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Abstract 

    Motion layer estimation has recently emerged as a 

promising object tracking method. In this paper, we extend 
previous research on layer-based tracker by introducing 

the concept of background occluding layers and explicitly 

inferring depth ordering of foreground layers. The 

background occluding layers lie in front of, behind, and in 

between foreground layers. Each pixel in the background 

regions belongs to one of these layers and occludes all the 

foreground layers behind it. Together with the foreground 

ordering, the complete information necessary for reliably 
tracking objects through occlusion is included in our 

representation. An MAP estimation framework is 

developed to simultaneously update the motion layer 

parameters, the ordering parameters, and the background 

occluding layers. Experimental results show that under 

various conditions with occlusion, including situations 

with moving objects undergoing complex motions or 

having complex interactions, our tracking algorithm is 

able to handle many difficult tracking tasks reliably. 

1 Introduction 

    In recent years, dynamic motion layer estimation has 

emerged as a promising approach for object tracking  [4], 

[9], [5], [8]. A motion layer is a region in an image that 

undergoes a coherent motion. The two chief problems in 

motion layer based tracking algorithms are how to 

represent motion layers and how to estimate the 

parameters associated with these layers. 

    With the dynamic motion layer representation, tracking 

problem can be formulated as the maximum a posteriori

(MAP) estimation of a Hidden Markov Model (HMM) [8]. 

In a typical motion layer estimation process, both 

foreground objects and background are modeled and they 

compete with each other to maximize the joint posterior 

probability. This is one of the main reasons behind the 

success of layer trackers.  

    In terms of layer representation, in previous work, only 

motion, segmentation, and appearance are considered.  

This object representation works well for tracking multiple 

objects when no occlusion presents. However, it is 

insufficient in accommodating occlusion caused by 

foreground or background object and in effectively 

modeling the spatial relationship among moving objects 

and the background.  

    Previous work on motion layer analysis and motion layer 

based tracking employed global or local motion 

representations [10], [11], [12]. The object shape and 

appearance are often modeled as Gaussian distributions [9], 

Markov Random Fields (MRF) [10] or other mixture 

models [2]. To handle object occlusion in motion analysis 

and tracking, an explicit generative occlusion boundary 

model was proposed in [3]. To handle self-occlusion on the 

foreground objects and adaptively change the shapes of the 

foreground objects to allow the tracking of non-rigid 

motion,  [4] proposed a combined parametric shape and 

motion model with depth ordering to represent the 

visibility of each layers. The Transformed Hidden Markov 

Model (THMM) algorithm [6] includes both motion and 

appearance representation as the parameters in a generative 

model and formulates the tracking problem as the learning 

of these parameters. 

    In this paper, we propose a novel scene representation 

with ordering information that contains complete 

information for inferring the foreground object and the 

background occlusion. In this representation, each moving 

object is modeled as a foreground layer. Some background 

objects such as trees may occlude foreground motion layers. 

To model the depth difference in background, we introduce 

background layers that lie between foreground layers. This 

is different from the previous methods [9] where the 

background region is modeled as a single layer. In addition, 

the depth ordering of foreground layers is treated as a state 

variable to explicitly model the depth relations among 

foreground objects. Unlike the global shape model in [9], 

we also allow gradual but arbitrary changes in objects 

shapes, which are captured in the foreground mask. 

    Based on this new layer representation, we propose an 

estimation algorithm that estimates the motion layer 

parameters, the foreground ordering, and the background 

layers in an MAP framework. The overall formulation can 

be written as  

)0,...,,1|(argmax ItIttP

t

                (1) 

where t is the state of the tracker at time t , and tI  is the 

image observation. 
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    The rest of the paper is organized as follows. The details 

of the proposed layer representation are presented in 

Section 2. Section 3 describes the MAP estimation of the 

layer state. Section 4 describes the implementation and 

demonstrates the experimental results. Some discussions 

and conclusions can be found in Section 5. 

2 Dynamic layer modeling 

2.1 Depth ordering of the foreground and 

background layers 

    In our proposed approach, a dynamic scene is 

represented by foreground and background layers. As 

shown in Figure 1, foreground motion layers are ordered 

according to their relative depth from front to back. The 

front-most layer is layer 1. Some background regions, 

which are defined as the image areas that do not move, 

may lie in between foreground layers. These background 

regions are in front of some foreground objects and are 

called occluding background layers. In our model, as 

shown in Figure 1, there is one background layer between 

every two neighboring foreground layers. There is also one 

background layer that is behind all foreground layers and 

one layer that is in front all foreground layers (layer 1). If 

there are L  foreground layers, the there are 1L

background layers. 
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Figure 1.  The ordered layer model. 

Figure 2.  An example of the background layers. 

    Each foreground layer is described by its motion, shape, 

and appearance. Each background layer is described by its 

shape and appearance. If the background also moves, all 

background layers share a single motion. At any time t ,

the set of all layer parameters is called the state of the 

tracker and is denoted by t . In later sections, we will 

describe in detail the models for these state variables. 

Figure 2 shows a real example of a video frame and the 

top-most occluding background layer. In this example, only 

the shape of the front-most background layer is shown. 

    Using the above layer model, from the object point of 

view, each object belongs to one of the foreground layers. 

We explicitly model and estimate the layer assignment for 

the objects in the scene. The depth ordering of L

foreground objects at time t  is denoted 

as ],...,,[ 21 Lt iiiO . The integer variable ],1[ Li j
 and 

lk ii  iff lk . If we assume that objects do not 

interleave with each other, there are !L  possible layer 

assignments for L  foreground objects. We further assume 

that the depth ordering is a random variable with a uniform 

distribution. This means all the permutations have the same 

probability and thus have the same prior probability 

!1)( , LOP it , where itO ,  is an arbitrary layer ordering 

configuration. 

    It should be noticed that the foreground layer ordering, 

together with the shape, appearance, and motion 

information of all foreground and background layers, 

provide the complete information for occlusion reasoning. 

2.2 Motion models 

    We describe the background motion using a 2D affine 
model. and estimated this model using the so-called direct 

method [1].  All background layers share the same motion. 

Each foreground layer undergoes a 2D rigid motion, which 

is described using position , orientation , scaling 

factor s , and their temporal derivatives. A constant 

velocity model is used to describe the dynamics of the 

foreground layers. If we denote the motion parameters of a 

layer as ],,,,,[ ss , then the motion dynamics is 

written as 

),:()|( 11 QNP tttt                    (1) 

where t  is the motion parameter at time t ,  is the 

standard transition matrix for a constant velocity model, 

and the notation ),:( RxN  denotes a multivariate 

Gaussian distribution with  mean and covariance matrix 

R .

2.3 Shape models of the foreground and 

background layers 

    Each foreground or background layer is associated with 

a shape map. At each pixel location, the value of the shape 
map is the probability that the object in the layer presenting 

at that pixel location (it may not be visible though). For the 

foreground layer j  and position ix  at time t , we denote 

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



3

the value of the shape map as )(, ijt x . For the background 

layer, we use the notation )(, ijt x  to represent its shape 

map. One difference between the foreground shape map 

and the background shape map is that for the background, 

the probabilistic values of all shape maps at each pixel 

must sum up to 1.  This reveals our underlying assumption 
that there is only one background surface for each pixel. 

This is a reasonable assumption because even there are 

more surfaces they will not be observable anyway. 

2.3.1 Layer visibility 

    Once the shape maps are defined for all layers, for each 

pixel ix , we can compute the probability that the j th 

foreground layer is visible. This is the probability of the 

joint event that background layers 1  to j  are absent, 

foreground layer1  to 1j  are absent, and j th foreground  

layer presents at ix . The first probability is 
j
l il x

1
)(1

because there is only one background surface. The second 

probability is 
1

1
)](1[

j

s is x , and the third probability is 

)( ij x  (for simplicity, we ignore the subscript t ). As a 

result, the probability of the j th foreground layer being 

visible at ix  is  

1

11

)](1[))(1()()(
j

s
is

j

l
ilijij xxxxP        (2) 

    Similarly, the probability of observing the j th

background layer at ix  is

1

1
, ))(1()()(

j

k
ikijijB xxxP                (3) 

and the probability of observing one of the background 

layers is  

1

1

1

1

))(1()()(
L

j

j

k
ikijiB xxxP                (4) 

2.3.2 Shape dynamics 

    If we assume the shape of the foreground does not 

change dramatically, then we can use a constant value 

Gaussian model to describe the dynamics of the shape 

changes over time. More specifically,  

)),/))((();((

)|)((

2
,,,,1,

,1,

jtjtijtjtijt

jtijt

sxRxN

xP
      (5)

where  represents the uncertainty in the shape of the 

layer. The transformation 
jtjtijt sxR ,,, /))(( is used 

to align the shape maps.  

2.4 Appearance model 

    The appearance of foreground layer j  is defined in the 

local coordinate system and is denoted as jtA , . We assume 

that the image observation model is a Gaussian distribution 

with the appearance as the mean, or 

)),(:)(())(|)(( 2
,, Iijtitijtit xAxINxAxIP       (6) 

where 2
I  is the variance of the image observation. 

Like the motion and shape models, we also assume that the 

temporal changes of the layer appearance follow a constant 

value Gaussian distribution. This is formulated as 

):)(:)(())(|)(( 2
,1,,1, Aijtijtijtijt xAxANxAxAP     (7) 

where 2
A  is the appearance uncertainty that accounts for 

the appearance variations.  

2.5 The MAP estimation 

    The tracking procedure can be considered as the 

maximization of the posterior probability 

),...,,|(maxarg 01 IIP ttt

t

                 (8) 

    Using Bayes rule and the HMM model, 

)|()|(),...,,|( 101 ttttttt PIPIIP     (9) 

where )|( 1ttP  is the state prior function, and 

)|( ttIP  is the likelihood function. 

    Based on our models in the previous sections, the prior 

function is computed as

appearancemotionshapebgshapefgorder

tt

PPPPP

P

__

1)|(
       (10) 

where  

)|( 1ttorder ooPP                

L

j

N

i
ijtijtshapefg

j

xxPP
1 1

,1,_ ))(|)((

1

1 1

,1,_ ))(|)((
L

j

N

i

ijtijtshapebg

j

xxPP

L

j

jtjtmotion PP
1

,1, )|(

L

j

N

i
ijtijtappearance

j

xAxAPP
1 1

,1, ))(|)((

Here we assume the image has L  foreground layers, 1L

background layers, and jN  pixels on the object in layer j .
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    To compute the likelihood function, we need to first 

obtain the probabilistic distribution of the front-most layer 

at each pixel based on foreground layer ordering, 

foreground and background shapes, and the appearance 

models. More specifically, we compute the likelihood 

function as 

))()(()|(
1

ifgo

N

i
ibgott xPxPIP         (11) 

where )( ibgo xP and )( ifgo xP  represent the likelihood of 

one of the background or foreground layers is visible at 

pixel ix .  They can be computed as 

)())(|)(()( iBiiibgo xPxBxIPxP    (12) 

and  

L

j
ijijijifgo xPxAxIPxP

1

)())(|)(()(           (13) 

)( iB xP  and )( ij xP  are defined in Eq(2-4). 

3 Estimation of the object state 

    Solving Eq(8) is a difficult optimization problem 

because the state space is very large. An approximate 

solution can be found by first decomposing the original 

problem into several sub-problems (see Figure 3). Then 

optimization is performed to solve these sub-problems 

sequentially. We found that in practice this approach yields 

feasible solutions. 

Hypothesize & determine 

object ordering

Layer motion estimation

Foreground shape 

estimation

Background shape 

estimation

Appearance estimation

1t1t t

Figure 3.  Estimation of the state parameters. 

3.1 Foreground layer ordering hypothesis 

    Foreground layer ordering tO  is modeled as a uniformly 

distributed random variable. Because of this property, the 

estimation of tO  is rather simple: the algorithm goes 

through all the possible value of tO , and finds the one that 

maximizes the posterior probability. Since all the other 

parameter estimation steps highly depend on the depth 

ordering, it is computed at the beginning of each iteration. 

3.2 Motion estimation 

    Maximizing the posterior probability in Eq(8) w.r.t. 

foreground layer motion is equivalent to optimizing the 

function 

motionifgo

n

i
ibgo PxPxP ))()((

1

                 (14) 

    A search algorithm can be used to find the solution 

around the predicted position. Rotation, translation, and the 

scaling factor are discretized with sufficient precision for 

this purpose. For sequence with moving background, a 

direct method [1] is used to estimate the motion parameters. 

3.3 Foreground shape estimation 

    From Eq(11-13) and Eq(2-4), it can be observed that the 

likelihood is a linear function of each foreground shape 

variable )( ij x  and the prior term is a Gaussian function 

of )( ij x . If we optimize )( ij x  independently for each 

layer, the estimation becomes the maximization of a 

function in the form of  

22
0 2/)(

)(
xx

ebax                       (15) 

where a  and b  are constants that can be computed using  

Eq(11-13) and Eq(2-4). The optimal solution is 0, 1, or the 

root of the quadratic equation  

0)()( 2
00

2 abxxaxbax              (16) 

This equation is derived by taking the derivatives of the 

function in Eq(15) and set it to be 0. 

3.4 Background shape estimation 

    Estimation of the background shape is similar to the 

estimation of the foreground shape. However, there is one 

additional constraint needs to be enforced: the values of all 

shape maps should sum up to 1. With this constraint, the 

global optimization becomes complicated. However, we 

can use the results in the previous frame or previous 

iteration as the starting point to perform a greedy algorithm 

to find the local optimal solution. We estimate each 

background level individually with the shape maps of other 

layers fixed. After all shape values for all layers are 

estimated, they are normalized so that their sum becomes 1. 

    There is another difference between the background 

shape estimation and the foreground shape estimation. For 

foreground, the object shape does not change significantly 

over time because of the 2D rigid model. Therefore we use 

the shape in the previous frame as our prior in the 

estimation. However, in the background shape estimation, 

the shape of each background layer highly depends on 

object motion. The occluding background shape in the 

same area can change quickly from time to time because of 

object movements. For example, a car may first pass 

behind a tree, turn around and then pass in front of the tree 

again; in the first case the tree is part of the occluding 
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background layer to the foreground layer of car, while in 

the second case the tree belongs to the background layer 

that does not occlude the same foreground. So in our 

algorithm if all the objects leave an area for a certain 

period of time, we actually lack visual information to infer 

background layer shapes. As a result, no matter what the 

previous background shape values are, they becomes 

obsolete and the shape of all background layers are reset to 

a default value. 

3.5 Appearance estimation 

    To estimate the appearance, we need to find jtA ,  that 

maximizes the function  

n

i
appearanceifgoibgo PxPxP

1

))()((           (17) 

    Since both the appearance observation model Eq(6) and  

the appearance dynamics Eq(7) are Gaussian functions, the 

function in Eq(17) becomes a Gaussian mixture. The 

closed-form solution to this optimization problem is 

difficult to find. However, appearance is a discrete 

function and we know the solution should be between the 

current observation and the previous estimate. For each 

pixel, we can search for the appearance value in this range 

to find the solution. 

4 Implementation and experimental results 

4.1 Initialization and deletion of objects 

    In addition to the tracking algorithm discussed in the 

previous sections, there are several other issues regarding 

the initialization and deletion of the foreground and 

background layers need to be addressed. In our 

implementation, change image is computed to determine 

whether a moving object presents in the scene. A new 

object is initialized if a change blob is detected far away 

from any existing objects. In this case, we assume the 

center of the object is located at the center of the change 

blob. The value of shape map at each pixel is proportional 

to the intensity of the change image. The appearance is set 

to be the original image intensity values. An additional 

background layer is inserted. The new layer has the same 

shape map as its neighboring background layer. A 

normalization step is then applied to make sure these 

background shape maps sum up to 1 at each pixel. 

    An object is deleted if it moves out of the image 

boundaries or it is occluded for a very long period of time. 

Then the foreground layer of this object is removed from 

the data structure and two background layers next to it 

merge into one layer with the shape mask value equal to 

the sum of the original two shape maps. 

4.2 Synthetic videos 

    We have tested the proposed algorithm using synthetic 

and real video clips. (Video clips of the results are 

available in the supplementary file). In  Figure 4 and Figure 

5 show the tracking results of two synthetic videos with 

moving objects. The videos include difficult conditions 

including shadows, reflections, and transparent objects (e.g. 

the waterfall), and out-of-plane object rotation. Our 

tracking algorithm locked on the moving objects 

successfully through occlusion in both sequences. The 

estimated state variables in three key frames of the second 

video are shown in Figure 6. It can be observed the 

background shape maps in row 3 accurately describe the 

shape of the occluding tree. 

4.3 Vehicle tracking through occlusion 

    We implemented a tracking system based on the 

proposed algorithm for handling object occlusions. In 

Figure 7, the tracking result on a video clip with a car 

occluded by background is demonstrated. In this example, 

background objects such as trees, light poles, and the rising 

ground occlude the car. The proposed tracking algorithm 

estimates the layer parameters correctly through the 

sequence. The tracker found one foreground layer and two 

background layers. The estimated state variables in three 

key frames are demonstrated in Figure 8. The background 

shape maps are for the front-most layer.  

Figure 6.  Layer state variables in three frames of the video 

in Figure 5 (Row 1 are the original images, Row 2 are the 

foreground shapes, Row 3 are the background shapes, and 

Row 4 are the foreground appearances). 

4.4 Human tracking 

    Although our model of layer shape is 2D rigid, our 

tracker is able to track moving people by adjusting the 

system parameters and focusing torso area, which is 

relatively rigid compared to the other parts of human body. 

Figure 9 shows the tracking result of two persons passing 

accross each other. The algorithm tracked both persons 

successfully through the occlusion. 
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    Figure 10 demonstrates the tracking results on a video 

clip in which a walking person is occluded by background 

objects. Because the occluding background area is large, 

there is a long period of full occlusion. Since the algorithm 

estimates the background occluding layers, it knows which 

part of the foreground is occluded. As a result, the tracker 

is aware of the occlusion and will not update the object 

appearance. The tracker is able to regain correct values of 

layer state soon after the object moves out of the occluding 

background, as observed in the last frame. 

Figure 8. Layer state variables in three frames of the video  

in Figure 7 (Row 1 are the original images, Row 2 are the 

foreground shapes, Row 3 are the background shapes, Row 

4 are the foreground appearances). 

5  Conclusions 

    A novel motion layer based representation and the 

associated estimation algorithm have been proposed in this 

paper. This new approach extends the traditional layer 

model by introducing the background layers and layer 

ordering. The experimental results demonstrate the power 

of this representation in handling the difficult occlusion 

problem in tracking. 

    One advantage of the proposed representation is that it 

models all possible interaction between foreground and 

background objects.  Not only the occlusion caused by the 

foreground layer is modeled, but also modeled is the 

occlusion caused by the background layers. 

    Some future research topics for improving the proposed 

algorithm include the development of more flexible shape 

and motion models that can handle articulated and nonrigid 

motions and the investigation of efficient optimization 

algorithms for finding the optimal ordering of the 

foreground layers.  
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Figure 4. A synthetic video sequence with a figure moving horizontally. 

Figure 5.  A moving figure moves behind a tree. 

Figure 7. A moving car is occluded by trees and the rising ground. 

Figure 9.  Two people work across each other. 

Figure 10.  A person walks behind trees and bushes. 
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