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Abstract
Is the real problem in resolving correspondence using cur-
rent stereo algorithms the lack of the “right” matching cri-
terion? In studying the related task of reconstructing three-
dimensional space curves from their projections in multiple
views, we suggest that the problem is more basic: matching
and reconstruction are coupled, and so reconstruction algo-
rithms should exploit this rather than assuming that match-
ing can be successfully performed before reconstruction. To
realize this coupling, a generative model of curves is intro-
duced which has two key components: (i) a prior distribution
of general space curves and (ii) an image formation model
which describes how 3D curves are projected onto the image
plane. A novel aspect of the image formation model is that it
uses an exact description of the gradient field of a piecewise
constant image. Based on this forward model, a fully auto-
matic algorithm for solving the inverse problem is developed
for an arbitrary number of views. The resulting algorithm
is robust to partial occlusion, deficiencies in image curve
extraction and it does not rely on photometric information.
The relative motion of the cameras is assumed to be given.
Several experiments are carried out on various realistic sce-
narios. In particular, we focus on scenes where traditional
correlation-based methods would fail.

1. Introduction

The key difficulty of binocular stereo vision is the resolution
of the correspondence problem: structures in the left image
must be matched to those of the right to compute a disparity,
and thus depth, for the related point in the three-dimensional
scene. Numerous criteria such as image correlation and lo-
cal orientation differences have been proposed to guide the
matching process, but their success has been limited. For
more than two images—multiview reconstruction—where
wide-baseline geometries predominate, the weaknesses of
matching criteria are even more apparent (Fig. 1). In this pa-
per we focus on space curves to develop an inverse problem
approach to multiview reconstruction. Instead of first seek-
ing a correspondence of image structures and then comput-
ing 3D structure (a space curve), we do the opposite: we seek
that space curve that is consistent with the image structures
observed. Correspondence falls out as an easy consequence
by reprojection of the sought-after space curve.

Figure 1: At first, the image curves of the steel-iron face
mask may seem easy to automatically match and recon-
struct. However, the mask has little texture and the back-
ground along a contour differs between images, interfering
with correlation-based matching. In addition, many image
curves, e.g., from the nose, do not exist in 3D and are due
only to the projection, i.e., apparent contours [2, 6].

Not only do space curves provide a nontrivial problem do-
main for this study, they are also a rich source of information.
While point features reveal little about surface topology, 3D
curves provide such geometrical cues. The inference of 3D
shape and scene geometry is perhaps the main application
area [10, 18, 1]; others include object recognition [21], mo-
tion estimation [5] and determining whether a given image
curve is the projection of a space curve or a surface con-
tour [6, 20]. Curves with known correspondences in multiple
views have been studied in e.g. [12].

This work draws upon continuing progress on the appli-
cation of projective geometry to computer vision. For ex-
ample, there now exist systems capable of computing both
the motion of the camera and the structure of the scene from
images alone, e.g. [11]. The images can be taken by uncal-
ibrated cameras undergoing an unknown motion of an un-
known scene. See [9] and the references therein. Developing
these ideas beyond point sets and simple analytic curves mo-
tivates us to explore and analyze the multiview geometry of
space curves.

1.1. Related work
As mentioned in §1, researchers in stereo vision and
multiview reconstruction have employed many criteria for
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matching structures in different images to obtain corre-
spondence. The criteria include cross-correlation, sum-of-
squared-differences, or sum-of-absolute-differences of im-
age patches; an ordering constraint [17] which forces corre-
sponding structures to have the same ordering along epipolar
lines; a penalty on the orientation difference between corre-
sponding tangents in different images; or a bound on the al-
lowable disparity. While each of these criteria may occasion-
ally be true, they are all generally false, as counter-examples
demonstrate. For example, a line that is tilted in depth may
appear vertical in one image but almost horizontal in another,
violating the orientation difference constraint.

In [18], Robert and Faugeras present an edge-based
trinocular stereo algorithm using geometric matching prin-
ciples. They show that given the image curvature of corre-
sponding curve points in two views, it is possible to predict
the curvature in the third one and use that as a matching cri-
terion. In [19], Schmid and Zisserman present an algorithm
which can be viewed as an extension to [18]. In addition
to geometric constraints, photometric information is used to
disambiguate matches. Both these approaches apply a lot of
heuristics and the algorithms do not generalize naturally to
more than three views. As curve segments are first extracted
from the images, they are dependent on that image edgels are
linked together in exactly the same way in different images.
Hence, a space curve which is partly occluded in one view
will necessarily be fragmented.

To escape these limitations, Alibhai and Zucker [1] have
exploited the local differential structure of the space curve
and its projection in the images, and have emphasized the
importance of a helix aligned with the viewing direction, the
so-called z-helix, as a local model of the unknown space
curve. Although the z-helix is view-dependent, for small
baseline stereo pairs it can be an effective structure for artic-
ulating the local consistency image curves via the projection
of a quasi-single z-helix in each image plane. For general
multiview imaging geometries, where the baseline can be ar-
bitrarily large, the z-helices associated with different views
differ greatly, making the very notion of consistency unde-
fined, since there is no single space curve from which the
image curves were projected. Our approach resolves this
non-uniqueness issue by postulating a single smooth curve
that induces the observed projections.

1.2. Overview of Our Approach

In order to avoid the multitude of matching criteria and z-
helices, we propose a deceptively simple inverse problem ap-
proach: solve for that smooth space curve whose projections
account for the observed image curves. Elaborating this idea
requires definitions for smoothness, for the geometry of pro-
jection to a planar curve, and for what an “image of” such a
planar curve actually is. In §2, we provide a brief review of
the relevant 3D geometry that is used to describe the projec-

Figure 2: A tree with a lot of (self)-occluding branches. In
addition, the background around the branches is different
from view to view.

tion of the space curve to the plane. In §3.1, we articulate a
contour smoothness prior using a 3D generalization of elas-
tica [15] and relate it to a generative model of random space
curves. In §3.2 we introduce an elaborate image formation
model (likelihood function) that provides a definition of the
“perfect” gradient field of an image with edges described by
the projected space curve. Our goal is to compute a max-
imum a-posteriori (MAP) estimate of the unknown space
curve.

Our approach allows for an arbitrary number of images,
and can easily be altered to allow for variations in image
corruption and imaging geometry. The resulting projected
contours are defined to subpixel precision, but still allow for
singular points such as cusps that occur when the smooth 3D
curve contains the view direction. Further, it does not rely
on the identical extraction of edge segments in different im-
ages; for example, portions of contour may be missing in
some images, perhaps due to occlusion, see Fig. 2. We also
note that because a complete probabilistic model is specified,
fewer heuristics were needed during implementation than in
previous attempts. Perhaps the most important aspect of this
work is that the matching and reconstruction of curves are
not separated—they are coupled and natural consequences
of the model. Our experimental results (§5) show that the
inverse problem approach is very attractive for multiview re-
construction.

2. Background
In this section we provide mathematical background for our
camera model and for space curves.

2.1. Projective Geometry of Camera
We use the standard pinhole camera model. An object point
X in R

3 is projected to the image point x in R
2 according to:

λ
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where f is the focal length, γ is the aspect ratio, s is the
skew, (x0, y0) is the principal point, and rotation matrix R
and translation vectior T determine the rigid motion between
the camera and object coordinate systems. All the camera-
dependent parameters are grouped together into the camera
matrix P . The scalar λ accounts for depth.

Given a sequence of images, there are systems that au-
tomatically can calculate the corresponding camera matrices
Pi for i = 1, ..., N where N is the number of images. Such
systems depend on several components, including feature ex-
traction and tracking (in general, using point features), the
finding of initial solutions and their refinement [9]. In ad-
dition to the estimated camera matrices, a sparse set of 3D
point features is also obtained. The refinement of the solu-
tion (usually based on the maximum likelihood principle) is
often referred to as bundle adjustment. Typically, the re-
projection errors of the 3D points are around a pixel. These
errors are due to both noise in the measurements and imper-
fections of the camera model.

2.2. Space Curves
A space curve can be defined as a mapping:

C : Ω = [0, l] −→ R
3 such that s �→ C(s). (2)

We assume that the curves are parameterized by arclength,
so the scalar l is the length of the curve.

3. Inverse Problem Formulation
Suppose we are given several images and their correspond-
ing pinhole camera models. For each camera, a curve in 3D
space C(s) is projected to a curve c(s) in the image plane.
We are interested in solving the inverse problem, i.e. given
the image curves c(s) estimate the space curve C(s).

Inspired by the success of active contour models [13, 7],
we formulate this as an energy minimizing problem. Let Ad
be a space of admissible deformations of 3D curves and E
an energy functional of the form:

E : Ad −→ R

C �→ E(C) = Eprior(C) + Eimage(C). (3)

Eprior is the potential associated to our prior knowledge of
space curves and Eimage is associated to the image forma-
tion model. There are several aspects of this particular prob-
lem which makes it more complicated than traditional de-
formable models:

• We do not know the corresponding image curves a pri-
ori, and hence no initialization is given. The correspon-
dences should be obtained automatically as a part of the
estimation process.

• A space curve may be (partly or completely) occluded
in some of the projections.

Figure 3: Even though a space curve for the upper eye lid
is smooth, its projections may (left) or may not (right) be.
Observe how the upper eye lid contour may appear smooth
(left) or sharp (right, where projected lid contour has high
curvature, approximately a cusp), depending on viewpoint.

• The imperfections of the estimated camera matrices are
often quite strong. This is both due to noise and the
approximative model of a true camera. See §5.1.

• An apparent image curve is often not the projection of a
space curve. For example, occluding contours and spec-
ularities cause such “false” image curves.

3.1. Prior Model of Contour Smoothness

A common assumption for the inference of contours in
the image plane is smoothness, which is often formulated
through a penalty on large curvatures [15, 22]. Here the prior
is instead on the space curve, for which this we select the
three-dimensional form of smoothness captured by

Eprior(C) =
1

σ2
prior

∫
Ω

κC(s)2ds,

where κC(s) is the curvature of C(s). While smooth space
curves frequently project to smooth planar curves, occasion-
ally they do not, such as at a cusp or corner in the projection
(Fig. 3). In a later paper we shall develop an embellishment
to this model where contour torsion is also penalized, in or-
der to ensure the resulting curves are approximately locally
planar.

A probabilistic interpretation of this prior may be ob-
tained by constructing the probability density pprior(C) =
Z−1 exp[−Eprior(C)], where Z is a normalizing constant.
This describes a Markov process model of the unknown con-
tour where curvature is white-noise. Intuitively, this model
describes the motion of a particle which is moving forward
at constant speed, but whose direction is slightly perturbed
at each time instant. Although minimizers of Eprior are
spline-like curves, the connection to probability emphasizes
the model’s flexibility: typical realizations from pprior will
have low Eprior and an approximate bound on curvature, but
are otherwise unconstrained.
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3.2 Generative Edge Model

Now we introduce a generative model for image gradients
as a means of deriving a form for Eimage in terms of the
unknown curve. Let c(s) be the image projection of the
curve C(s) according to pinhole model. Imagine that the im-
age curve c describes the border between two regions having
constant brightness in the image. We thus suppose a model
of image formation where the projected image Istep(x) is
piecewise constant (a two-tone “step” image), where c(s) is
the border. Now, the gradient of this image will have zero
value except along the contour, where it will be proportional
to bn(s), where b is the brightness difference between ob-
ject and background and n(s) is the normal to the actual pro-
jected curve. In other words, the ideal gradient image is an
extended impulse along the border (since there the image is
discontinuous), where the impulse has a local vector weight-
ing of bn(s):

∇Istep(x) =
∫

Ω

δ(x − c(s))bn(s)ds. (4)

The above definition is closely related to the curve indicator
random field [4], except here the indicator is vector-weighted
by bn. The actually observed gradient image ∇I is imper-
fect: sensor noise and quantization give rise to error. Here
we assume the noise in the gradient is additive. Thus our
observation model of the gradient image is

∇I(x) = ∇Istep(x) + noise. (5)

Assuming that the noise is 0-mean, independent and iden-
tically Gaussian distributed, the negative log-likelihood for
∇Istep is therefore 1

2σ2
image

||∇Istep − ∇I||2 + constant,

where σ2
image is the noise variance, ||f ||2 = 〈f, f〉 is a norm,

and the inner product of vector fields f, g : R
2 → R

2 is
〈f, g〉 =

∫
f(x)·g(x)dx, with a1·a2 the dot product between

vectors a1, a2 ∈ R
2. Ignoring the constants and expanding

the square we get ||∇Istep||2−2〈∇Istep,∇I〉+ ||∇I||2. The
last term can be ignored for the purposes of finding the min-
imal energy for c, but the other terms depend on c. The first
term is a penalty on the self-crossings of the curve [3], but
we shall ignore this and focus on the middle term. Calcu-
lating by changing order of integration and using the sifting
property of Dirac δ-functions, we get

〈∇Istep,∇I〉 =
∫ [∫

δ(x − c(s))bn(s)ds

]
· ∇I(x) dx

=
∫

b

[∫
δ(x − c(s))∇I(x)dx

]
· n(s) ds

=
∫

b∇I(c(s)) · n(s)ds (6)

In summary, our model of image energy is

Eimage(C) = − b

σ2
image

∫
Ω

∇I(c(s)) · n(s)ds, (7)

which encourages the image gradient to align with the nor-
mal n to the actual curve c. Although this model may be
generalized beyond step images, it naturally exploits both the
magnitude and direction of image gradients.

3.3. Curves vs. Non-Curves
There are some things which are not modeled in the de-
scribed approach, e.g. occlusion. And not all image curves
can be explained by projections of space curves, e.g. appar-
ent contours [2, 6]. So, even if we have a minimizing curve
for the potential E (with appropriate boundary conditions),
we cannot be sure that it truly corresponds to a space curve.

To determine whether a minimizing curve should be re-
garded as a space curve or not, we introduce some heuristics.
We will require that a minimizer of E should have (i) image
support (to be defined) in at least Nsupport images and (ii) a
total projected curve length (in supported images) which is
≥ Ltotal pixels. By image support, we mean that the projec-
tion of the minimizing curve has (i) on the average at least
bmin units of brightness difference (i.e. the mean image gra-
dient in the normal direction is ≥ bmin) and (ii) an image
curve length of at least Limage pixels.

In addition, there is a global constraint that should be sat-
isfied, namely that two space curves cannot project to the
same image curve.

4. Estimation of Space Curves
In this section we present an algorithm that estimates space
curves according to our model. Hence, the algorithm should
produce minimizers of the energy potential in (3) having
enough support in the images.

4.1. Parameterization
One way to minimize E would be to derive the Euler-
Lagrange equations and then try to solve them numerically.
Instead of doing that we choose to explicitly model the
curves by cubic B-splines and hence turning the infinite di-
mensional problem into a finite dimensional one.

A cubic B-spline [8] is specified by N control points and
comprises N − 3 cubic polynomial curve segments. Using
this parameterization, the curve is guaranteed to be contin-
uous and it is easy to compute both first and second order
derivatives. Arc-length parameterization is achieved by repa-
rameterization using linear interpolation. As the problem
is formulated independently of the actual parameterization,
other choices are also possible.

4.2. Generation of Initial Hypotheses
In order to start the minimization process, an initial hypothe-
sis of a curve segment is needed. In principle, any technique
is fine, for instance [18]. We apply the following technique
which is adopted to our model and multiple views.
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First, image edge points are extracted using the Canny
edge detector. Edgels are then linked into chains, jumping
up to one pixel gap. The extracted image curves are never
perfect in practice: there will be missing segments, erroneous
additional segments, etc. Therefore, to improve robustness to
these imperfections we begin with one such segment in one
single image and seek confirming evidence in the other im-
ages. Empirically we have found that a segment of 20 edge
points is a good starting point. Given the depth for a seg-
ment, one can calculate the image support for that instance
in the other images. If there is support in Nsupport images
according to the criteria in § 3.3 for some positive depth, a
hypothesis is generated. At this early stage of the compu-
tations, bmin as well as Limage are halved compared to the
values used in the final optimization. For each hypothesis,
the endpoints of the curve will be used as boundary condi-
tions. An estimate of the expected brightness difference b is
also stored. In the experiments, we have limited the amount
of hypotheses generated due to computational and practical
reasons. Only edge segments detected in the first image are
used to initiate the above procedure.

4.3. Algorithm
The hypotheses are just small segments, while we are inter-
ested in reconstructing complete minimizing curves (obey-
ing the image support condition). So, we need to extend the
boundary conditions of our initial segments.

The following scheme produces minimizing energy
curves with the properties described in §3.

1. Minimize the potential E in (3) over all control points
(using a gradient method).

2. Check for image support. If not supported, then stop.

3. Extend the curve (both in terms of boundaries and num-
ber of control points). Goto step 1.

The scheme has one weakness which is that each curve
is optimized independently and hence the global constraint
is not enforced. However, a final postprocessing step re-
mediates this by making sure that each image curve is the
projection of at most one space curve. If there are multiple
responses, the one with strongest image support is kept. In
practice, this reduces the number of mismatches.

5. Experimental Validation
Setup. There are a couple of parameters that need to be set
depending on our prior belief of space curves, expected vari-
ance of brightness differences, etc. The estimates for these
are based on the first experiment below, by analyzing and
learning the characteristics of the image curves: σprior = 0.3
and σimage = 1. All image derivatives are computed using
the derivative of a Gaussian kernel with σ = 2.
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Figure 4: Number of correct and false matches for face statue
as a function of total and single image contour length.

When a faulty space curve is reconstructed, what usually
happens is that the space curve does not project to corre-
sponding image curves. We say that a curve has been mis-
matched when this happens. The assessment of correctly
matched and mismatched curves has been done by hand.

The remaining parameters concern the image support
(§3.3). We require that a curve has support in at least
Nsupport = 3 images and the minimum image brightness
difference required is bmin = 8. In Fig. 4, the number of
correct matches and the number of mismatches are graphed
depending on two parameters. The first one is the minimum
image curve length Limage and the other one is the total im-
age curve length Ltotal. If we allow very short curves, there
will be a lot mismatches. On the other hand, if we are too
strict, correct edges will be discarded. A good trade-off can
be found with Limage = 20 pixels and Ltotal = 100 pixels
from the graph. All these parameters are kept fixed for the
remaining experiments (if not otherwise stated).
The face statue. In total, six images (546×884 pixels) were
taken of a black iron statue of a face. Two images are shown
in Fig. 5 together with the reconstructed curves (in total 22
correct and 5 mismatches from 331 hypotheses). The light-
ing variations are quite strong between different images and
there is very little texture on the statue. Both apparent image
contours and occlusions are frequent.

Notice in the left image how the contour curve on the right
side of the face is not affected by the occlusion of the nose.
The reason that there are no curves detected on the upper
right and the lower left side of the face is that in the major-
ity of the images the image curves correspond to occluding
contours. The erroneous image curves can be found in the
background and they all have support in just three images.

Recall the projection of the smooth curve forming a cor-
ner point in Fig. 3. The final result of that particular space
curve projected in the same images are given in Fig. 6.
Flower on a chair. This sequence of five images of sizes
1000 × 1280 pixels (Fig. 7) presents a challenge mainly for
two objects which we will focus on: (i) the arm rests and (ii)
the flower. The cushion of the chair has “texture edges”, but
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Figure 5: Two images of the steel-iron face statue with reprojected space curves.

Figure 6: The projected space curve of the left eye lid of the
iron mask.

they are not supported by our model. The arm rests (both
left and right ones) are textureless and they are partly (self)-
occluded. Yet, most (strong) edges are reconstructed well.
The (green) leaf on the right hand side, however, lacks image
curves. The probable reason is that the background changes
from dark to light, and since the leaf’s colour can be con-
sidered to be something in between, it is not covered by our
model.

Out of the 90 reconstructed space curves (from 252 hy-
potheses), all of them were assessed to be correctly matched.
The baselines between the five cameras are rather short, and
therefore the contour of the flower pot is considered to be a
space curve rather than a surface contour.
Tree. Now recall the image of a tree in a snowy courtyard
(Fig. 2). In Fig. 8, two out of the total of five images (1000×
1280 pixels) are plotted together with the projections of the
estimated space curves. Here, we require that each space
curve is supported in at least Nsupport = 4 images. There are
58 space curves reconstructed (out of 87 initial hypotheses).
The assessment of the correctness of the reprojected curves is
not an easy task for a human. Even after a careful inspection,
we have not found a single mismatch.

A three-dimensional model of the space curves and the
camera positions are shown in Fig. 9. One part which is miss-
ing in the reconstruction is the (lower) tree trunk. The most
probable reason is that the images of the trunk can be better
characterized as apparent contours than images of a true 3D

curve. The smaller branches, however, agree with our curve
model.
Corridor. A final experiment has been conducted on the
well-known corridor sequence, see Fig. 10 for results with
Nsupport = 4 images. In this case, the use of cross-
correlation is sufficient for matching [19]. The sequence has
in total 11 images (sizes 512×512 pixels) in a forward mov-
ing direction. Even though there are no mismatches among
the 58 curves, the results are not impressive for two reasons:
(i) There are dominant curves missing which are present in
the majority of the images, and (ii) the visual quality of the
curves is not good. Often they fail to stay closely to the
edges. In light of the previous experiments, these results
come as a surprise. After having analyzed the outcome in
more detail, we have determined that the cameras were badly
calibrated. In certain parts of the images, the projections of
a space curve need to be displaced a few pixels in order to
match to the actual image curves. A possible remedy to this
is presented in the end of the next subsection.
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Figure 9: 3D model of reconstructed tree curves. The camera
trajectory is also is plotted. The arrows indicate the cameras’
viewing directions.
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Figure 7: Reprojection results for two out of five images of “flower on a chair”.

Figure 8: Curve reprojections and images of a tree on a snowy courtyard.

5.1. Limitations and Extensions
We note that our approach has a number of limitations that
bear consideration. First, our edge model only linearly de-
pends on the image gradient, and thus differs from com-
monly used image energy terms that depend only on gradient
magnitude. Including such nonlinearities maybe fruitful to
improve performance, particularly for non-Gaussian noise.
Secondly, our current method for distinguishing curves from
non-curves and dealing with occlusion amounts to the ap-
plication of a number of rules (curve lengths and visibility).
A more complete probabilistic approach would have an ex-
plicit distribution over the number of curves, their length, etc.
Thirdly, the (current) computational burden of this method
is significant. Fortunately, due to the Markovianity of the
smoothness assumption, dynamic programming may be ap-
plicable.

Finally, each camera matrix P is an estimate according
to the pinhole model, which in turn, is only an approxima-
tion of the true underlying camera. As a result the image
curve c will be slightly displaced. Specifically, we must
include the effect of an unknown geometric distortion vec-
tor field w(x, y) [9]. Since we are only concerned with
the actual projected contour, we need only evaluate the ge-

ometric distortion along it, resulting in the perturbed con-
tour c(s)+w(c(s)). Now, w(c(s)) can be decomposed into
a normal and tangential components. Ignoring end effects,
the tangential component can be ignored, as it amounts to
a reparameterization of c(s) [14, 16], and the normal com-
ponent d(s) is called the offset. The actual image curve
c′(s) therefore has the form c′(s) = c(s)+ d(s)n(s), where
n(s) is the normal of c(s). The offset d(s) is itself a one-
dimensional curve d : Ω −→ R which adjusts the pro-
jected curve in the normal direction. Since the geometric
distortion w is typically small and slowly varying, so too
will be d(s), and therefore one may include the offset energy
Eoffset(d) =

∫
Ω d(s)2 + d′(s)2ds to penalize the magnitude

and the derivative of the offset. The relative importance of
this strong prior knowledge of d(s) is thus related to the es-
timated accuracy of P .

6. Conclusion

We have presented a completely automatic approach for
matching and reconstructing space curves in multiple views.
Our method solves an inverse problem for a generative
model, and hence the resulting reconstructions are conse-
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Figure 10: Reprojected space curves in the corridor sequence.

quences of the model. In a number of challenging experi-
ments, the performance of the algorithm has been demon-
strated.
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