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Abstract

The Crossed-Slits (X-Slits) camera is defined by two non-
intersecting slits, which replace the pinhole in the common
perspective camera. Each point in space is projected to the
image plane by a ray which passes through the point and the
two slits. The X-Slits projection model includes the pushb-
room camera as a special case. In addition, it describes
a certain class of panoramic images, which are generated
from sequences obtained by translating pinhole cameras.

In this paper we develop the epipolar geometry of the X-
Slits projection model. We show an object which is similar
to the fundamental matrix; our matrix, however, describes
a quadratic relation between corresponding image points
(using the Veronese mapping). Similarly the equivalent of
epipolar lines are conics in the image plane. Unlike the pin-
hole case, epipolar surfaces do not usually exist in the sense
that matching epipolar lines lie on a single surface; we an-
alyze the cases when epipolar surfaces exist, and character-
ize their properties. Finally, we demonstrate the matching
of points in pairs of X-Slits panoramic images.

1. Introduction

People can obtain a very vivid sense of three dimensions
by fusing two images of a scene, taken from slightly differ-
ent angles; we call this phenomenon “stereo vision”. It has
been observed long ago that the images do not have to ad-
here to the precise geometry of the eyes in order to elucidate
a vivid sense of 3-D; in fact, very crude image pairs will do,
as Julesz’ random dot stereograms clearly demonstrate [4].

Recently, a few techniques for the generation of stereo
pairs of panoramic images have been proposed [7, 11, 1,
12, 5, 13, 3]. A prominent one is the stereo panorama al-

�This research was supported by the EU under the Presence Initiative
through contract IST-2001-39184 BENOGO; grants GACR 102/01/0971,
MSM 212300013; and by a grant from the Israel Science Foundation

(a)

(b)

Figure 1. Panoramic stereo pairs: (a) X-Slits
and (b) pushbroom. For full resolution images
and a walkthrough video sequence in stereo, see
www.cs.huji.ac.il/˜ doronf/xslits/epipolar

gorithm [6], which is designed to deal with a sequence ob-
tained by a rotating pinhole camera. This algorithm essen-
tially generates two oblique panoramic pushbroom images
of the scene; one panorama is generated by sampling and
stitching together a column from the left side of each image
(say column 64 from a ���� ��� image), while the second
panorama is similarly generated by sampling a column from
the right side of each image (say column 192). We note that
this technique can obtain a single pair of panoramic images
from each input sequence of images.

Unrelated to stereo, we have previously described [8]
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how to generate panoramic images from sequences taken by
translating pinhole cameras. Our method samples columns
from successive images and then stitches them together,
as in traditional mosaicing. The main difference is that
we sample different columns from different images accord-
ing to a simple sampling function (say column 1 from the
first image, column 2 from the second, 3 from the third,
and so on). Thus our method allows us to generate many
panoramic images from a single sequence of input images;
in fact, we can generate a video corresponding to the for-
ward motion of a camera, using as input a sequence taken
by a sideways moving camera.

The geometry underlying our panoramic images, which
we called X-Slits projection, is different from the geometry
of the pinhole camera; some of its basic characteristics are
summarized in Section 2. We can show that the pushbroom
projection is a special case of the X-Slits projection model,
and in some sense it is the most distorted limiting case, i.e.,
the deviation from perspective projection in X-Slits images
is maximal in the pushbroom limiting case [9].

As a natural extension of this work, we can generate a X-
slits stereo panorama from an input sequence. We do this by
generating two X-Slits panoramic images, each obtained by
a slightly different column sampling function as described
in Section 3. We show a few examples, and compare them
to the results obtained with the “stereo panorama” algorithm
[6]. It is worth noting that the main advantage of our method
is the ability to generate many panoramic stereo pairs from
a single pinhole sequence, which can be used to generate a
virtual walkthrough in stereo.

Our main theoretical contribution in this paper is the
analysis and characterization of the epipolar geometry in
the X-Slits projection, as described in Section 4. Our moti-
vation for doing this is twofold: First, for the purpose of vi-
sualization, it may help us understand what makes a stereo
pair, which is not perspective, look compelling. Second,
understanding the epipolar geometry can aid image corre-
spondence; in particular we would like to be able to match
images of different kinds to each other, including X-Slits
images, pushbroom images, perspective images with barrel
distortion, and ideal perspective images. This can be used
for such applications as 3-D reconstruction, image warp-
ing, or animation. Previously, the epipolar geometry of the
pushbroom camera has been analyzed in [2].

The epipolar geometry of X-Slits cameras resembles the
pinhole epipolar geometry in some ways, but has its own
unique (and somewhat bizarre) properties. In analogy with
the pinhole case, there exists a � � � matrix which we
call the fundamental matrix and denote �. � gives a re-
lation between the Veronese mappings of corresponding
image points � and ��, where the Veronese mapping of
an image point � � ��� �� �� is defined to be ���� �
���� ��� ��� ��� ��� ���� , and the relation is �����������.

�

�

�

�� ��

�� � ��

��

��image
plane

Figure 2. X-Slits projection is defined by two slits ��� ��,
and three points �� ���

The fundamental matrix in the X-Slits case therefore de-
scribes second order epipolar curves (or conics). Moreover,
we can show that the rank of � is 4; this result can be used
to derive constraints on� to be used during the computation
of its components.

The main novel feature of the X-Slits epipolar geometry
is the fact that the epipolar conics do not usually match. In
the pinhole case, all the image points on one epipolar line
correspond to points on a single epipolar line in the second
image. In the X-Slits case this is not generally the case;
typically, each point on a certain epipolar conic in one im-
age will induce a different epipolar conic in the second im-
age. There are only two special cases where epipolar con-
ics match each other uniquely in the X-Slits projection: (i)
when the two cameras have a common slit, in which case
the epipolar geometry is identical to the pinhole case, i.e.,
all epipolar curves are lines and all epipolar surfaces are
planes; (ii) when the slits of the two cameras intersect each
other in 4 distinct points, in which case the epipolar surfaces
are quadratic but unique.

The rest of this paper is organized as follows: After re-
viewing the X-Slits projection in Section 2, we describe
how to generate X-Slits stereo panoramic pairs in Section 3.
In Section 4 we study the X-Slits epipolar geometry, show-
ing the results summarized above. Examples are given in
Section 3 (stereo) and Section 5 (epipolar geometry).

2. Crossed-Slits Projection

The Crossed-Slits (X-Slits) projection is defined by two
lines (“slits”) through which all projection rays must pass,
and an image plane on which neither slit lies. The im-
age of a scene point is the intersection of the image plane
with the ray passing through it and both slits. Let the slits
��� �� be given by their dual Plücker matrices �����

�

��
1 Let

1The dual Plücker matrix can be defined as ��

�
� ���

�

�
� ���

�

�
,

where ����� are any 2 distinct planes that intersect in ��.
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��� ��� �� denote the Plücker matrices corresponding to
the � axis, 	 axis, and the line at infinity on the image
plane respectively (see Fig. 2). Then the projection of a
scene point � � �� to an image point � � �� (in homoge-
neous coordinates) is given by:
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�����

�����

�
�(2.1)

Thus the X-Slits projection is a quadratic mapping from ��

to ��.
Let � � �� � �� denote the Veronese mapping of de-

gree 3, given for � � ���� ��� ��� ���
� by

���� � ���
�
� ����� ����� ����� �

�

�
� ����� ����� �

�

�
� ����� �

�

�
��

Using this notation, the transformation in (2.1) can be con-
cisely written as

� � 	���� (2.2)

where	 is a �� �	 matrix determined by the two slits and
the image plane (or, equivalently, the five camera matrices
��
�
� ��

�
� ��� ��� ��).

Let ����� � �� denote three points on the image plane
such that � is the origin of the image and ��� are points at
infinity on the image � and 	 axes respectively. By defini-
tion it follows that�� � ��� ���� ,�� ���� � ��� ,
and�� � ��� � ��� . Let us denote


 � 
������ (2.3)

where the columns of
 are �����. It now follows that the
3-D representation �� � �� of image point � � �� is

�� �
� (2.4)

The X-Slits projection defined by non-intersecting slits
projects general lines onto conic sections. More specif-
ically, given two non-intersecting slits and a line denoted
by the Plücker matrix �, that does not coincide with either
of the slits, it can be shown that the surface of all projec-
tion rays that intersect points on � is the quadric �����

�

�,
which is a double-ruled surface [10]. The intersection of
the quadric with the image plane, which is a conic section,
is the projection of the line.

It is interesting to analyze the special case when the two
slits are coplanar. As we shall show, this limit case is prac-
tically equivalent to the conventional pinhole camera. More
specifically, let there be 3 planes ����� defining the slits
so that ��

�
� ��

�
� ��� (i.e., both slits lie on plane �).

Since �� are anti-symmetric, ����� � 	, and therefore

����
�
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�
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It follows that
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and therefore we obtain from (2.1)
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�� (2.5)

which is a projective transformation, and the pinhole would
be the intersection of the two slits. Note that this is true only
when ��� 	� 	, i.e., when � does not lie on plane �. We
therefore obtain the following result:

Proposition 2.1. When the slits are coplanar, the X-Slits
projection agrees with a perspective or orthographic pro-
jection in all points which do not lie on the plane of the
slits.

If � does lie on plane �, then its projection is �	� 	� 	�� ,
which is not a point. Geometrically, the projection of � is
the line where the image plane intersects plane �.

3. X-Slits Stereo

We can generate X-Slits panoramas from “regular” per-
spective images as follows. The input sequence is assumed
to be captured by a pinhole camera translating along a hor-
izontal line in 3-D space in a roughly constant speed, and
without changing its orientation or internal calibration. In
the simplest case, panorama synthesis is performed as fol-
lows:


 From each frame 
, sample the vertical column (strip)
centered on the horizontal coordinate ��
�.


 Paste the strips into a mosaic image, as in [7].

The geometry of the resulting panoramic image is X-Slits,
corresponding to a X-Slits camera with one slit parallel to
the image vertical axis, and a second slit overlapping the
path of the camera. The parameters of the strip sampling
function ��
� determine the location of the vertical slit of
the virtual camera.

In the simplest case, when the camera is moving side-
ways in a constant speed, we can make the following gen-
eral observation [8]:

Any linear column sampling function ��
���
�
produces a valid X-Slits panoramic image.2

2The case where the camera is not moving sideways is discussed in [8],
with some discussion of what to do with varying camera speed and varying
camera orientation and internal calibration.
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The parameters of the camera’s slits are completely defined
by � and . In fact, there is a simple qualitative relation:
� determines the “depth” of the vertical slit and  its “hor-
izontal” shift. Thus a stereo pair can be generated qual-
itatively by using any two linear sampling functions with
the same slope, and no additional calibration information is
required. Moreover, we note that linear column sampling
can be implemented by slicing the space-time volume of
images, which can be done efficiently in a variety of ways
with existing hardware and/or software.

To see the relation between ��  and the slits’ param-
eters, consider the plane  defined by the camera’s path
and optical axis of the translating camera. Let � denote
the axis overlapping the camera path on this plane (to be
called “horizontal” axis), and � denote the orthogonal axis
(to be called “depth”). One slit of the virtual camera over-
laps the � axis, and we call it therefore the “horizontal”
slit. Let ���� ��� denote the intersection of the vertical slit
with plane . This point is fully determined by the column
sampling function ��
�, and we can show that �� �  and
�� � �.

In order to generate a stereo pair of panoramas, we gen-
erate two X-Slits images with two different sampling func-
tions. Let the first sampling function be ��
� � �
 � 

for some �� , and let the virtual camera corresponding to
the panoramic image generated by this function have its
vertical axis going through ���� ���. We can now gener-
ate a second X-Slits image by using the sampling function
���
� � �
�� Æ; the virtual camera corresponding to the
panoramic image generated by this function has its vertical
axis going through ������ ��� (where � � Æ). Thus we
have created two images with identical horizontal slit, and
with two vertical slits shifted horizontally by � one with re-
spect to the other. This is going to be our stereo pair, where
the free parameter Æ is tuned to allow for comfortable image
fusion.

We tested our method on a sequence taken by a sideways
moving pinhole camera; examples are shown in Fig. 1. We
show a number of stereo pairs, obtained by moving the pair
of vertical slits around. For comparison, we also show the
stereo pair obtained from the same sequence by the “stereo
panorama” algorithm [6].

4. Epipolar Geometry

We now study the relation between two X-Slits images,
taken by two X-Slits cameras� and��.

4.1. Fundamental Matrix

Given a point � � �� on the image of camera �, recall
from (2.4) that the 3-D point on the image plane correspond-
ing to � is given by �� �
�, where
 is the �� � matrix

�

��

��

��

��

image
plane

��
�
��

Figure 3. Illustration for the derivation of the fundamen-
tal matrix for two X-Slits cameras.

defined in (2.3). The plane that joins �� to slit �� is given
by ��

�
��, see Fig. 3. This plane intersects �� at the point

�� � ���
�

�
�� (note that �� is the Plücker matrix represent-

ing �� and ��
�

is the dual Plücker matrix representing ��).
The point ��, which is not seen by � since it lies on ��, lies
on the ray � that projects �� to �. This ray is given by the
Plücker matrix

� � ���
�

�
� ���

�

�
� ���

�

�
��
�
�� � ���

�

�
���

�

�
(4.1)

As explained in Section 2, the projection of a line repre-
sented by the Plücker matrix � on�� is a conic given by the
intersection of the image plane with the quadric ���

�
���

�

�
. It

follows from Eq. (2.4) that the projection of the ray through
� on the image of camera�� is given by:

� � �
��
�

��
�
��

���
��

��
�

�
� (4.2)

� �
��
�

��
�
��

�����
�
�
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�

��� � ���
�

����
�
�

� ����

��
�

�
�

This equation defines a bi-quadratic relation between corre-
sponding points � and �� in cameras � and �� respectively.

Using the Veronese mapping of degree 2 � � �� � ��,
given by

���� � ���
�
� ����� ����� �

�

�
� ����� �

�

�
��

(4.2) can be rewritten as

����������� � 	 (4.3)

where � is a ��� matrix whose components depend on the
values of the camera matrices 
������

�

� and 
����
�

���
��

�.
For each image point � in �, � defines the conic on which
the image point �� in �� must lie, and vice versa. We shall
refer to such conics as visibility curves.

Definition 4.1. The two conics on which two corresponding
image points �� �� must lie, as determined by Eq. (4.3), are
called visibility curves.

As will be shown below, these curves play a role similar to
the epipolar lines in the perspective model.

In analogy with the pinhole camera, we define the fun-
damental matrix of a pair of X-Slits cameras:
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Definition 4.2. Matrix � in Eq. (4.3) is called the funda-
mental matrix of a pair of X-Slits cameras� and� �.

Clearly, � always exists. It is similar to the conventional
fundamental matrix in the sense that it captures the relative
position of two X-Slits cameras, and that it makes it possible
to get the visibility curves in one image from points in the
other image.

Since � depends on cameras � and ��, it is determined
by 34 free parameters at most. The real number of free pa-
rameters is, however, much smaller. To see this, suppose	
is a � � � matrix representing a projective transformation
� �� 	�. It can easily be verified that this transforma-
tion, when applied to a Plücker and a dual Plücker matrix,
is given by � �� 	�	� and �� �� 	����	��, respec-
tively. By substituting these mappings into Eq. (4.2) one
obtains the same equation, and therefore Eq. (4.2) is inde-
pendent of the choice of the coordinate system. Note, how-
ever, that due to the construction of matrix
 with 2 points
on the plane at inifinity, we are only free to choose a 3-D
affine transformation to change the coordinate system; this
removes 12 degrees of freedom, leading us to the conclu-
sion that � is fully determined by 22 free parameters.

We can derive � directly from the camera parameters
as follows. Let � and �� denote the corresponding projec-
tions of 3-D point � in the two images. As discussed above,
the projection ray of � in camera � is defined by the in-
tersection of the two planes ��

�

� and ��

�

�. It follows

that � must lie on the two planes, namely, ����
�

� � 	

and ����
�

� � 	. A similar argument regarding cam-

era �� allows us to conclude that �����
�

��� � 	 and

����
�

�

��� � 	.

Let us define the �� � matrix � whose columns are the
vector representations of the 4 planes, namely:

� � 
��
�

����

�

����

�

�

������

�

�

����

Clearly �� � � � 	. This implies that the null space of �
is not empty, and thus the determinant of � must be 0. The
equation ��
��� � 	 gives us another expression for the
bi-quadratic relation between the image points described by
the fundamental matrix �. With some algebraic manipula-
tions of ��
��� � 	, we can arrive at the following form:

	 � ��
��� � ����� �� �� � �����

where� and � are two �� � matrices which depend each
only on the cameras� and �� respectively.

Let us take a closer look at ����� � �. For any Matrix
��, we use the notation �� to denote the �-th column of

��. By construction we have:

������� � ��
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�
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������� � ��
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�������
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�
�� � �������

�

�
�� �
�

This defined matrix �; moreover, it can be shown that the
rank of � is at most 4 given that the � � � matrices ��

�

and ��
�

are anti-symmetric and of rank 2. � is defined in a
similar way for camera ��, and its rank is therefore also 4.
Since the fundamental matrix � �� ��, we can conclude
the following:

Proposition 4.1. The rank of the fundamental matrix of the
X-Slits projection is 4 at most.

This proposition immediately gives us 4 independent
constraints on the elements of �. For example, we can
choose four different � � � sub-matrices of �, and require
that the determinant of each equals 0.

4.2. Visibility Quadrics

Let � denote the projection ray of camera � passing
through image point �. Let ����� denote the quadric
��
�

�
���

�

�
where � is defined in (4.1); thus ����� is the pro-

jection of � in camera �’. This quadric is a double-ruled
surface that is ruled by the family of all rays of camera ��

passing through the line � (see Fig. 4a). Similarly, let ��

denote the projection ray of camera�� passing through im-
age point ��, and let the quadric ����� � ��

�
���

�

�
denote

the projection of �� in camera �.

Definition 4.3. The quadric ����� (resp. �����) for any
image points � (resp. ��) is called a visibility quadric.

Visibility quadrics play a role similar to epipolar planes
in the pinhole camera. However, unlike the perspective
model, these quadrics are not necessarily symmetric with
respect to the two cameras. For a given scene point � that
is projected to � and �� in � and �� respectively, the corre-
sponding surfaces of rays of� and�� are����� and�����
respectively. These quadrics do not usually coincide.

When ����� and ����� do coincide, we refer to this
quadric as an epipolar quadric. The property of an epipolar
quadric is that all points on it are projected to a single conic
in each camera, and the corresponding conics can be used
for matching in the same way as epipolar lines are used in
perspective images. We shall describe next the camera con-
figurations in which this occurs for all scene points; in these
cases the visibility curves in both cameras can be matched
with each other, similarly to epipolar lines in the perspective
camera. This notion will be made more precise next.
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Figure 4. Visibility quadrics: (a) ����� is the collec-
tion of projection rays of �� passing through line �, while
����� is the collection of projection rays of � passing
through ��. (b) When the cameras have a shared slit (�� �
���), the visibility quadrics intersect in a plane.

Epipolar Quadrics

In this section we assume that slits are not visible by their
camera, because otherwise epipolar quadrics are not well
defined for points on the slits (the explanation is omitted for
lack of space). To make the discussion precise, let us start
with a few definitions: We say that two lines intersect if
they have a common point. We say that lines are disjoint
if they do not intersect. Let � be a set of lines. Denote
by � ��� the set of lines that intersect every line in � and
call � ��� the transversal of lines in �. Adopt that a set �
of lines is called regulus if there are three pairwise disjoint
lines ��� ��� �� such that � � � ���� ��� ����.

Let � denote a X-Slits camera with slits ��� ��. We say
that line � is a projector of a point � in camera � if � is
transversal to slits ��� ��, and � is in ���������. A nonempty
quadric � is said to be an epipolar quadric of two X-Slits
cameras ���� if for every point � � � all projectors of �
in � and �� are contained in �.

Lemma 4.2. Let ��� ��� �� be three distinct lines, out of
which at least two are disjoint. Then transversal � �
� ���� ��� ���� is either the union of two planar pencils of
lines that have one line in common, or a regulus.

Proof. Let w.l.o.g. ��� �� be disjoint. Then one of the follow-
ing 3 options hold: (1) �� intersects both ��� ��, see Fig. 5(a);
(2) �� intersects either �� or ��, be it �� w.l.o.g., see Fig. 5(b);
(3) ��� ��� �� are pairwise disjoint, see Fig. 5(c).

case 1: Denote �� � �� by �� and �� � �� by ��. The
set of lines transversal to ��� �� is the union of the set �� of

��

��

��

��
������

��

��

����

��
��

(a) (b) (c)

Figure 5. Illustrations for the proof of Lemma 4.2.

all lines passing through �� and the set �� of all lines in
the plane spanned by ��� ��. The lines in �� that intersect ��
form the pencil of lines with center �� in the plane spanned
by ��� ��. The lines in �� that intersect �� form the pencil of
lines with center �� in the plane spanned by ��� ��. Clearly
line �� lies in both pencils.

case 2: Denote �� � �� by ��. Line �� intersects the
plane spanned by ��� �� in a point ��. Now, the set of lines
transversal to ��� ��� �� is the union of two planar pencils of
lines that have one line in common by the same argument
as in the previous case.

case 3: In this case � is a regulus, see [10, page 42] for
the proof.

Theorem 4.3. Let � (resp. ��) be a X-Slits camera with
disjoint slits ��� �� (resp. disjoint slits ��

�
� ��
�
). Then, every

point in the set � of all points that have a projector in both
cameras is contained in an epipolar quadric �� the
cameras either share a slit, or slits ��� �� intersect with slits
���� �

�

� in four pairwise distinct points.

Proof. ���� One of the following must be true: (1) all
projectors of � intersect at least one of the slits ��� or ���;
(2) there is a projector � of � so that �� ��

�
� ��
�

are pairwise
disjoint.

case 1: The set of projectors of � is the union of two
sets of lines

� � � is a projector of��� � ��� 	� �� � � ���� ��� �
�

���

� � � is a projector of��� � ��
�
	� �� � � ���� ��� �

�

�
��

It follows from Lemma 4.2 that transversal � ���� ��� ��� for
a line � 	� ��� �� is either a planar pencil of lines or a regulus.
Therefore, from � ��

�
� ���� � � � � � � ���� ��� ����� �

� ���� ��� �����, it follows that ��
�
� ��� ��� or ��

�
� ��� ���.
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This is because � ��
�
� ���� is not a surface (but rather a

volume), since for every point� there is a line in � ��
�
� ����

passing through �.
case 2: Take � � � � � . There is an epipolar quadric

� containing �. Thus � is in � and also the regulus � �
� ���

�
� ��
�
� ��� is in � by which � is a regular double ruled

quadric. Either (2.1) there is a line � � � which does not
intersect both ��� ��, or (2.2) ��� �� intersect all lines in �.

(case 2.1) Regulus � ���� ��� ��� is in � and therefore
lines ��� �� are in �. Lines ��� �� are disjoint and conse-
quently are in the same regulus. The same holds for ��

�
� ��
�
.

Line � intersects ��
�
� ��
�

but does not intersect ��� ��, and thus
��� �� are in the opposite regulus to the regulus containing
��
�
� ��
�

(in other words, they are in different rulings on the
surface). Consequently, slits ��� �� intersect with slits ��

�
� ��
�

in four pairwise distinct points.
(case 2.2) Lines ��� �� are in regulus � ���. Since ���� �

�

� �
� ���, all four ��� ��� ���� �

�

�
are in the same regulus and are

pairwise distinct because � intersects ��� �� but does not in-
tersect ���� �

�

� . Then, however, no point � � � � � is con-
tained in an epipolar quadric due to the following argument.
Denote by � (resp. ��) the line from� (resp.��) that passes
through a point � � � . Assume that there is an epipo-
lar quadric �� containing �. Then both � ���� ������� and
� ����� �

�

����� are in ��, and thus all ��� ��� ���� �
�

� are in ��.
However, now � � �� since every four distinct lines from
a regulus are exactly in one regulus. Therefore, � � �.

���� By the assumption one of the following holds:
(1) the cameras share exactly one slit; (2) the cameras share
both slits; (3) the cameras intersect in four distinct points.

case 1: Let w.l.o.g. �� � ��
�
. A point � � � is not

contained in �� and therefore there is exactly one plane �

through �� and �. Every projector from � or ��, which
contains �, intersects �� and is therefore in �; thus � is an
epipolar quadric.

case 2: Let w.l.o.g. �� � ��
�

and �� � ��
�
. Then every

point � � � is projected in both � and �� by the same
projector. Every � � � and its projector � are contained
in, e.g., the regular epipolar quadric that contains regulus
� ���� ��� ���� for some line �� that contains � and does not
intersect ��, ��.

case 3: Every point � � � is contained in exactly one
projector � from � and in exactly one projector �� from ��.
We assumed that ��� �� are transversal to ��

�
� ��
�
. Line � (resp.

��) is transversal to ��� �� (resp. ���� �
�

�). Line � is transversal
to �� since both contain �. Lines ��� ��� �� (resp. ��

�
� ��
�
� �)

are pairwise disjoint. Therefore, � is contained in a regular
epipolar quadric that contains regulus � ���� ��� ����.

We can now conclude the following:

Corollary 1. If two X-Slits cameras share a slit, then ev-
ery point is contained in an epipolar plane, see Fig. 6(b).
Moreover, the epipolar planes form a pencil of planes.

(a) (b)

��

��

�� ��
�

��
�

��
�

�� � ��
�

Figure 6. Epipolar quadrics of a pair of X-Slits cameras
with nonintersecting slits. (a) The slits intersect in four pair-
wise disjoint points. (b) The cameras share a slit.

Vice versa, when the epipolar quadrics are planes in gen-
eral, the cameras must have one common slit.

Corollary 2. If the slits intersect in four pairwise distinct
points, then every point is contained in a regular epipo-
lar quadric, see Fig. 6(a). Moreover, the epipolar quadrics
form a pencil of quadrics.

4.3. Visibility Curves

Recall that visibility curves are the ‘X-Slits equivalent’
of epipolar lines, since lines are projected in X-Slits projec-
tion onto conic sections. One property of visibility curves
is that they must all intersect two specific points, which are
the points where the slits intersect the image plane.

Proposition 4.4. In camera �, denote the image points
where slits �� and �� intersect with the image plane as ��
and �� respectively; then all scene lines are projected into
conics that pass through �� and ��.

Proof. The line � is projected into the conic given by

��
���
�
���

�

� � 	 (4.4)

For � � �� �, the 3-D point corresponding with �� is 
��,
and since this point lies on slit ��, it follows that��

�

�� � 	.

Therefore, (4.4) holds for � � ��, which means ��� �� both
lie on the conic which is the projection of the line �.

Corollary 3. �� and �� lie on all visibility curves.

The projection of a ray is the intersection of the image
plane with a subset of a quadric double-ruled surface con-
taining the slits of the camera and the ray of the other cam-
era through the scene point, as discussed above and in Sec-
tion 4.2. When this set is a plane, the visibility curve degen-
erates into a line. This gives us the following result:

Proposition 4.5. When two X-Slits cameras share a slit,
visibility curves are lines and can be matched, i.e., points
on a visibility line of one camera can be matched to points
on the corresponding visibility line of the other camera.
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This proposition shows that in the case of a shared slit,
there is great similarity to the epipolar geometry of the per-
spective projection. The following lemma characterizes this
similarity:

Lemma 4.6. For two cameras�, ��, if the cameras have a
common slit, then each visibility curve is composed of a pair
of lines, one of which is the projection of a singular point;
excluding singular points, the remaining family of lines is
the family of lines induced by the perspective fundamental
matrix.

Proof. Since a slit is shared, let us assume w.l.o.g. that
��
�
� ��

�

�
. It can easily be shown that ��

�
���

�

�
� ���

�
,

for some � � �. Therefore, for each scene point projected
to �, �� in �, �� respectively,

� � �
��
�

��
�
��

�����
�
�

�
�
�

��� � ���
�

����
�
�

� ����

��
�

�
�

� �
��
�

��
�
�

�����
�
�

�
�
�

��� � ����
�
�

� ����

��
�

�
�

� �
��
�

��
�
��

����
�
�

� ���

��� � ������

��
�

�
�

� �
��
�� � �

�
	�

�

Since 
� and 
��� are 3-D points on the image planes of
� and�� corresponding to � and �� respectively, ���	��	
if and only if � and �� are coplanar with the common slit.

Imagine that instead of the two X-Slits cameras � and
�� we have two perspective cameras with focal centers on
��; clearly the same relationship would exist between corre-
sponding image points. This means that the first constraint,
denoted as ���	� is equivalent to the constraint on match-
ing points between two perspective cameras that lie on ��.

On the other hand, ���
�
��������

�
� ����

�
����

�
� � 	.

Therefore ��
� ������������� � 	, which means that
��
� ���������� is a point on slit ��, and therefore the
visibility line �� � is a projection of a point on a slit. This
projection is singular (a point is projected to a line), and
therefore we exclude it from the set of points feasible for
matching.

5. Experimental Results

We generated X-Slits images from 3 different sequences
of the same scene. In each sequence the input camera
moved along a different trajectory, and therefore each of the
synthesized panoramic X-Slits images had a different pair
of slits. Using 70 manually matched points, we retrieved
the X-Slits and perspective fundamental matrices, and pro-
duced visibility curves and epipolar lines (see Fig. 7a). Our
experiments show that the retrieved visibility curves are
closer to their corresponding image points than epipolar
lines computed assuming epipolar lines rather than epipo-
lar curves (see Fig. 7b).

(a)

0 0.5 1 1.5 2 2.5
0

200

400

600

800

1000

(b)

Figure 7. Experimental results: (a) the visibility curves
and epipolar lines retrieved from matching points in a pair
of X-Slits images; (b) a histogram of the distances (in pix-
els) between each image point and the corresponding visi-
bility curve (left columns) and epipolar line (right columns).
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