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Abstract

A requirement common to most dynamic vision applications
is the ability to track objects in a sequence of frames. This
problem has been extensively studied in the past few years,
leading to several techniques, such as Unscented Particle
Filter based trackers, that exploit a combination of the (as-
sumed) target dynamics, empirically learned noise distri-
butions and past position observations. While successful in
many scenarios, these trackers remain fragile to occlusion
and model uncertainty in the target dynamics. As we show
in this paper, these difficulties can be addressed by model-
ing the dynamics of the target as an unknown operator that
satisfies certain interpolation conditions. Results from in-
terpolation theory can then be used to find this operator by
solving a convex optimization problem. As illustrated with
several examples, combining this operator with Kalman and
UPF techniques leads to both robustness improvement and
computational complexity reduction.

1. Introduction
A requirement common to most dynamic vision applica-
tions is the ability to track objects in a sequence of frames.
This problem has been extensively studied in the past few
years, leading to several techniques. Some of these tech-
niques can track unknown objects [9, 11, 14, 17, 18, 20, 31],
while others require prior knowledge of the target [4, 15, 23,
32, 34]. Orwell et. al. [25] and Collins et. al. [12] use color
to track objects with multiple cameras. Hager and Toyama
[19] track primitive features within small regions of interest
(ROI) that are warped and matched against canonical con-
figurations. Reid and Murray [28] use affine structure to
track clusters of corners. Calabi et al. [9] use differential
invariant signature curves to track objects. Blake and Isard
[5] use active contours and geometrical constraints to model
the likelihood of their deformations.

Correspondences between individual frames are usually
integrated over time to improve robustness by exploiting
the dynamical properties of the target. Kalman filter–based
trackers use a model of the target dynamics and the prob-
ability distribution of the process and measurement noise

to produce estimates of the future positions of the target
based on (noisy) measurements of its past locations. Con-
densation trackers and unscented Kalman Filters [6, 24, 21]
generalize Kalman–filter based ones by allowing more gen-
eral (multimodal, nonlinear) models. In this case, analytical
propagation is not longer possible and numerical methods
must be used instead.

Most trackers assume a simple dynamic model such as
a system moving with constant velocity. While successful
in many scenarios, this approach suffers from the fact that
the tracker must rely on the assumed model of the target
dynamics to produce estimates of its future positions, intro-
ducing a potential source of fragility. A mismatch between
this model and the actual dynamics will lead to incorrect
predictions1. This lack of robustness is shown in Figure 1
illustrating the effects of clutter. As shown there, both a reg-
ular Kalman filter based tracker and an Unscented Particle
Filter (UPF), lose the target in frame 95, due to occlusion.

It should be noted that more precise dynamic models
have been tried in the particular case of human motion
tracking. For example, models based on biomechanics have
been successfully used to produce computer-based anima-
tions [8] and track humans [33]. However, biomechanical
models are usually very complex and difficult to estimate
from visual data alone. An alternative approach was pro-
posed in [27] where models are learned from a training cor-
pus of observed state space trajectories. A drawback of this
approach is that the states of the system must be specified a
priori, which requires a priori knowledge of the order of the
model.

In addition, due to their stochastic nature, Kalman and
UPF based approaches can provide neither a region guaran-
teed to contain the target nor falsify the information about
the distribution. That is, if this information is rendered ob-
solete, for instance by the target entering a region where the
clutter is substantially different from the one used in train-
ing, a probabilistic approach would typically not be able to
establish with certainty that the present scenario is no longer
compatible with the assumptions.

1This is the well known divergence phenomenon, see for instance [1],
page 133.
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Frame 150 Frame 105 Frame 95 Frame 85

Figure 1: Kalman (top) and Unscented Particle Filter (bottom) based tracking in the presence of occlusion

In this paper we show that all of the above issues can
be addressed by reducing the tracking problem to that of
establishing the existence of an �2 to �2 operator that sat-
isfies certain interpolation conditions. This allows for ex-
ploiting convex analysis and integral quadratic constraints
methods recently developed (mostly in the control commu-
nity) to recast the problems into a Linear Matrix Inequality
(LMI) optimization form that can be efficiently solved using
commercially available tools.

The benefits of using this new framework are multiple.
Firstly, it allows to approach the tracking problem from an
input – output point of view and thus it does not require
prior knowledge of a state space realization of the system,
or even its order. Secondly, it provides mechanisms to inval-
idate a priori assumptions about the dynamics of the target
and the noise characterization. Thirdly, it provides worst-
case estimates of the identification error that can be used
both to determine for how long the predictions of the tar-
get position are valid and, in the context of robust filters
such as mixed H2/H∞[29], to improve tracking robust-
ness. Finally, as we illustrate with several examples, the
proposed method can be combined with existing particle
and unscented Kalman filtering techniques leading to algo-
rithms capable of robustly tracking targets in the presence
of severe occlusion. When compared to existing techniques
this combination allows for significantly improving robust-
ness, while at the same time reducing the computational
complexity of the resulting algorithm.

2. Preliminaries

2.1. Notation

Below we summarize the notation used in this paper:

x real–valued (unless otherwise
stated) column vector.

xk kth element of a vector x.
‖x‖p p-norm of a vector: ‖x‖p

.=

(
∑m

k=1 |xk|p)
1
p , p ∈ [1,∞),

‖x‖∞ .= maxk=1,...,m |xk|.
AT conjugate transpose of matrix A.
Ai,j (i, j) element of A.
(A)i ith row of A.
σ (A) maximum singular value of the ma-

trix A.
A > 0 A = AT is positive definite, i.e.

xT Ax > 0 ∀x ∈ Cn, x �= 0.
BX (γ) open γ-ball in a normed space X :

BX (γ) = {x ∈ X : ‖x‖X < γ}
BX (γ) closure of BX (γ)
BX (BX ) open (closed) unit ball in X
(X ,m) metric space of elements in

X equipped with the metric
m(x1, x2).

d(A) diameter of A ⊆ X : d(A) .=
sup

x,a∈A
m(x, a).

�m
p extended Banach space of vec-

tor valued real sequences equipped
with the norm:

‖x‖p
.=

(∑∞
i=0 ‖xi‖p

p

) 1
p p ∈

[1,∞)
‖x‖∞ .= supi ‖xi‖∞.

L∞ Lebesgue space of complex–
valued matrix functions es-
sentially bounded on the unit
circle, equipped with the norm:
‖G‖∞ .= ess sup|z|=1 σ (G(z)).
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H∞ subspace of functions in L∞
with bounded analytic con-
tinuation inside the unit disk,
equipped with the norm:
‖G‖∞ .= ess sup|z|<1 σ (G(z)).

H∞,ρ space of transfer matrices analytic
in |z| ≤ ρ, equipped with the norm
‖G‖∞,ρ

.= sup|z|<ρ σ (G(z)).
X(z) Z–transform of a right–sided real

sequence {x}: X(z) =
∞∑

i=0

xiz
i.

2.2. Definitions and Additional Notation
From an input–output viewpoint any operator of interest H
will be represented by its convolution kernel {hi,j} or by
an infinite lower triangular matrix TH mapping (scalar) se-
quences in �2:




y0

y1

y2

...


 =




h0,0 0 0
h1,0 h1,1 0
h2,0 h2,1 h2,2

. . .







u0

u1

u2

...


 . (1)

When dealing with input–output sequences on the horizon
[0, n−1], we will use the finite upper left submatrix of n×n,
Tn

H , obtained from the infinite matrix above.
In the sequel, we will also represent finite dimensional

Linear Time Invariant (LTI) operators by using either a min-
imal state–space realization:

xk+1 =Axk + Buk

yk =Cxk + Duk.
(2)

or a (rational) complex–valued transfer function:

H(z) .=
∞∑

k=0

hkzk,

Definition 1. A set A ⊂ X is called symmetric if there
exists an element c ∈ X such that for any a ∈ X for which
c + a ∈ A then c − a ∈ A. The element c is called the
symmetry point of set A (note that it may not belong to A).

2.3 Background results on interpolation

The following results will be used in the paper to establish
the existence of operators with the appropriate features.

Lemma 1 (Carathéodory-Fejér). Given a matrix valued
sequence {Li}n−1

i=0 , there exists a causal, discrete-time, LTI
operator L(z) ∈ BH∞ such that

L(z) = L0 + Lz + L2z
2 + . . . Ln−1z

n−1 + . . . (3)

if and only if
(Tn

L)T Tn
L ≤ I (4)

where I denotes the identity matrix of compatible dimension.

Proof. See for instance [16], Chapter 1

In the sequel we will consider operator families of the
form S:

S .= {G(z) = H(z) + P (z)} . (5)

where H(z) ∈ BH∞(K) and P (z) represent the nonpara-
metric and parametric components of the operator, respec-
tively. We will further assume that P (z) belongs to the fol-
lowing class P of affine operators:

P .= {P (z) = pT Gp(z), p ∈ RNp}, (6)

where the Np components Gpi
(z) of vector Gp(z) are

known, linearly independent, rational transfer functions.
The following result gives a necessary and sufficient con-
dition for two finite vector sequences to be related by an
operator in the family S.

Lemma 2. Given K, and two vector sequences (u,y),
there exists an operator S ∈ S such that y = Su if and
only if there exists a vector h satisfying:

M(h) .=
[

I (TN
h )T

TN
h

1
K2

]
≥ 0

y = TuPp − Tuh
(7)

where (P)k
.= [g1

k g2
k · · · g

Np

k ],where gi
k denotes the k-

th Markov parameter of the i-th transfer function Gpi(z)
and hk is the k-th Markov parameter of the nonparametric
component H(z). Moreover, in this case all such opera-
tors S can be parameterized in terms of a free parameter
Q(z) ∈ BH∞. In particular, the choice Q(z) = 0 leads to
the “central” model Scentral(z) = Ho(z)+pT Gp(z) where
an explicit state–space realization of Ho(z) is given by:

Ho(z) = CH (zI − AH)−1 BH + DH

AH =
{

A − [CT
−C− + (AT − I)]−1CT

−C−(A − I)
}−1

BH = [CT
−C−(AT − A − I) − (AT − I)A]−1CT

−
CH = KC+−

KC+

{
A − [CT

−C− + (AT − I)]−1CT
−C−(A − I)

}−1

DH = KC+

{
[CT

−C− + (AT − I)]A − CT
−C−(A − I)

}−1

CT
−,

(8)

with

A =

[
0 IN×N

0 0

]
, C− = [

N+1︷ ︸︸ ︷
1 0 . . . 0], C+ =

hT

K
.

(9)
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Proof. See Theorem 18.5.2 in [2] and [26].

Corollary 1. [26] Consider the problem of identifying an
operator S ∈ S from measurements of its output y to a
known input u ∈ �2[0, N ], corrupted by additive bounded
noise η in a given set N :

yk = (S ∗ u)k + ηk, k = 0, 1, . . . , N (10)

Then there exist S ∈ S that satisfies (10) if and only there
exists a pair of vectors (h,p) such that M(h) > 0 and
y − TuPp − Tuh ∈ N . In that case, one such operator is
given Scentral = pT Gp +Ho, where Ho has the state–space
realization (8).

3. Multiframe Tracking as an Interpo-
lation Problem.

In this section we show that the problem of robustly track-
ing an object in a sequence of frames is equivalent to finding
an �2 to �2 operator that satisfies certain interpolation con-
ditions. This approach allows for appealing to IQCs [22],
convex analysis and interpolation concepts to recast these
problems into a tractable LMI optimization form.

As mentioned in the introduction, in principle, the lo-
cation of the target can be predicted using a combination
of its (assumed) dynamics, empirically learned noise dis-
tributions and past position observations [6]. However, as
shown in Figure 1 this process is far from trivial in a clut-
tered environment. As shown there both, Kalman–based
and Unscented Particle Filter based trackers, begin to track
poorly in frame 95, and by frame 105 have completely lost
the target due to a combination of occlusion and the use of
dynamics that do not exactly match the exact dynamics of
the target. As we show next, these difficulties can be solved
by modelling the motion of the target as the output of an
ARMA model and using the results in section 2.3 to iden-
tify the relevant dynamics.

Specifically, assume that the present position of a given
target feature, fk is related to its past N values by2:

fk = Af + Be
yk = fk + ηk

(11)

where f =
(
fk−1 . . . fk−N

)T
contains the past obser-

vations of the feature, e =
(
ek ek−1 . . . ek−m

)
repre-

sents a stochastic input, yk denotes the available measure-
ment of the feature, corrupted by noise ηk, and where A
and B are suitable LTI operators. Alternatively, (by taking
z–transforms in the equation above), one can use the de-
scription:

y(z) = F(z)e(z) + η(z) (12)

2For simplicity, we consider a single feature, but the equations gener-
alize trivially to the multiple–feature case.

where the operator F is not necessarily �2 stable. In the
sequel, we will assume that the following a priori informa-
tion is available:

1. A set membership description of the measurement and
process noise: ηk ∈ N and ek ∈ E . These sets can be
used to impose correlation constraints.

2. The operator F admits a finite expansion of the form

F =

Fp︷ ︸︸ ︷
n∑

j=1

pjFj +Fnp. Here Fj are known, given, not

necessarily �2 stable operators that contain all the in-
formation available about possible modes of motion of
the target3. An example of this situation is tracking
moving persons where the Fj can be obtained off-line
by training with a representative set of motions [15, 3].

3. The residual operator Fnp ∈ BH∞,ρ(K) for some
known ρ ≤ 1. That is, a worst case estimate is avail-
able of how fast the approximation error of the finite

expansion Fp =
n∑

j=1

pjFj diverges.

In this context, the next location of the target feature fk

can be predicted by first identifying the relevant dynamics
F and then using it to propagate its past N values. In turn,
identifying the dynamics entails finding an operator F(z) ∈
S .= {F(z) : F = Fp + Fnp} such that y − η = Fe, pre-
cisely the class of interpolation problem addressed in Corol-
lary 1. By noticing that H(z) ∈ BH∞,ρ ⇐⇒ H( z

ρ ) ∈
BH∞, it follows that such an operator exists if and only if
the following set of equations is feasible:

MR(h) =
[
R2

ρ TT
h

Th K2R−2
ρ

]
≥ 0

y − TuPp − Tuh ∈ N
(13)

where Rρ
.= diag [1 ρ · · · ρN ].

In addition to providing an estimate of the next position
of the target, this approach also has the following advan-
tages:

1. Model (in)validation: Assume that the set N is de-
scribed by a set of LMIs of the form:

N .=
{
ηηη ∈ N : L(ηηη) = L0+

N∑
k=1

Lkηk−1 ≥ 0
}

(14)

where Li are given real–valued symmetric matrices.
This noise set is a generalization of the set {ηηη ∈
N : |ηk| ≤ ε} usually considered [10], that allows for

3If this information is not available the problem reduces to purely non–
parametric identification by setting Fj ≡ 0.
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taking into consideration correlated noise. Then equa-
tions (13)-(14) reduce to a set of LMIs in the variables
h, η and K2. This allows for finding the minimum
value of K2 (recall that K is an upper bound of the
�2 induced norm of the non–parametric part of the op-
erator, Fnp) such that the LMIs (13)-(14) are feasible.
In turn, this value can be used as a “sanity check” to
assess the quality of the approximation. A large value
of K indicates that the non–parametric portion of the
model Fp does not provide a good description of the
motion of the feature, hence the need for a large non–
parametric part, indicating that it may be necessary to
re–identify the set

{
F i

}
. Infeasibility of the LMIs

indicates that the experimental data is not compatible
with the a priori assumptions, possibly indicating ei-
ther (i) a new target activity not described by elements
of the set {F i} or (ii) the target entering a region where
the noise and clutter models are no longer compatible
with the description (14). Either case points to the need
for re-assessing the a priori information.

2. Worst–case estimates of the prediction error. By
construction, the operator found from the solution to
the LMIs (13) is such that its response to the input e in-
terpolates, within the experimental noise level ηk, the
given location of the feature fk, k = 0, 2, . . . , N − 1.
However, when used to predict the future location of
the feature, it is of interest to obtain bounds on the
worst case prediction error. This can be accomplished
as follows: Given a sequence {yk}N−1

k=0 of measure-
ments of the location fk of the feature, define the con-
sistency set as:

T (y) .=
{
F ∈ S : {yk − (F ∗ e)k}N−1

k=0 ∈ N
}

(15)

i.e, the set of all models consistent with both the a pri-
ori information and the experimental data. Note that
the proposed method is interpolatory, that is, it always
generates a candidate operator Fid ∈ T (y). Thus,
since the “true” operator Fo that maps the input e to
the feature locations f must also belong to the consis-
tency set4, it follows that, given the first N measure-
ments yi, i = 0, . . . , N − 1 a bound on the worst case
prediction error over the horizon [0,M − 1], M > N ,
is given by:

‖f̂ − f‖�∞[0,M−1]

≤ sup
F1,F2∈T (y)

‖F1 ∗ e − F2 ∗ e‖�∞[0,M−1]

= d[T (y)]
≤ sup

y
d[T (y)] = D(I)

(16)

4As long as the a priori information is indeed correct.

where d(.) and D(I) denote the diameter of the set
T (y), in the �∞[0,M − 1] metric and the diameter of
information, respectively. Moreover, since the a priori
sets (S,N ) are convex and symmetric, with points of
symmetry Fs = 0 and ηs = 0 respectively, it can be
shown (see for instance Lemma 10.3 in [30]) that:

D(I) ≤ 2 sup
F∈S(0)

‖F‖�∞[0,M−1] (17)

where S(0) indicate the set of operators compatible
with the zero outcome: yk = 0, k = 0, 1, . . . , N −
1. As we will illustrate in the sequel with a simple
example, computing this bound reduces to a convex
optimization problem.

4. Illustrative Examples
In this section we illustrate the potential of the proposed
method with several examples. In the first one we consider,
for the sake of simplicity, static tracking, and indicate how
to use the proposed approach to both predict future loca-
tions of the target and obtain worst case bounds on the pre-
diction error. In the second example we show how to com-
bine the proposed approach with existing Kalman and UPF
techniques to improve robustness.

4.1. Inter–Frame Tracking and Prediction

pred

pred pred

Frame 14 Frame 19 Frame 21

Figure 2: Robust identification based tracking (black cross)
versus Mean Shift (white cross)

In this example we consider the problem of predicting
the location of the centroid of the child shown in Figure 2,
from past measurements of its coordinates, (xk, yk), cor-
rupted by uncorrelated noise, η. For the sake of briefness
we report below only the results for the x coordinate, since
those for y are similar.

The following a priori information was used:

1. N = {η ∈ �∞, ‖η‖�∞ ≤ 5.5}5.

2. E = δ(0), i.e. motion of the target was modelled as the
impulse response of the unknown operator F 6.

5This value was quantified from fluctuations in the data taken when the
person was at rest.

6This is equivalent to lumping together the dynamics of the plant and
the input signal.
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3. The parametric part of the model Fp ∈
span(G), G(z) .= [ z2

z2−2z+1 , z
z2−2z+1 ]T .

4. The reminder, nonparametric component, which ex-
plains the unmodelled dynamics satisfies Fnp ∈
BH∞,ρ(K), with ρ = 0.99.

The experimental, a posteriori data consisted of the first
N = 12 frames of the sequence. The resulting LMI prob-
lem was solved using MATLAB’s LMI Toolbox, leading to
Kopt = 1.35e−12 and p = [127.7763 − 135.0723]T . Note
that the very low value of K indicates that indeed the para-
metric part Fp provides an accurate model of the dynamics
of the target.

The advantage of this approach is illustrated in Figure
2, comparing the position of the centroid predicted by our
model (black crosses) against the results of using a Mean
Shift based tracking (white crosses) implemented in Intel’s
Open Source Computer Vision Library [7]. Although Mean
Shift is designed to improve tracking robustness by exploit-
ing color information [13], it begins to track poorly in frame
19, and by frame 21 it has completely lost the target due to a
combination of clutter and moderate occlusion. The corre-
sponding numerical values of the error, computed as the dif-
ference between the predicted and actual values7 are given
in Table 3. As shown there, the identified model is able to
predict the location of the target, far beyond the point where
the Mean Shift tracker has failed.

Finally, notice that in this case computing the worst case
prediction error bound (17) reduces to a Linear Program-
ming problem in p = [p1 · · · pNp

]T and h = [h0 · · ·hN ]T .
The last row in Table 3 shows the error bounds as a func-
tion of k. As expected these values increase with time, since
no new data is being used beyond k = 12. However, they
became comparable with the width of the target (30 pixels)
only beyond k = 20.

4.2. Improving Robustness of Kalman and
UPF Trackers

In this example we illustrate how the proposed approach
can be used to improve the robustness of trackers, such as
Kalman and UPF, that rely on a combination of past mea-
surements and the dynamics of the target to estimate its fu-
ture location. Proceeding as in the previous example, we
used a combination of a priori information:

(a) 5% noise level

(b) Fp ∈ span[ 1
z−1 , z

z−1 , z
(z−1)2 , z2

(z−1)2 , z2−cos ωz
z2−2 cos ωz+1 ,

sin ωz2

z2−2 cos ωz+1 ]

7These values where obtained using off–line image processing.

and measurements from the first 32 frames, where the tar-
get is not occluded, to estimate its dynamics. This dy-
namics was then used in conjunction with a Kalman fil-
ter, leading to the results shown in Figure 4. Contrary to
the case illustrated in Figure 1, the algorithm is now able
to track the target past the occlusion. Similar results are
shown at http:\\robustsystems.ee.psu.edu.
A salient feature of these results is the fact that the combina-
tion Caratheodory–Fejer/Kalman Filter achieved virtually
the same performance as CF/UPF and substantially outper-
forms the UPF alone. Thus the proposed approach can both
improve robustness and alleviate the computational com-
plexity of the problem.

It is also worth mentioning that consistent experience
suggests that, for a given target and gait type, it is not nec-
essary to re–identify the dynamics of the target for each se-
quence. For instance, the results at the bottom of Figure 4
were obtained using the dynamics identified using the top
sequence.

5 Conclusions

In the past few years dynamic vision techniques have
proved to be a viable option for a large number of appli-
cations, ranging from surveillance and manufacturing to as-
sisting individuals with dissabilities. Arguably, at this point
one of the critical factors limiting widespread use of these
techniques is the potential fragility of the resulting systems.
In this paper we show that in the case of multiframe track-
ing this fragility can be addressed by using interpolation
and LMI tools recently developed in the control community
to recast these problems into a tractable optimization form.
The advantages of this approach, and in particular its poten-
tial to result in robust tracking algorithms when combined
with existing UPF techniques was illustrated with several
experimental results. Research is currently underway seek-
ing to combine the proposed technique with mixed H2/H∞
filters in an attempt to better capture the properties of the
problem.

It is also worth mentioning that there are important cases
where this approach does not provide a complete solution,
since the resulting problem is not convex on all the variables
involved, leading to an NP hard optimization problem. An
example of this situation is the case where both the dynam-
ics of the plant and its input must be identified, and the ex-
perimental data is corrupted by measurement noise. We are
currently exploring the possibility of overcoming this diffi-
culty by combining the approach pursued in this paper with
risk–adjusted (in)validation methods.
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Sample 13 14 15 16 17 18 19 20
Mean–Shift 25.90 35.93 41.32 45.63 54.65 57.53 65.05 64.80

Id–based 8.87 6.14 10.04 13.03 10.31 15.72 19.50 26.04
Worst case bound 13.00 15 17 19 21 23 25 27

Figure 3: Id error as a function of k. Target width is 30 pixels.

Frame 150 Frame 105 Frame 95 Frame 85

Figure 4: Combination Kalman and CF based tracking in the presence of occlusion
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Basel, 1990.

[3] A. Bissacco, A. Chiuso, Y. Ma, and S. Soatto. Recog-
nition of human gaits. In IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition,
Kauai, Hawaii, USA, December 2001.

[4] M. J. Black and A. D. Jepson. Eigentracking: Robust
matching and tracking of articulated objects using a
view-based representation. International Journal of
Computer Vision, 26(1):63–84, 1998.

[5] A. Blake and M. Isard. Active Contours. Springer
Verlag, Berlin, 1998.

[6] A. Blake and M. Isard. Condensation - condensation
density propagation for visual tracking. Int. J. Comp.
Vision, 29(1):5–28, 1998.

[7] G. R. Bradski and V. Pisarevsky. Intel’s computer vi-
sion library: applications in calibration, stereo, seg-
mentation, tracking, gesture, face and object recogni-
tion. In IEEE CVPR, volume II, pages 796–797, 2000.

[8] C. Bregler. Learning and recognizing human dynam-
ics in video sequences. In cvpr, pages 568–574, San
Juan, Puerto Rico, June 1997.

[9] E. Calabi, P. J. Olver, C. Shakiban, A. Tannenbaum,
and S. Haker. Differential and numerically invariant
signature curves applied to object recognition. Inter-
national Journal of Computer Vision, 26(2):107–135,
1998.

[10] J. Chen, C. Nett, and M. Fan. Worst-case system iden-
tification in H∞: Validation of a Priori information,
essentially optimal algorithms and error bounds. IEEE
Transactions on Automatic Control, 40(7):1260–1265,
July 1995.

[11] L. D. Cohen. On active contour models and balloons.
Computer Vision Graphics and Image Processing: Im-
age Understanding, 53(2):211–218, 1991.

[12] R. Collins, O. Amidi, and T. Kanade. An active cam-
era system for acquiring multi-view video. In Int.
Conf. on Image Processing, volume I, pages 517–520,
2002.

[13] D. Comaniciu, V. Ramesh, and P. Meer. Real–time
tracking of non–rigid objects using mean shift. In
IEEE CVPR, pages 142–149, June 2000.

[14] D. Coombs and C. Brown. Real-time binocular
smooth pursuit. International Journal of Computer
Vision, 11(2):147–164, 1993.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



[15] D. J. Fleet, M. J. Black, Y. Yacoob, and A. D. Jepson.
Design and use of linear models for image motion ana-
lyis. International Journal of Computer Vision, 36(3):
171–194, February/March 2000.

[16] C. Foias and A. E. Frazho. The commutant lifting
approach to interpolation problems, Operator theory:
Advances and Applications, volume 44. Birkhäuser,
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