . Using this

value, we rescale H̃
j

i as

H̃
j

i ← µj
i H̃

j

i (i = 2, . . . , I; j = 2, . . . , J). (7)

Since H̃
j

i = µj
iλ

j
iH

j
i = (λ1

i λ
j
1/λ1

1)PiQj holds after this
rescaling, the measurement matrix W̃ composed of these
rescaled homography matrices can be factored as

W̃ =




H̃
1

1 · · · H̃
J

1
...

...

H̃
1

I · · · H̃
J

I




�




λ1
1P1

...
λ1

IPI


 [

λ1
1Q

1 · · · λJ
1 QJ

]
. (8)

Note In reality the relative homography matrices G̃
j

i

computed from the captured data are contaminated by noise.
Thus computing the scaling factor µj

i as a double eigenvalue

of G̃
j

i is not a good strategy because µj
i does not strictly be-

come a double root. Appendix B shows that µj
i can be sub-

optimally calculated in a linear fashion even in the presence
of noise.

3.2 Imposing metric constraints

Suppose that the measurement matrix W̃ composed of
the rescaled plane-image homography matrices is factored
as

W̃ =




P′
1

...
P′

I


 [

Q1′ · · · QJ′ ]
(9)

by using SVD[11]. Comparing eqn. (9) with (8), it can be
seen that factored camera and plane matrices {P′

i,Q
j′} are

related with the “true” ones {Pi,Qj} by a set of projective
transformations

P′
i � PiT, Qj′ � T−1Qj (10)

where T is an unknown 4 × 4 non-singular matrix. To re-
cover the camera matrices in an Euclidean world, we have
to determine T.

Without loss of generality, we can fix both projective
and Euclidean coordinate frames to the first camera, which
means P′

1 = [I 0] and P1 = [K1 0]. Then the transfor-
mation matrix T can be restricted to the following form

T =
[

K−1
1 0

h� h

]
(11)

where [h� h] composed of a 3-vector h and a scalar h rep-
resents the plane at infinity.

Introducing an unknown scale factor βj , we rewrite the
second equation of (10) as

TQj′ = βjQj . (12)

From equations (3) and (12), we have

pj′�ω1pj′ = qj′�ω1qj′ = (βj)2, pj′�ω1qj′ = 0
(13)

where [pj′ qj′] is a 3 × 2 upper-left submatrix of Qj′ and
ω1 = K−�

1 K−1
1 is the image of the absolute conic ob-

served by the first camera. We can determine ω1 in an
exactly same way as [10, 16]; ignoring βj , we have two
homogeneous constraints on ω1 for each model plane πj .
Since ω1 is symmetric and defined up to a scale, it has five
degrees-of-freedom. Therefore, given three or more model
planes, we have an over-determined linear system on the en-
tries of ω1 and can solve it in a least-squares sense. Then
K1 is obtained by Cholesky factorization of ω1 and nor-
malizing its (3,3)-element to unity.

Once ω1 is obtained, each βj can be determined as

βj =
√

(pj′�ω1pj′ + qj′�ω1qj′)/2. (14)

Finally, we determine the plane at infinity [h� h] by us-
ing the fourth row of eqn. (12):

[
h� h

]
Qj′ =

[
0 0 βj

]
(15)

Stacking eqn. (15) for all the model planes πj , we obtain
[h� h] as a least-squares solution for this over-determined
linear system, and this completes the computation of T. All
the camera matrices Pi (i = 1, . . . , I) are recovered by
Pi � T−1P′

i.

3.3 Nonlinear refinement

Up to now, we have solved for camera matrices Pi

through a series of linear least-squares. However, the so-
lution is not optimal and might be biased because the min-
imization criteria are based on algebraic errors. As recom-
mended in [8, 16], the linear solution should be refined by a
nonlinear minimization process based on statistically mean-
ingful criteria for the best results.

Suppose that there are N j reference points xj
n =

(xj
n, yj

n) (n = 1, . . . , N j) on the model plane πj . Let
uj

in = (uj
in, vj

in) be the projection of xj
n on the i-th cam-

era’s image plane Ii. Under the assumption that uj
in is con-

taminated by independent and uniformly distributed Gaus-
sian noise, the following criterion gives the maximum likeli-
hood estimation (MLE) of the intrinsic and extrinsic camera
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parameters:

I∑
i=1

J∑
j=1

Nj∑
n=1

∥∥∥uj
in − û(Ki,Ri, ti,pj ,qj ,dj ;xj

n)
∥∥∥2

→ min (16)

where û(Ki,Ri, ti,pj ,qj ,dj ;xj
n) is the projection of xj

n

onto Ii computed according to eqn. (5). The minimization
is performed using the Levenberg-Marquardt algorithm[6]
initialized with the linear solution obtained so far.

4 Experiments

The performance of our proposed algorithm has been
tested through both simulation and experiments with real
data.

4.1 Simulation results

Simulation experiments have been performed according
to the spatial configuration displayed in Fig. 4. Three cam-
eras are placed along a straight line at 50 mm intervals and
oriented toward the fixation point at a 500 mm distance. The
intrinsic parameters of the cameras are set to common val-
ues: k = 900, u0 = v0 = 255, a = 1.3888 and s =
0.001212. Each model plane is painted with 10× 14 = 140
reference points at 18 mm intervals. The distance d and
the orientation difference θ between the model planes are
varied in the simulation. Independent Gaussian noise with
0 mean is added to the captured image points while vary-
ing its standard deviation at various levels. For each noise
level, 100 trials are made and average results are displayed.
Our proposed algorithm has been run in two modes; linear
estimation part only (L-proposed) or with nonlinear refine-
ment (NL-proposed). Sturm-Maybank-Zhang style calibra-
tion algorithm for a single camera[10, 16] with nonlinear
refinement, denoted by SMZ, has also been implemented
for comparison.

Figure 5 shows the errors in the estimated intrinsic pa-
rameters of the first camera under d = 50 mm and θ =
15◦. It can be seen that not only NL-proposed but also L-
proposed yielded better results than SMZ for all parameters.
This is because our method was constrained by displace-
ments between the cameras and therefore suffered less from
over-fitting to the noise. Moreover, L-proposed performed
almost as well as NL-proposed. Since there are less data in
horizontal direction than vertical direction, the error in u0

is larger than that in v0.
Figure 6 shows the estimated position and orientation

errors of the second and the third cameras relative to the
first for both our proposed and SMZ algorithms. In the lat-
ter, calibration algorithm was run independently for each

50mm

50mm

500mm

Camera-1

Camera-2

Camera-3

Plane-1 Plane-2 Plane-3

dd

θ θ

Figure 4. Spatial configuration of the simula-
tion experiments

camera, and then rigid displacements between the cam-
eras were computed by Sturm’s plane-based pose estima-
tion method[8] while fixing the intrinsic parameters to the
values obtained in the calibration stage. The orientation
errors are defined as the rotation angle of the error matrix

∆Ri = RiR̂
�
i where Ri and R̂i are the estimated and true

rotation matrices of the i-th camera, respectively. The accu-
racy of L-proposed was very close to that of NL-proposed
and much better than SMZ.

The final estimations by SMZ would be identical with
NL-proposed if all the parameters were refined through the
final nonlinear optimization step as recommended in [8].
We also tried this and encountered few convergence prob-
lems. However, we have also found that SMZ tended to fail
more frequently than NL-proposed under near-degenerate
configurations, i.e. with small values of θ (typically ≈ 5◦),
because the positive definiteness of the image of the abso-
lute conic ω was violated more easily in the presence of
noise, which made Cholesky factorization of ω impossible.

The algorithm NL-proposed was tested while changing
the position and orientation of the model planes. Figure 7
shows the errors in focal length of the first camera while the
distance parameter d was varied from 0 mm to 100 mm. It
can be seen that the error is almost irrelevant to the value
of d except in the vicinity of d = 0; we have found that
the rescaling of homography matrices (see eqn. (7)) did not
make the measurement matrix close enough to rank 4 even
for relatively small noise level if d ≈ 0, which produced
a convergence problem. This is not due to degeneracy of
the configuration because such sensitivity did not appear for
zero or very small noise. Investigating the cause is still re-
mained open.

The errors in focal length of the first camera under vary-
ing angle parameter θ are displayed in Fig.8. The improve-
ment of accuracy can be achieved with large θ values, i.e.
far from degenerate configuration.

4.2 Results with real data

Our proposed algorithm has been tested on real data as
well. Three CCD cameras with lenses of 8 mm focal length
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Figure 5. Errors in focal length, aspect ratio (left) and principal point (right) vs. the noise level (d = 50
mm, θ = 15◦)
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Figure 7. Errors in focal length vs. the dis-
tance between the planes (θ = 15◦)

were calibrated. A model plane with 13 × 9 = 117 lattice
points was placed at six locations in different orientations.

Figure 9 shows the singular values of the measurement
matrix W̃ before and after rescaling (see eqn. (7)). It can
be seen that the first four singular values are well separated
from the rest after rescaling.
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Figure 8. Errors in focal length vs. the angle
between the planes (d = 50 mm)

All of the estimated camera parameters are displayed in
Table 1. The position and orientation of the i-th camera are
represented by two 3-vectors ti and θi respectively, where
θi is of a magnitude equal to the rotation angle and parallel
to the rotation axis. For each camera, the first column shows
the initial guesses for the nonlinear refinement process and
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Table 1. Estimated camera parameters using 6 planes
parameters first camera second camera third camera

initial final initial final initial final
k 1092.42 1085.84±0.98 1099.75 1093.27±0.94 1114.19 1110.85±0.95

(u0, v0) (321.06 (318.18±0.85 (352.36 (354.02±0.87 (376.67 (373.85±0.82
218.16) 217.03±0.88) 236.03) 235.49±0.87) 227.68) 226.00±0.89)

a 1.00962 1.00829±0.00334 1.00803 1.00809±0.00321 1.00907 1.00600±0.00337
s -0.00192 -0.00122±0.000592 0.003798 -0.001075±0.000582 0.001506 -0.001251±0.000603

t (mm) (0 (0±0 (154.12 (154.30±0.32 (72.36 (72.42±0.20
0 0±0 0.89 0.93±0.18 -74.33 -74.11±0.20
0) 0±0) 22.66) 22.37±1.30) 19.88) 19.62±1.14)

θ (deg.) (0 (0±0 (-0.27 (-0.31±0.06 (-7.56 (-7.56±0.06
0 0±0 -12.55 -12.40±0.06 -3.73 -3.75±0.06
0) 0±0) 0.55) 0.57±0.01) -1.18) -1.12±0.01)
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Figure 9. Singular values of measurement ma-
trix before/after rescaling

the second column shows the final optimal results with stan-
dard deviations. It can be seen that linearly computed esti-
mations were very close to the optimal values. The refine-
ment process was converged within three iterations.

We carried out 3D reconstruction from an image triplet
captured by the calibrated cameras. A segment-based
trinocular stereo vision algorithm was applied to the input
images shown in fig. 10(a). Feature matching along cor-
responding epipolar lines and final triangulation in the 3D
Euclidean space were performed using the estimated cam-
era parameters. Several views of the reconstructed scene
structure are displayed in fig. 10(b).

5 Conclusion

A new calibration algorithm for multi-camera systems
using a model plane with known reference points has been
described. Our proposed technique integrates the Sturm-
Maybank-Zhang style calibration method with Sturm’s
plane-based pose estimation algorithm so that the rigid dis-
placements between the cameras are consistently recovered
as well as their intrinsic parameters. The algorithm inherits
handiness and flexibility from the original method; the user

(a) Input image triplet

(b) Reconstructed 3D structure: top view, upper-side view and front view

Figure 10. 3D reconstruction from three im-
ages captured by calibrated cameras

can perform calibration only by moving the model plane
freely and capturing its images at several locations. Sim-
ulation experiments showed that our proposed algorithm
yielded better results than the preceding algorithm for both
intrinsic and extrinsic parameters. Moreover, the linear so-
lutions by the new algorithm were very close to the final
nonlinear optimal solutions. Experiments with real data
also have shown the validity of the proposed algorithm in
practice.

A Relative Homography Matrix[15]

We rewrite Hj
i in (5) as

Hj
i = KiR�

i

[
I −ti

] [
pj qj dj

0 0 1

]

= KiR�
i

([
pj qj dj

] − tik�
)

where k� = [0 0 1]. Then, noting that R1 = I and t1 = 0,
the inter-image homography between I1 and Ii induced by
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the model plane πj is represented by

Aj
i1 = Hj

i (H
j
1)

−1

= KiR�
i

([
pj qj dj

] − tik
�

)
[

pj qj dj
]−1

K−1
1

= KiR�
i

(
I − ti

(pj × qj)�

(pj × qj)�dj

)
K−1

1

= A∞
i1

(
I − einj�)

where A∞
i1 = KiR�

i K−1
1 denotes a homography between

I1 and Ii induced by the plane at infinity, ei = K1ti is a
projection of the i-th camera center to I1 (i.e. the epipole),
and nj� = (pj × qj)�K−1

1 /(pj × qj)�dj represents πj .
Hence the relative homography matrix Gj

i becomes

Gj1
i1 = (Aj

i1)
−1A1

i1

=
(
I − einj�)−1 (

I − ein1�)
=

(
I + ei

nj�

1 − nj�ei

) (
I − ein1�)

= I + ei
nj� − n1�

1 − nj�ei

which has a form Gj1
i1 = I + ef�.

B Finding µ s.t. G−µI becomes rank 1

Let G be a 3 × 3 matrix having a form

G = µI + ef� (17)

for some unknown scalar µ and unknown non-zero 3-
vectors e and f . We would like to find the value of µ from
G.

Equation (17) means that G − µI is a rank 1 matrix,
which in turn implies

a − µi � b − µj � c − µk

where G = [a b c] and I = [i j k]. Therefore a cross
product of any two vectors above vanishes. Taking a cross
product of the first two vectors for instance, we have

(a−µi)×(b−µj) = a×b+µ(j×a−i×b)+µ2k = 0. (18)

Although this equation gives three constraints on µ, only
two of them are independent. So, we pick up the ones that
are linear in µ by taking scalar products of (18) with i and
j:

i�(a×b) + µk�a = 0, j�(a×b) + µk�b = 0.

In a similar manner, four more linear constraints on µ can
be derived from two other combinations of a − µi, b − µj
and c−µk. We can determine µ as a common root of these
six linear constraints if there is no noise in G, or as a least-
squares solution in the presence of noise.
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