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Abstract

Feature points for image correspondence are often se-
lected according to subjective criteria (e.g. edge density,
nostrils). In this paper, we present a general, non-subjective
criterion for selecting informative feature points, based on
the correspondence model itself. WWe describe the approach
within the framework of the Bayesian Markov random field
(MRF) model, where the degree of feature point information
is encoded by the entropy of the likelihood term. \We pro-
pose that feature selection according to minimum entropy-
of-likelihood (EOL) is less likely to lead to correspondence
ambiguity, thus improving the optimization processin terms
of speed and quality of solution. Experimental results
demonstratethe criterion’s ability to select optimal features
points in a wide variety of image contexts (e.g. objects,
faces). Comparison with the automatic Kanade-Lucas-
Tomasi feature selection criterion shows correspondence to
be significantly faster with feature points selected accord-
ing to minimum EOL in difficult correspondence problems.

1. Introduction

Image correspondence refers to the task of finding the
optimal mapping of feature points in a model image to
points in a new image. In this paper, we address the ques-
tion of how to select the optimal feature points for image
matching. Most existing strategies base their selection of
“informative” feature points on subjective criteria. For ex-
ample, finding correspondences between face images tends
to involve a search for typical facial features such as eyes
or noses [5, 20]. In contour-based approaches [9], evenly-
spaced points lying on the boundary of an object are as-
sumed to be equally informative. Automated strategies
identify informative image feature points based on crite-
ria such as edge density [17]. Although such techniques

work reasonably well in the context for which they were de-
signed, because of the underlying subjectivity of the feature
selection, they cannot be guaranteed to work in new con-
texts. In general, selection of non-subjective feature points
for image correspondence has largely been ignored in the
literature.

Typically, once feature points are selected, a correspon-
dence model combining an image similarity metric and a
regularization strategy is developed, based on the chosen
feature points. Next, an optimization strategy is invoked
with the objective of attaining an optimally fast, unambigu-
ous correspondence solution. In this paper, we choose to re-
verse this procedure and introduce a novel, non-subjective
approach to automatic feature point selection. We show that
by basing the choice of features precisely on the given cor-
respondence model, optimization over the selected set will
necessarily result in a fast, unambiguous correspondence
solution. This approach is non-subjective in the sense that
the model itself determines which image feature points are
best, eliminating the need for additional context-specific se-
lection techniques.

We embed our approach within a general Bayesian im-
age correspondence model, where image similarity is repre-
sented by the likelihood probability distribution. We show
how the entropy of the likelihood (EOL) distribution can
then be used to define a map describing the degree of in-
formation content in all points in the input image. Feature
points selected according to a minimum EOL criterion are
least likely to suffer from correspondence ambiguity, given
the similarity metric. This, in turn, leads to a faster and
more reliable optimization solution. By describing our cri-
terion with the language of information theory, the strategy
is generalizable to any context where the local image sim-
ilarity metric can be defined through a probability distribu-
tion over the space of possible mapping solutions.

The remainder of our paper is organized as follows: Sec-
tion 2 describes our approach within the context of the
Bayesian MRF image correspondence model. We define

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE



a global optimization strategy, and describe how feature
points with low EOL result in a fast, unambiguous, global
solution. Experimental results in Section 3 show how the
EOL criterion identifies optimal feature points for corre-
spondence for a wide variety of images using a simple
Bayesian MRF implementation. Correspondence trials are
performed comparing EOL feature point selection with the
Kanade-Lucas-Tomasi (KLT) [17] operator, a popular auto-
matic feature point selection approach based on edge den-
sity. Finally, Section 4 offers a brief conclusion.

2. The Entropy-of-Likelihood (EOL) Criterion

The problem of image correspondence is defined as fol-
lows: Given a model image of a scene, [;, determine the
locations of the image pixels in a new image of the scene,
I, where some arbitrary deformation has taken place in the
scene between image acquisitions. Specifically, correspon-
dence seeks a displacement field T of random vectors, t;,
each of which maps a fixed (z,y) pixel location py; in I; to
a random (z, y) pixel location py; in I». Image correspon-
dence requires a model to evaluate the fitness of T, and an
optimization strategy to find an optimal instance of T based
on the model.

The goal of correspondence is to find a fast, unambigu-
ous mapping solution. Ideally, a feature point selection cri-
terion should evaluate points according to their potential to
fulfill this goal. Such a criterion can only be defined by
explicitly considering the correspondence model used, and
possibly the optimization strategy. We therefore begin by
describing a Bayesian image correspondence model and op-
timization strategy, which provide the context in which a
general and useful criterion can be defined. We then define
the EOL criterion for feature point selection.

2.1. Bayesian I mage Correspondence M odel

The Bayesian Markov random field (MRF) correspon-
dence model provides a general framework for combining
local image features with prior knowledge of spatial rela-
tionships between features. In the model, similarity and reg-
ularization terms are defined as probability densities, whose
form can easily be changed without modifying the over-
all formulation. The model has been widely applied; ap-
proaches such as active blobs [15], deformable models [9],
and active shape models [2] can all be described using the
Bayesian MRF model [10].

The Bayesian approach to image correspondence defines
a posterior probability density function over displacement
vector field T, conditional on the images I; and I5:

p(T|IlaIQ) O(p([2|11,T)p(T), (1)

where p(I3|I;, T) and p(T) are referred to as the likelihood
and p(T) prior distributions, respectively.

The Markov random field (MRF) is a generalization of
the Markov process to higher dimensions, stating that a ran-
dom vector t; € T is independent of the rest of the field T
given a subset N; C T of neighboring random vectors:

p(ti|l1, I, T) = p(t;|I1, I, N;). (2)

A MREF is equivalent to a Gibbs distribution over a ran-
dom field T [7]:

exp(—E(T))

p(T) = 7 ,

3)
where E(T) is referred to as an energy functional, and
Z is a normalization constant. The energy functional is
equal to the sum of individual energy terms over all Markov
neighborhood cliques, i.e. all fully connected singles, pairs,
triples, etc... of variables t; in neighborhoods IN; such that:

E(T) =) E(t:)+ Y BEl(tit;) + .. )

The posterior density function in (1) can be described as a
MREF by defining both the likelihood and the prior as Gibbs
distributions [6, 16]:

exp(—E(T|1, I,))
Z

_ exp(=E(L|T, 1)) exp(=E(T))

= 7 )
The two energy functionals E(I>|T,I;) and E(T) define
the likelihood and the prior, and are specified according to
the particular task at hand. We consider the likelihood en-
ergy functional as representing a measure of local image
similarity between a point in I; and it’s displacement in /5.
The prior energy functional describes the prior assumptions
as to how the neighboring vectors t; and t; can vary spa-
tially. Our posterior energy functional is therefore of the
form:

E(T|I, L) =Y Er(l|l,t) + Y Ep(tilt;), (©6)
i i,

p(T|L, L) =

where Er, (1|11, t;) and Ep(t;]t;) represent the likelihood
and the prior energy terms, respectively.

2.2. Optimization Strategy

Once the model has been specified, correspondence is
calculated by optimizing over a fitness function. In the
Bayesian MRF model, the fitness function is the posterior
in (5), and the goal is to find the maximum a posterior
(MAP) displacement field instance T3 s 4 p such that:

Tmap = argmax { p(T|1, I2) }. )
T
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Existing optimization strategies can be broadly classified as
either global or local in nature [10]. Local strategies in-
clude iterative or gradient based schemes, which are gen-
erally sub-optimal and based on assumptions that can pro-
duce spurious, incorrect local solutions [8]. Global strate-
gies require searching the entire posterior solution space for
a global maximum. Such a search is combinatorial in na-
ture and intractable in general, but feasible for correspon-
dence models based on a small number of feature points [3].
We motivate the EOL criterion using an exhaustive search
global strategy, although any optimization strategy can ben-
efit from feature points selected according to the criterion.

An exhaustive search for the global optimum of the pos-
terior in (5) requires a search over all possible combina-
tions of instances of T. If T consists of P random vari-
ables t;, and the domain of random variables t; consists of
N discrete instances tf, k = 1..N, an exhaustive search is
of complexity O(N¥). The search for a globally optimal
solution can be viewed as the traversal of a search tree of
fixed depth P, where branching at depth ¢ corresponds to
choosing instances of t;. Such a search can be solved using
techniques such as dynamic programming [3] or the Viterbi
algorithm [13].

In order to perform the search in reasonable time, search
heuristics [14] must be used to intelligently prune, or disre-
gard, provably sub-optimal solutions. We consider a depth-
first tree search where instances of t; are evaluated in a best-
first manner, and alpha-beta pruning is used [14]. Such a
strategy can efficiently eliminate large regions of the search
space when T'ys 4 p represents a significant, unique posterior
maximum, and is found early on in the search.

2.3. EOL Feature Point Evaluation

With a general model and the optimization strategy de-
fined, we proceed to identify feature points which are likely
to result in a fast and unambiguous correspondence solu-
tion. We begin by noting that in the tree search strategy,
each level : of the tree corresponds to a branching factor of
N, where N is the number of discrete instances t; in the
domain of random variable t;. Using the best-first search
heuristic [14], instances t; are selected for evaluation from
most to least probable, in order to locate Ths4p early on
and effectively prune the search tree.

During the search, the probability of instances ¢; can be
evaluated using the correspondence model posterior in (5),
conditional on instances t; ..t;_1 already selected:

p(ti|11,[2,t1...ti_1) o<

Due to the exponential formulation, the posterior expres-
sion in (8) represents an upper bound on the maximum pos-
terior value obtainable at a stage in the search tree. It can

thus be used to prune the tree if another branch has pre-
viously yielded a higher solution, i.e. if the branch cor-
responding to Ths 4 p has already been encountered. In the
worst case, the posterior in (8) is uniformly distributed, with
many equally probable instances ¢; to be evaluated. This
results in a large branching factor, and the probability is
high that many false branches will be taken before finding
T'rrap. In the best case, it is highly informative, containing
a small number of highly probable locations to be evaluated,
after which pruning can effectively eliminate sub-optimal
solutions.

The strategy we propose in this paper is to evaluate
points t; according to how well they lead to an unambigu-
ous, informative posterior in (8). This can be done by cal-
culating the Shannon entropy [4], a well-known measure of
probability distribution ambiguity:

H(tiul,fz,tl...ti,l) =
N
Sy P B ticn) Log prmrrr iy )

In order to simplify the entropy calculation in (9), we pro-
pose considering only the likelihood term of the posterior
in (8), which represents the likelihood of a match occurring
between a feature point in /; and arandom pointin I5. In ef-
fect, the fewer potential matches, the smaller the branching
factor of the global optimization strategy, and the smaller
the number of potentially ambiguous correspondence solu-
tions. We thus introduce the notion of computing the en-
tropy of the likelihood distribution (EOL) as a measure of
how likely t; is to result in a fast, unambiguous correspon-
dence solution:

H(ti|11,12,t1...ti_1) ~ H(tz|11,[2) =
Sy exp(—Ep(Io|I, ) EL (I |1y, %), (10)

Calculation of (10) is computationally intensive, requir-
ing a sum over the entire domain of t; for each point in I;.
This is necessary because intuitively, the EOL criterion pro-
vides a measure of the ambiguity of the likelihood over all
possible matches in I> of a fixed point in I;. In practice,
under the assumption that I; and I> contain approximately
the same local image features, the EOL can be calculated
off-line from I; alone from the likelihood of p(t;|I1, I1).

To select feature points for correspondence, an EOL map
can be calculated over all image points from which a subset
is to be chosen for correspondence. Those chosen accord-
ing to minimum EOL are more likely to result in fast, un-
ambiguous image correspondence. An example of an EOL
map generated for the image of a cat can be found in Fig-
ure 1. Note how informative feature points agree with intu-
itive notions of image importance (e.g. eyes, ears).
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(b)

Figure 1. (a) Cat image [12] (b) Entropy-of-
likelihood image, mapped such that light pix-
els correspond to low EOL, highly informative
points. In this case, the likelihood of the cor-
respondence model represents a difference-
of-Gaussian similarity metric described in
Section 3.1.1.

3. Experimentation

In this section, we present a series of experiments per-
formed to demonstrate that the EOL criterion can be used to
select optimal feature points for correspondence. We begin
by describing the specific Bayesian MRF implementation
used throughout the experimentation. Next, we describe our
implementation of feature point selection based on the EOL
map, and the optimization. Finally, we perform correspon-
dence experiments comparing EOL feature selection with
the popular Kanade-Lucas-Tomasi (KLT) automatic feature
selection criterion [17], over a wide variety of image pairs.
Throughout all experimentation, the same model and op-
timization is used, and only the feature selection criterion
is varied. The trials demonstrate that EOL feature points
result in faster, more reliable image correspondence for an
arbitrarily specified model.

3.1. Bayesian MRF Implementation

We first describe the particular implementation of the
Bayesian MRF model used throughout experimentation.
We emphasize that the particular model chosen was only
one possible implementation, and the EOL criterion can be
used in any correspondence model for which local image
similarity can be defined as a probability distribution over
the domain of t;. For convenience, we use py; and psy; to
denote the points in I; and I, associated with displacement
vector t;.

3.1.1 Likelihood Energy

As mentioned in 2.1, we define the likelihood of t; to be
a local image similarity metric, that is independent of the
similarity at neighboring t;. The likelihood energy thus is
defined over single cliques, expressing local similarity as:

Ep(L|1h,t;) = Z (fr(I1,p1i) —ka(127p2i))2, a

k 9L

where f() are local image features, and o7 is a variance
term. Specifying fi() is task specific; any relevant im-
age features can be used. In this paper, we use multi-scale
difference-of-Gaussian (DOG) features [11]. The Gaussian
blurring kernel provides partial robustness to small pertur-
bations in local image geometry and spurious noise. DOG
features are also rotationally invariant, marginalizing orien-
tation and simplifying the domain of t; to (z,y) locations
in I,. For experimentation, fi() consisted of 4 levels of
DOG features, calculated using Gaussian blurring kernels
of sigma 2, 4, 8, 16, and 32 pixels, with variance parameter
o? = 100.

3.1.2 Prior Energy

The prior energy function is designed to reflect any prior
assumptions made regarding the possible spatial variations
between features. We define our prior to reflect the general
assumption that the relative distance between feature points
remains approximately constant between ; and I»:

d(p1i,p1j) = d(p2i,p2j)- (12)

where d() is the Euclidean distance. The prior energy is
then defined over all neighboring t; and t; as:

d2 i . _d2 i ))2
EP(t7,|tJ) — ( (pl 7p1])g4 (p2 7p2j)) ’ (13)
P’l:,]

where op, ; reflects the amount of variation permitted in
the relative distance assumption. As for neighborhood rela-
tionships, we evaluate the relative distance assumption be-
tween all pairs t; and t;. We define op, ; as proportional
to d(p1i, p1;) to reflect the assumption that the greater the
separation between neighboring points in I, the higher the
expected variation in their relative distances in I>. For all
experiments, we use op, ; = 2d(p1;, p1j).

3.2. EOL FeaturePoint Selection and Optimization

Image correspondence trials were performed on input
images pairs. For each image pair, the EOL map was calcu-
lated off-line for each pixel in image I;. A set of n! feature
points is then chosen from n lowest valleys of the map, as
these reflect the lowest entropy points. We use n = 10
for experimentation. To ensure that feature points were not
clustered in a small image region, a minimum distance of 5
pixels was enforced between all feature points.

Optimization was performed on-line as described in Sec-
tion 2.2, to find the optimal Th;4p displacement of fea-
ture points from [; to I>. In the search, variables were or-
dered in decreasing significance according to the particular
feature selection criterion, and instances of variables were

I'n is an arbitrary feature set size chosen empirically.
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(c) EOL feature points I;  (d) Corresponding points in I

Figure 2. Feature selection and correspon-
dence for a face image (a) using the EOL map
(b). In (c) and (d), the EOL feature points are
found at the center of the white circles over-
laying 7; and I>.

evaluated in order of decreasing likelihood. Computational
complexity of optimization was reduced by constraining the
domain of t; to instances t; corresponding to peaks of the
likelihood of t;.

In order to emphasize the generality of the approach, the
strategy proposed in this paper was tested on a wide variety
of image types. We tested face image correspondence us-
ing the MIT face database [19]. Figure 2 illustrates an EOL
map (b) computed off-line on the face image depicted in (a).
Note how the most informative facial feature points (shown
in (c)) according the EOL agree with intuitive notions of
interesting facial features, namely eyes, nostrils, etc. The
generality of the approach lies in the fact that these points
were chosen without the requirement of explicitly specify-
ing a face model. The result of correspondence can be found
in (d). A slight correspondence mismatch occurs on the left
eye in (d) because the distance prior in (13) permits two
symmetric solutions, above and below the eye.

3.3.Comparison of EOL and KLT FeatureSelection

To demonstrate that the EOL can be used to select opti-
mal points for image correspondence, we performed corre-
spondence trials comparing feature points selected accord-
ing to minimum EOL with selection according to the KLT
criterion [17], which favors points with significant, non-
uniformly oriented edge density. The goal of testing was
to compare EOL and KLT feature point selection according
correspondence optimization time. We expected EOL fea-
tures would generally result in faster optimization. Feature
points were selected as in Section 3.2: maps were computed
off-line based on the KLT and EOL criteria, and the best 10
peaks (or valleys) were chosen for correspondence.

In terms of implementation, the KLT criterion required
specification of 5 subjective parameters (i.e. local window
size, minimum edge eigenvalue, etc.). We used the defaults
as specified in [1]. The EOL criterion is defined entirely by
the likelihood of the correspondence model in Section 3.1.1,
and required no additional parameters.

The test set for included 35 image pairs from the VASC
database [18] depicting a wide variety of scenes (e.g. ob-
jects, natural and synthetic scenes, aerial photographs, etc.).
Images pairs consisted of different viewpoints of the same
scene. In the interest of a fair comparison, we intention-
ally chose image pairs such that all feature points selected
are visibly present in both images, i.e. we did not consider
occluded features. Trials were deemed successful if a corre-
spondence solution was found in less than 20 minutes. All
images were scaled to 128 x 128 resolution for processing.

The time required to find Ty 4 p ranged from millisec-
onds to minutes, depending on the complexity of the scenes
in the images. All correspondence solutions found appeared
qualitatively plausible, although no ground truth compar-
ison was performed. EOL feature points resulted in 33
successful solutions, as compared with 18 for KLT feature
points. Figure 3 illustrates a plot comparing optimization
time for each image pair. Optimization of EOL feature
points was faster in 27 of the 33 solutions.

Of the 35 image pairs tested, 20 were relatively simple,
uncluttered scenes such as the as one shown in Figure 4.
For these image pairs, optimization time for EOL feature
points was only marginally superior to KLT feature points.
Intuitively, such images have relatively few feature points
to choose from, and therefore fewer potential false matches.
All 20 correspondence trials were successful for EOL fea-
tures, verses 16 successful trials for KLT features. For 6
of the 20 trials (housel, toys, book, ball, fruit, Pepsi [18]),
optimization was faster for KLT features.

The remaining 15 image pairs contained a larger de-
gree of feature complexity and were therefore prime candi-
dates for testing the two approaches in more difficult image
matching contexts. EOL features outperformed KLT fea-
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Optimization Time: EOL vs KLT
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Figure 3. Comparison of EOL and KLT feature
selection. Optimization time (log scale) is
shown for a test set of 35 image pairs, sorted
according to EOL optimization time. Points
above the EOL curve represent image pairs
for which optimization was slower for KLT fea-
ture points. When no correspondence was
found after 20 minutes, time 6 is displayed.

tures in terms of optimization speed in all trials. Out of 15
trials, 13 were successful using EOL features, but only 2 us-
ing KLT features (See Figure 5 for example). Interestingly,
in the 2 trials resulting in successful correspondence of KLT
features, several feature points chosen according to the KLT
criterion were the same as those chosen by the EOL crite-
rion. Figure 6 depicts such a case.

It is not surprising that the EOL criterion outperforms
the KLT criterion, since it is designed to identify feature
points which are optimal for the particular correspondence
model used. This is precisely the strength of the approach;
if the model is modified to use a similarity metric specific to
different local image characteristics, the EOL criterion will
define a new set of optimal feature points to achieve fast,
unambiguous correspondence. A subjective approach, such
as the KLT feature selection, will always identify the same
sub-optimal set of feature points.

4. Conclusions

In this paper, we introduced the EOL as a novel crite-
rion for selecting optimal feature points for image corre-
spondence. The criterion is optimal in the sense that it se-
lects precisely the points which drive optimization towards
a fast and unambiguous solution based on the correspon-
dence model itself, not on subjective notions of feature point
importance. We described the criterion in the context of
a general Bayesian MRF model, which can be adapted to
a wide variety of local image similarity measures and im-
ages. Experimental results show that feature points selected
according to the EOL criterion outperform the well-known
KLT criterion in terms of optimization time. Future work

(c) KLT feature correspondence

Figure 4. Telephone scene. In (b) and (c), EOL
and KLT feature points are found at the center
of the white circles seen overlaying /; and I.
The default KLT parameters used were: win-
dow size = (7,7), smoothing = true, gradient
sigma = 1.0, min eigenvalue = 1.

will involve further validation of the EOL criterion, includ-
ing testing over a range of correspondence models and op-
timization strategies, and ground truth verification of corre-
spondence accuracy.
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