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Abstract

We present a novel method for tracking objects by com-
bining density matching with shape priors. Density match-
ing is a tracking method which operates by maximizing the
Bhattacharyya similarity measure between the photometric
distribution from an estimated image region and a model
photometric distribution. Such trackers can be expressed as
PDE-based curve evolutions, which can be implemented us-
ing level sets. Shape priors can be combined with this level-
set implementation of density matching by representing the
shape priors as a series of level sets; a variational ap-
proach allows for a natural, parametrization-independent
shape term to be derived. Experimental results on real im-
age sequences are shown.

keywords: tracking, shape priors, active contours, den-
sity matching, PDEs, level set method

1. Introduction
In recent years, there has been substantial research in active
contours and their applications to medical image segmenta-
tion and object tracking. Many tracking methods are based
either on geometric shape information, such as edges [1, 2],
or photometric information, such as color [3, 4]. However,
algorithms which do not incorporate both geometric and
photometric information are more susceptible to noise, and
often perform poorly in cluttered environments.

This paper presents a new approach to the tracking of
objects based on density matching and shape priors. Un-
like many trackers which try to combine both photometric
and geometric priors, the proposed work is posed entirely
within the framework of level set and PDEs. (An excep-
tion to the previous statement is the work of Paragios and
Deriche, such as [5].) The method is appropriate for ob-
jects with different color or texture models; by combining
both geometric and photometric information, it is relatively
immune to clutter.

The paper is organized as follows. The remainder of
section 1 is concerned with existing approaches to track-
ing. Section 2 contains the theory; it derives and explains
flows based on both density matching and shape priors.

These flows, which come from variational arguments, are
expressed both as curve evolution equations and in terms
of level sets. Experimental results on real image sequences
and comparisons with the condensation tracker are given in
section 3. Section 4 concludes.

1.1. Previous Work
The value of using shape priors has been shown in a va-
riety of tracking contexts. Model-based methods [6] have
been used in computer vision for a long time, especially for
rigid objects. Deformable templates [7] are an effective and
powerful method to model prior shapes and allow for many
deformations modes of shapes. However, the modelling of
objects by such methods generally requires many param-
eters and is often done heuristically. Dynamical models,
which implicitly contain shape priors, are extensively used
in object tracking to improve the robustness by estimating
state spaces and predicting possible movements; see, for ex-
ample, work on Kalman filters [8] and particle filters [1].

Geometric PDEs [9] and variational methods are increas-
ingly used in image segmentation and object tracking. The
level set method [10] is an effective framework for imple-
menting these PDEs due to its numerical stability and its
ability to cope with topology changes.

The incorporation of shape information into PDE based
methods is a new and active research topic; see, for ex-
ample, [11, 12, 13, 14]. In [11], the family of shape pri-
ors is represented by an affine flat in the space of level
sets, using principle component analysis. The segmenta-
tion method first combines shape priors and image features
and uses MAP estimation to derive a global shape, and then
evolves active contours under the influence of this global
shape. A similar shape representation is used in [15]. In
[14], shape is represented by B-splines. The shape energy
is defined by the Mahalanobis distance between the given
contour and template contour. None of the above methods
consider gross shape transformations such as rotation and
scaling. Chen’s paper [13] defines shape energy as the Eu-
clidean distance between the evolving contour and the shape
template. In [12], shape priors are represented by level sets
(signed distance transform), and the shape energy is defined
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as the integral of the squared distance between the level sets
of the evolving curve and the template. Shape priors are
learned by a shape-to-area variational approach [16]. Both
methods in [13, 16] incorporate Euclidean similarity trans-
formations in the shape energy and estimate parameters by
solving differential equations.

2. Theory

Like many existing trackers, our method is based on en-
ergy minimization. A tracker cannot track with only shape
information; other image-based forces must be included to
attract the algorithm to the real contour. Thus, the energy
consists of two parts, one term based on image features Ei

and a second term based on shape priors Es:

E = λEi + (1 − λ)Es

where λ ∈ [0, 1] defines the relative weight between Ei and
Es. Smaller E means better matching between the estimate
and real object. A curve which minimizes the energy E is
taken to be solution to the problem.

Section 2.1 describes the energy term Ei based on image
features. Section 2.2 proposes an energy term Es which in-
corporates a shape prior; partial differential equations for
curve flow, based on minimizing these functions through
gradient descent, are then derived. Section 2.3 casts this
flow in the form of level-set evolution equations, while sec-
tions 2.4 and 2.5 consider the impact of euclidean similarity
transformations and nonrigid transformations, respectively.

2.1. Image-Based Energy

The most commonly used image feature is the edge-map,
see for example [1]; the corresponding image energy is then
defined by the distance between the estimated curve and
selected feature edges. In this paper, the image features
consist of the entire region of intensities (colors, textures)
contained within the estimated curve. The distribution over
these intensities may be found; the image energy is then
based on a measure of closeness between this distribution,
and some target distribution which characterizes the object
of interest. (The target distribution is usually learned be-
forehand.) The measure of closeness is generally taken to
be an information theoretic measure, such as the Kullback-
Leibler distance or the Bhattacharyya measure.

This approach to tracking was used in the mean-shift
tracker [3], the trust region-based tracker [17] and prior
work of the authors [18, 19]. The approach of the authors
differs from the other work in that it allows for arbitrary
deformation of the evolving contour, whose motion is de-
scribed by a partial differential equation. In what follows,
this approach is explained briefly, using the Bhattacharyya

measure; for greater detail in both derivations and explana-
tions, as well as the theory based on the Kullback-Leibler
distance, the reader is referred to [18, 19].

Let Ω be the entire image plane, and ω the region en-
closed by the estimated contour ∂ω in tracking (see figure
1). Let z be a photometric variable such as intensity, color,
or texture; Z(x) is then the image (intensity image, color
image, or texture image). For ease of reference, let the true
region (i.e. the region we wish our tracker to converge to)
be denoted by Φ. With this notation in mind, our goal may
be stated as follows: we want to derive a curve evolution
equation for the estimated contour ∂ω under which it will
converge to the true contour ∂Φ.

Image Plane Ω

Φϖ

Figure 1: One frame in a image sequence. Ω is the image
plane for the frame; Φ is the true region enclosed by the true
contour ∂Φ (solid line); ω is a possible estimated region
enclosed by the estimated contour ∂ω (dashed line).

Our goal is to match the distribution induced by the esti-
mated contour with a model distribution. The model density
is given by q(z), and is assumed to be learned prior to run-
ning; this density will characterize the interior of the true
region Φ. The density of the estimated region, on the other
hand, is computed from the image, and is given by

p(z; ω) =

∫
ω δ(z − Z(x))dx∫

ω dx

where δ is an n-dimensional delta function. This is es-
sentially a continuous version of histogramming, and in
practice both q and p are implemented using discrete his-
tograms. In all experiments in this paper, z is taken to be
RGB color.

The Bhattacharyya measure can be used to define the dis-
tance between distributions q(z) and p(z; ω):

B(ω) =
∫ √

q(z)p(z; ω)dz

B(ω) lies in the range [0, 1], and measures the closeness
of the distributions distributions q(z) and p(z; ω); that is,
larger values of B correspond to more similar distributions.
The goal is therefore to maximize B. Thus, to convert this
to the language of energies, we should set Ei = −B. If
we let c(s) be a parametrized version of ∂ω, the boundary
of the estimated region, then it can be shown [18] that the
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variational derivative of Ei with respect to c is given be

δEi

δc
= − 1

2A(ω)

[
B(ω) −

√
q(Z(c(s)))

p(Z(c(s)); ω)

]
n(s)

where A(ω) is the area of the region ω and n(s) is outward
normal at c(s). Ei can thus be minimized via gradient de-
scent using the following flow:

∂c
∂t

(s, t) =
1

2A(ω)

[
B(ω) −

√
q(Z(c(s, t)))

p(Z(c(s, t)); ω)

]
n(s, t)

(1)
While this flow can be quite effective, [19] makes the

point that it is also worth considering the region of the im-
age plane, ωc ≡ Ω − ω , which is the complement of the
estimated region. We might then try to maximize the mis-
match between the distribution of this region with the model
distribution:

Ei(ω) = B(ωc) =
∫ √

q(z)p(z; Ω\ω)dz

Note that in this case, we wish to minimize B, so we take
Ei = B, rather than Ei = −B. The variational derivative
is found is a similar fashion, leading to the flow

∂c
∂t

(s, t) =
1

2A(ωc)

[√
q(Z(c(s)))

p(Z(c(s)); ωc)
− B(ωc)

]
n(s, t)

(2)
Of course, flows (1) and (2) may be combined:

∂c
∂t

(s, t) =

{
β

2A(ω)

[
B(ω) −

√
q(Z(c(s, t)))

p(Z(c(s, t)); ω)

]

+
1 − β

2A(ωc)

[√
q(Z(c(s, t)))

p(Z(c(s, t)); ωc)
− B(ωc)

]}
n(s, t)

(3)

where β ∈ [0, 1] is a parameter to be chosen. In the exper-
iments throughout this paper, we will typically take β = 0.
For convenience, we will generally write equation (3) as

∂c(s, t)
∂t

= Fi(c(s, t), t)n(s, t) (4)

where

Fi(x, t) =
β

2A(ω)

[
B(ω) −

√
q(Z(x))

p(Z(x); ω)

]

+
1 − β

2A(ωc)

[√
q(Z(x))

p(Z(x); ωc)
− B(ωc)

]

Fi may be thought of as the image-based velocity of the
curve flow.

The flow of equation (3) has few restrictions on the dis-
tributions and initial positions of estimated contours, has a
strong ability to track distributions, and is robust to cluttered
environments [19]. However, the accuracy of the target den-
sity q(z) affects the accuracy of tracking results. For non-
rigid objects moving in highly cluttered environments, it is
impossible for q(z) to be an accurate representation of the
target distribution in each frame. Shape prior information
can therefore be incorporated to make the tracking more ac-
curate.

2.2. Shape Energy
It has long been a practice to incorporate shape priors into
tracking algorithms to improve their robustness. Active
shape models [20] define the shape priors by using selected
landmarks; shape can also be represented by spline curves
[6]. In both cases, PCA is used to generate a family of plau-
sible shapes. Correspondence between landmarks or break-
points is important in these methods. However, it is prefer-
able not to rely on landmarks, as the choosing of landmarks
requires quite a bit of manual labor in training; furthermore,
it is not easy to incoporate such landmark-based approaches
into a tracker based on PDEs.

Our first attempt at defining a shape energy might run as
follows. Suppose that we are given a single curve template,
specified parametrically as c̄(s), and that the curve of inter-
est is given by c(s). If the parameter s is defined on [0, 1],
a natural energy function is

E[c(·)] =
∫ 1

0

[c(s) − c̄(s)]2ds

Such an energy will indeed achieve its global minimum
when c(s) = c̄(s) for all values of s. Unfortunately, how-
ever, there is a problem with this simple energy: it is de-
pendent upon a parametric specification of both c and the
template c̄. This implies that there must be a reasonable
correspondence made between the parameters of c and c̄;
otherwise, the functional E can give meaningless values.
For example, suppose that c(s) = c̄(1 − s); geometrically,
then, c and c̄ represent the same curves. However, they are
parametrically distinct, and therefore the value of E will be
positive in comparing these curves (and could, potentially,
be quite large). This problem is exacerbated by the fact that
we often do not reach a global minimum, but instead a local
minimum; local minima of this function, reached by gradi-
ent descent, may be quite bizarre, assuming that the initial
parametric correspondence was not perfect. Furthermore,
combining this shape-based criterion with the image-based
criterion of the previous section may lead to even more un-
predictable results.

Thus, we must find a functional which allows us to match
the evolving curve c with a template curve, and yet does not
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rely on a parametric specification of either c or the template.
In order to achieve this goal, let us specify the template as
a signed distance function whose zero level set corresponds
to the template [10]. That is, let φ̄ : R

2 → R be such that

c̄ = {x ∈ R
2 : φ̄(x) = 0}

where c̄ so specified is given as a collection of points. Fur-
thermore, we will assume that φ̄(x) < 0 for all x inside
the curve c̄; see figure 2. Clearly, such a specification is
non-parametric.

Ω

φ(x)< 0
φ(x) > 0

φ(x)= 0

φ(x)= −1

Figure 2: Level set representation. φ(x) = 0 corresponds
to the contour; φ(x) < 0 is the inside region; φ(x) > 0 is
the outside region. φ(x) = −1 consists of all points whose
minimal distance to the contour is -1.

As before, let ω be the region of the plane contained in-
side the estimated curve c. In this case, we may formulate
the energy functional as

E[c(·)] =
∫

ω

φ̄(x)dx

Before explaining the rationale behind this function, let us
note that it is no way dependent on the particular parametric
specification of either the curve c or the template c̄.

Why will minimizing E drive the curve c to the template
c̄? Recall that φ̄(x) takes on negative values for x inside
the curve c̄. In order to make E as negative as possible, the
curve c should evolve to take on as many of these negative
values as possible; the minimum will be achieved when the
curve c surrounds all of the negative values, i.e., coincides
exactly with c̄. The great advantage of this functional is that
by minimizing it, one drives the curve towards the template,
and yet one does not need to worry about any issues related
to parametrization.

One can show that

δE

δc
= φ̄(c(s))n(s)

using the same methods of [18]. The corresponding curve
evolution equation given by gradient descent is then

∂c
∂t

(s, t) = −φ̄(c(s, t))n(s, t) (5)

The final curve evolution equation is the combination of
the image-based terms of equation (4) and the shape-based

terms of equation (5):

∂c
∂t

(s, t) = [λFi(c(s, t), t)− (1−λ)φ̄(c(s, t))]n(s, t) (6)

where λ ∈ [0, 1] is a scalar parameter which gives the rel-
ative importance of shape-based information versus photo-
metric information.

2.3. Level Set Formulation
Equation (6) is implemented in the level-set formulation.
The straightforward conversion of this equation into level
sets yields

∂φ

∂t
(x, t) = [(1 − λ)φ̄(x) − λFi(x, t)]‖∇φ(x, t)‖

where φ is the level-set function correponding to the evolv-
ing curve c. While there is nothing barring our way
from implementing this equation, we may make one small
change, in order to achieve a more reasonable extension ve-
locity. Recall that curve evolution equations only inform
us of the velocity on the curve itself; whereas, for a proper
level-set implementation, we require the velocity through-
out the plane. Any extension of the velocity to the remain-
der of the plane which is smooth is allowed. Thus, we might
reformulate the original curve flow of equation (6) as fol-
lows:

∂c
∂t

(s, t) = {λFi(c(s, t), t) − (1 − λ)[φ̄(c(s, t))

− φ(c(s, t))]}n(s, t)

The only difference between this equation and equation (6)
is the presence of the term φ(c(s, t)). Note that we can add
this term with impunity, as by defintion of φ, φ(c(s, t)) = 0
for all s, t. While this term does not affect the curve evolu-
tion equation, it does change the level set equation to

∂φ

∂t
(x, t) = [(1−λ)(φ̄(x)−φ(x, t))−λFi(x, t)]‖∇φ(x, t)‖

While both versions of the level-set will result in the
same zero level-set, the extension velocity provided in the
latter equation is more intuitive. In this equation, the en-
tire level-set function is being driven towards the template’s
level-set function, rather than just having the zero level-sets
match.

2.4. Euclidean Similarity Transformations
Even for a completely rigid object, the flow of equation (5)
is problematic. The reason is that the template given by φ̄
is fixed in space, whereas we expect our rigid object to both
translate and rotate. (If this were not the case, there would
be no point in tracking!) Thus, we must emend the flows of
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equation (5) and (6) in order to take this effect into account.
We do so by modifying the prior on a frame-by-frame basis,
to take into account euclidean similarity transformations.

A euclidean similarity transformation of a point x into a
point x′ is given by

x′ = αAx + T

where α is the isotropic scaling factor, A is the rotation ma-
trix, and T is the translation vector. We would like to find
an α, A, and T to transform the template φ̄, i.e. to take our
new template to be

φ̄α,A,T (x) = φ̄(αAx + T )

We use the following method to determine these parame-
ters.

We wish to choose α, A, and T to make φ̄α,A,T as similar
to φ(x) as possible, where φ(x) is the level set of the previ-
ous frame. Let Qφ = {x : φ(x) ≤ 0}. Then we may esti-
mate α = |Qφ|/|Qφ̄|, and T by the displacement between
the centroids of Qφ and Qφ̄. It remains to determine the
rotation matrix A. To do so, use the Procustes method [21],
which is a landmark-based method. Since we do not have
landmarks, we check all possible correspondences between
landmarks. This is achieved by the following procedure:

• Scale and translate φ̄(x) = 0 by α and T .

• Sample n points uniformly from φ(x) = 0 and φ̄(x) =
0 respectively and denoted by Sφ and Sφ̄.

• Initialize a correspondence between Sφ and Sφ̄.

• Use the Procrustes method to estimate the rotation ma-
trix and its error.

• Generate another correspondence for Sφ and Sφ̄ and
repeat step 4 until all correspondences are tried.

• Select the rotation matrix with the smallest error.

Note that there are not that many correspondences to try,
since the points in each case lie along a curve; thus, there
are at most n correspondences we must test. The accuracy
of above estimation is determined by the number of points
sampled; in practice, n = 50 seems to give good results,
and is very fast. Note that with a small modification, α and
T can also be estimated by the Procrustes method.

2.5. Nonrigid Transformations
For rigid objects, a single shape model, combined with the
euclidean similarity transformations described in section
2.4, is generally sufficient for tracking. For nonrigid ob-
jects, a family of shapes must be used to capture the shape
changes. The simplest way to achieve this end is to use a

discrete set of shapes, each represented as a level set func-
tion: {φ̄i}. The method of section 2.4 may then be applied,
at the beginning of each frame. This method allows us to
measure an error from fitting each φ̄i to the level set from
the previous frame φ; the φ̄i with the smallest error is cho-
sen as the template for that frame.

Of course, this procedure has a complexity which is lin-
ear in the number of prior shapes in the family. Thus, it is
critical to ensure that this number is as small as possible; for
example, we should not include all training samples. The
following procedure allows one to pare down the number of
training samples.

Figure 3: Tracking a ball in clutter. The left column shows
results using condensation; the right column shows results
using the proposed method.

Let {T1, T2, . . . , Tn} be n training samples, taken
as curves; {T i

1, T
i
2, . . . , T

i
i−1, T

i
i+1, . . . , T

i
n} are samples

which have been aligned to be in correspondence with Ti.
The alignment method can be any registration method with
good performance, such as the Procrustes method [21] dis-
cussed in section 2.4. Let Ai be the interior of Ti and Bj be
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the set of interior of T i
j . The alignment error may be defined

in a natural way as εij = (Ai − Bj) ∪ (Bj − Ai); εthresh

is some heuristic error threshold. The following procedure
may then be used to reduce the number of training samples
needed to represent the shape family.

• Select a sample Ti from training samples.

• Align all other samples Tj to Ti and compute the error
εij . If εij < εthresh, then remove Tj from the set of
training samples.

• Add Ti to the set of shape priors and remove it from
the set of training samples.

• Repeat until no training samples remain.

Using the above method, nonrigid objects can be rep-
resented by a family of shape priors. However, for some
nonrigid objects, this family may be very large.

3. Experimental results
We have tested the tracking algorithm on real image se-
quences and compared it with the condensation tracker as
described in [6]. Both algorithms are implemented in Mat-
lab and run on a 2.0G P4 machine.

Figure 4: Shape priors. The first one is the signed distance
representation of a ball; the remaing three are signed dis-
tance representations for a flexing finger.

In the first test sequence, a ball is tracked through a
highly cluttered background (see figure 3). The shape prior
space in this sequence is a simple circle. The signed dis-
tance representation of shape prior is shown in figure 4. The
dynamical model for the condensation tracker is simply a
uniform distribution over this shape space. Our tracker suc-
cessfully tracks all the frames, while condensation fails at

frame 69. There is sufficient clutter that several spurious,
ball-like arrangements of edge points exist which the con-
densation tracker takes as the estimated shape.

Figure 5: Tracking a translating and flexing finger. The left
column shows results using condensation; the right column
shows results using the proposed method.

The second sequence involves a finger being tracked as
it flexes and translates in a cluttered background (see figure
5). In this case, the shape space is learned from a training
sequence; we learn the shape prior using the method given
in section 2.5. Some of the members of the shape prior
family are shown in figure 4. A PCA-type method is used
for condensation. Furthermore, a second order dynamical
model is trained on that training sequence. In this sequence,
the proposed method tracks well, while condensation yields
false estimates (figure 5). When the finger is stationary (see
the last two rows in figure 5), condensation still chooses
some flex in the finger for its estimate, which is not the true
finger position. The proposed method is driven by density;
thus, when the finger is stationary, the tracker gives the same
contour as that of the previous frame.

There are several deficiencies of the proposed tracker.
First, in both experiments condensation is much faster than
proposed tracker. Second, because the proposed method
does not use edge information, the tracking results do not
always rest exactly on the boundary. There is a tendency
for the contours obtained to rest somewhere within the real
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contour. Finally, the contours are often not very smooth.

4. Conclusions and Future Work
In this paper, we have proposed a tracking method combin-
ing density matching and shape priors. The shape priors
are represented by level sets. A PDE for curve evolution
combining the influences of density matching and of shape
priors has been derived. The tracker is seen to track well in
cluttered environments; the method outperforms a conden-
sation tracker in the two real image sequences.

One main deficiency of the proposed tracker is its speed:
the complexity of the algorithm is linear in the size of the
family of shape priors. While one would expect the speed
to depend on the size of this family, linearity is probably
unacceptable. Future work will focus on reducing this com-
plexity. A second issue which must be addressed is the in-
corporation of edges, at least in some mild way, in order to
get a more accurate localization of the estimated contours.
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