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Abstract
A new method for visual tracking of articulated objects

is presented. Analyzing articulated motion is challenging
because the dimensionality increase potentially demands
tremendous increase of computation. To ease this prob-
lem, we propose an approach that analyzes subparts locally
while reinforcing the structural constraints at the mean
time. The computational model of the proposed approach
is based on a dynamic Markov network, a generative model
which characterizes the dynamics and the image observa-
tions of each individual subpart as well as the motion con-
straints among different subparts. Probabilistic variational
analysis of the model reveals a mean field approximation
to the posterior densities of each subparts given visual ev-
idence, and provides a computationally efficient way for
such a difficult Bayesian inference problem. In addition,
we design mean field Monte Carlo (MFMC) algorithms, in
which a set of low dimensional particle filters interact with
each other and solve the high dimensional problem collab-
oratively. Extensive experiments on tracking human body
parts demonstrate the effectiveness, significance and com-
putational efficiency of the proposed method.

1 Introduction
Tracking articulated motion in images is an important

problem, especially when the research of video-based hu-
man sensing has been advocated to achieve such emerg-
ing applications as perceptual interfaces [20], smart video
surveillance [8] and automatic video footage [4], etc.

The problem involves the localization and identification
of a set of linked but articulated subparts. Inheriting all
the difficulties from single object tracking, the problem of
tracking articulated body has to tackle some special chal-
lenges. One of these is the complexity incurred by the de-
grees of freedom of the articulated body.

Different from multiple target tracking where the motion
of each subpart is independent of others, the physical links
among different subparts reinforce motion constrains upon
these articulated subparts. We can have an intuitive com-
parison of these two cases by the configuration space which

is the joint motion space of the set of subparts. If the mo-
tion of subparts are independent, then configuration space
will enjoy a nice property that the motion of each subpart
stays in a linear subspace which is orthogonal to the sub-
spaces corresponding to other subparts. Thus, independent
trackers can be used to track independent multiple targets
and the complexity is almost linear w.r.t. the number of tar-
gets. However, when the subparts are physically linked, the
configuration space will not have such a nice orthogonal-
ity and factorization property of subspaces. Thus, the high
dimensionality seems unavoidable, which is generally asso-
ciated with the exponential increase of computation due to
the curse of dimensionality.

Various approaches have been investigated to alleviate
this challenge (see Section 2 for details), such as dynamic
programming [18], annealed sampling [6], partitioned sam-
pling [15, 16], eigenspace tracking [1], hybrid Monte Carlo
filtering [5], etc. Different from these approaches, in this
paper, we propose a novel solution based on a dynamic
Markov network model and variational mean field approx-
imations. The proposed dynamic Markov network embeds
the subparts constraints in an undirected graphical model
(i.e., a Markov network) associated with image observa-
tion processes, thus the model serves as a generative model
for the articulated motion. Due to the dense connections
in the graph, exact analysis is complicated and intractable.
When we perform an analysis based on variational mean
field method, tight approximation can be achieved while the
computational complexity is significantly reduced. At each
time instance, the mean field solution is achieved through
efficient Monte Carlo algorithm. And based on that, we
design a mean field sequential Monte Carlo for articulated
body tracking. Extensive experiments show the effective-
ness and efficiency of the proposed approach.

2 Related Work
There is a substantial literature on articulated motion

analysis, and many different approaches have been investi-
gated. For all these methods, three important issues should
be addressed: the representations for articulated objects, the
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computational paradigms, and the way of reducing compu-
tation.

Basically, there could be two types of choices for ar-
ticulated object representations. One employs joint an-
gles [3, 13, 17, 16, 21], while the other uses the collection
of the motion of all subparts. Of course, the first represen-
tation is non-redundant and reflects the degrees of freedom
of the articulated motion directly, while the second one is
highly redundant. However, due to the independence of
the joint angles, the first method may suffer from an irre-
ducible dilemma since the intrinsic dimensionality is prob-
ably reached. In this sense, the motion estimation problem
can be posed as an unconstrained optimization in a high di-
mensional space (if we do not consider the natural motion
constrain as in [21]). On the other hand, if the articulated
motion is redundantly described by the individual motion
of the subparts, each subpart may be solved individually,
and then projected to the constrained space. Thus, it cor-
responds to a constrained optimization problem in a high
dimensional space. By taking advantage of the structure of
such a redundant representation, efficient solutions can be
found as in this paper.

There are also different computational paradigms for ar-
ticulated motion analysis. It could be deterministic or prob-
abilistic. Deterministic methods generally formulate the
problem as a parameter estimation problem based on non-
linear programming techniques, and then differential ap-
proach can be taken [17, 3, 13]. Thus, the difficulty of lo-
cal minima exists. A probabilistic approach formulates the
motion analysis problem as a Bayesian inference problem,
where particle-based Monte Carlo strategies provide flex-
ible but intensive computing frameworks. In general, the
number of particles needed will increase exponentially with
the increase of the dimensionality.

Therefore, it is crucial to reduce the computation. Dif-
ferent schemes have been investigated to reduce the num-
ber of particles. For example, the annealed particle filtering
method performs a coarse-to-fine layered search [6], parti-
tioned sampling is in the spirit of coordinate descent and
preforms a hierarchical sampling [15, 16]. Both methods
work with high dimensional probability spaces. Different
from these methods, this paper presents a mean field Monte
Carlo (MFMC) algorithm in which a set of low dimensional
particle filters interact with each other to solve a high di-
mensional problem collaboratively.

3 The Representation of an Articulated Body
We denote the motion of each individual subpart by xi,

which can be the parameters of an affine motion. The
motion of an articulated body is the concatenation X �
�x�� � � � �xM �. Certainly, it is highly redundant. The im-
age observation associated with xk is denoted by zk, which
could be the detected edges of the shape contour of the sub-

part, and the collective image observation of the entire ar-
ticulated body is Z � �z�� � � � � zM �. An important task is
to infer the posterior p�XjZ�.
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Figure 1: The Markov Network for an articulated body.

As shown in Figure 1, a mixture of undirected and di-
rected graphical model can be used to characterize the gen-
erative process. The hidden layer is an undirected graph
Gx � fV�Eg, representing the relationship among differ-
ent articulated parts. Obviously, different parts are not in-
dependent, and each individual part only interacts with its
neighborhood parts. We denote the neighborhood parts of i
by N �i�. Clearly, it is a Markov network. In addition, each
individual part is associated with its observation and the
conditional likelihood distribution p�zijxi� is represented
by a directed link.

Given the undirected graph of X, p�X� can be modelled
as a Gibbs distribution and can be factorized as:

p�X� �
�

Zc

Y
c�C

�c�Xc� (1)

where c is a clique in the set of cliques C of the undirected
graph, Xc is the set of hidden nodes associated with the
clique and�c�Xc� is the probability of this clique, andZc is
a normalization term or the partition function. Although Zc
is difficult to compute, we do not compute it, since a Monte
Carlo method will be used as shown in later sections. The
model accommodates two types of cliques: the first order
clique, i.e., i � C� � V , and second order clique, i.e.,
�i� j� � C� � E, where C � C�

S
C�. The associated �

is denoted by �i and �ij , respectively. Thus, Eq. 1 can also
be written as:

p�X� �
�

Zc

Y
�i�j��C�

�ij�xi�xj�
Y
i�C�

�i�xi� (2)

where �i�xi� provides a local prior for xi, and �ij�xi�xj�
presents the constraints between the neighborhood nodes xi
and xj . In other words, �i�xi� predicates a prior for the i-
th part, while �ij�xi�xj� reinforces the constraints between
the i-th part and the j-th part. As a specific example, it can
be modelled as:

�ij�xi�xj� � eD�xi�xj�
T���D�xi�xj� (3)

where D�xi�xj� � ui�xi� � uj�xj�, and ui�xi� and
uj�xj� are shown in Figure 2.
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Figure 2: The constraint of two articulated parts.

Given a xi, its local observation zi is independent of
other articulated parts. Thus, we have:

p�ZjX� �
nY
i��

pi�zijxi�� (4)

The problem of great interest is to infer the posterior
p�xijZ�. An intuition is that the posterior of xi should be
affected by three factors: its local prior �i, its local evi-
dence zi, and the constraints reinforced by its neighborhood
through�ij . This intuition will become clearer in Section 4.
Since the exact analysis of such a model is complicated and
involves heavy computation, it is more plausible to have an
approximate but efficient solution.

4 Mean Field Approximation
Variational analysis provides an approximate method for

analyzing the model [12, 11]. The core idea of variational
approximation is to find an optimal variational distribution
q�X� that approximates the posterior distribution p�XjZ�,
such that the Kullback-Leibler (KL) divergence of these two
distributions is minimized, i.e.,

q��X� � argmin
q

KL�q�Xjjp�XjZ��

� argmin
q

Z
x

q�X� log
q�X�

p�XjZ�

Selecting a good class of variational distributions q would
largely ease the difficulties, but it requires substantial cre-
ativity [12]. Here, we adopt a fully factorized form for sim-
plicity:

q�X� �

MY
i

qi�xi� (5)

where qi�xi� is an independent distribution of the hidden
node xi. Then, H�q� �

P
iH�qi�, where H�q� is the en-

tropy of q�X�, and H�qi� is the entropy of q�xi�. Then, the
KL-divergence can be written as:

KL�qi� � �H�qi��

Z
xi

qi�xi�Eq �log p�X�Z�jxi�

�
X
k ��i

H�qk� � log p�Z� (6)

where Eq ��jxi� is the conditional expectation given xi w.r.t.
q�X�, and log p�Z� is the data likelihood, which is a con-
stant. To search for a set of qi to minimize Eq. 6, since
each qi is constrained to be a valid distribution function, we
should construct a Lagrangian for each qi:

L�qi� � KL�qi� � ��

Z
xi

qi � �� (7)

Setting the derivative to zero, it is easy to see the solution to
this constrained optimization problem is a set of fixed point
equations:

qi�xi� �
�

Zi
eEq�log p�X�Z�jxi� (8)

where Eq �log p�X�Z�jxi� is the conditional expectation
given xi, Zi is a partition function for normalization, and
� � i � M . The iterative updating of qi�xi� will mono-
tonically decrease the KL-divergence, and eventually reach
an equilibrium. These updating equations are called mean
field equations.

Moreover, the factorization of p�X� in Eq. 2 enables fur-
ther simplification of the mean field equations in Eq. 8. It is
easy to show that:

qi�xi���
�

Z �
i

pi�zijxi��i�xi�Mi�xi�� where

Mi�xi� � expf
X

k�N �i�

Z
xk

qk�xk� log�ik�xi�xk�g� (9)

where Z �
i is a constant, and N �i� is the neighborhood of

the subpart i. From Eq. 9, the intuition stated at the end
of Section 3 is more pronounced: the variational belief of
a subpart xi is determined by three factors: the local con-
ditional likelihood pi�zijxi�, the local prior �i�xi�, and the
beliefs of the neighborhood subpartsxN �i� (we call it neigh-
borhood prior). This is illustrated in Figure 3.

k kk
p (z |x ) local likelihood

neighborhood prior

local prior

k1
ψk2

ψ

ψ
km

k
ψ

Figure 3: Three factors affect the updating of q�xk�.

Thus,we can treat the term pi�zijxi��i�xi� as an ana-
logue as the local belief, and treat the term Mi�xi� as
an analogue to the “message” [7] propagated through the
nearby subpart of xi in the belief propagation approach, but
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the computation of Mi�xi� here is easier. In addition, we
can clearly see from this equation that the computation is
significantly reduced by avoiding multi-dimensional inte-
grals, since Eq. 9 involves only one dimensional integrals.

5 Mean Field Monte Carlo (MFMC)
In this section, we propose a Monte Carlo method to im-

plement the mean field updating as discussed in Section 4.
We call this method Mean Field Monte Carlo (MFMC).

Once the mean field updating converges to a fixed point,
then the set of optimal variational distributions q�xi�, where
i � �� � � � �M , is obtained and can be treated as the optimal
approximation to the posterior density p�xijZ�.

To make the presentation clear, here we use a 2-link body
as an example. W.l.g., we use i and j to index the two linked
subparts, and we use k to index the mean field iteration. At
the k � �-th iteration, for each subpart, a set of particle is
maintained to represent the variational distribution, i.e.,

qk��
i �xi� � fs�n�i �k � ��� �

�n�
i �k � ��gNn��

qk��
j �xj� � fs�n�j �k � ��� �

�n�
j �k � ��gNn��

where s and � denote the sample and the weight respec-
tively. Then at the next iteration, we perform the following
steps according to Eq. 9:

1. Sampling local prior �i�xi� for fs�n�i �k�� �gNn��;

2. calculating the “message” from j:

m
�n�
i �

NX
t��

�
�n�
j �k � �� log�ij�s

�n�
i �k�� s

�t�
j �k � ����

3. Performing observation for each particle s�n�i �k�,

w
�n�
i � p�zijs

�n�
i �k���

4. Re-weighting the particles by:

�
�n�
i �k� � em

�n�
i � w

�n�
i �

and normalize to produce fs�n�i �k�� �
�n�
i �k�g.

5. Performing the same steps for j according to Eq. 9.
And then increase k for next mean field updating.

After the k-th iteration, we end up with:

qki �xi� � fs�n�i �k�� �
�n�
i �k�gNn��

qkj �xj� � fs
�n�
j �k�� �

�n�
j �k�gNn��

After several iterations, the distribution will reach an equi-
librium. For a subpart which is linked to multiple subparts,
the only difference is in the 2nd step of calculating “mes-
sages”,

m
�n�
i �

X
j�N �i�

NX
t��

�
�n�
j �k � �� log�ij�s

�n�
i �k�� s

�t�
j �k � ����

which sums over all “messages” passed from the neighbors
N �i� (i.e., the Markov blanket) of xi.

Since xi describes the motion of a subpart, its image ob-
servation zi should be a function of xi, i.e., p�zijxi� is in
fact p�zi�xi�jxi�. Since p�zijxi� will be used to re-weight
the belief (or the posterior density) of xi, the locations of
the particles fs�n�i g will affect the faith of approximating
the belief by the set of particles, if the ratio of valid particles
is not satisfactory (meaning that a small portion of the par-
ticles dominates the re-weighting). To enhance the ratio of
valid particles, we use importance sampling technique [14]
to place the particles to “better” locations.

The only modification on the above mean field Monte
Carlo (MFMC) is on the first step: instead of sampling the
local prior ��xi� directly to produce fs�n�i � �gNn��, we draw

samples fs�n�i � �gNn�� from an importance density g�xi�.
After weight compensation, the set of re-weighted particle
still a properly weighted set for the density ��xi�, i.e.,

��xi� � fs�n�i �
��s

�n�
i �

g�s
�n�
i �

gNn���

The selection of importance density can be arbitrary. Here
we give an specific example by using a two-link (where i
and j are connected subparts). To generate samples for
�i�xi�, we find the means �si and �sj from the two parti-
cle sets. After identifying the point �uj on �sj and the me-

dian axis �Li of �si (see Figure 4), we sample u
�n�
i from

G�ui � �uj �	u�, and L
�n�
i from G�Li � �Li�	L�, where G

is Gaussian.

u i
(n)

(n)
s i

(n)

is
js

iL

ju

iL

Figure 4: Importance density.

Then the sample s�n�i is produced by �L
�n�
i � u

�n�
j �, and

the importance density is:

g�xi� � G�ui � �uj �	u�G�Li � �Li�	L��

Similar importance densities can be easily constructed for a
subpart which is linked to multiple subparts. The use of im-
portance sampling techniques greatly enhances the robust-
ness of the mean field Monte Carlo algorithms.

Sudderth et al [19] and Isard [9] have independently de-
veloped algorithms for the interactions among multiple par-
ticle sets. Their methods are based on belief propagation,
while our method on probabilistic variational analysis and
mean field iterations.
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6 Dynamic Markov Network and Sequential
Mean Field Monte Carlo

Section 4 and Section 5 describe the mean field approx-
imation and mean field Monte Carlo at one time instance.
They can be easily modified for tracking. When consid-
ering multiple time instances, the model becomes a dy-
namic Markov network, as shown in Figure 5. Denote

k,t+1

Z M,t+1

X
M,t

1,t+11,t

X
k,t

X
2,t

M,t+1

X

X

1,t

Z
M,t

Z
k,t

X

Z

X 2,t+1

2,t

X k,t+1

Z 1,t+1
Z

Z 2,t+1

Z

Figure 5: Dynamic Markov Network

the collection of observations by Zt � fZ�� � � � �Ztg.
Tracking algorithms aim at inferring p�XtjZt� by know-
ing p�Xt��jZt���. It involves a density propagation pro-
cess [10]:

p�XtjZt� � p�ZtjXt�

Z
xt��

p�XtjXt���p�Xt��jZt���

Once X consists of a number of articulated parts, the in-
crease of dimensionality will incur exponential increase of
computation. The advantage of mean field approximation
is that it decouples different parts, and transforms the prob-
lem of exponential complexity to a simpler problem close
to linear complexity. The constraint reinforcement needs
some computation as a cost, but it is not significant.

At time instance t, mean field approximation finds a vari-
ational distribution qi�t�xi� to approximate p�xi�tjZt� for
the i-th subpart. The mean field equation can be written as:

qi�t�xi�t� �
�

Z �
i

pi�zi�tjxi�t��

Z
p�xi�tjxi�t���qi�t���xi�

� expf
X

k�N �i�

Z
xk�t

qk�t�xk� log�ik�xi�t�xk�t�g (10)

Comparing Eq. 10 to Eq. 9, we clearly see that the predica-
tion density

R
p�xi�tjxi�t���qi�t���xi� in Eq. 10 of a dy-

namic Markov network plays the same role as �i�xi� in
Eq. 9. Thus, at time instance t, the variational belief of the
i-th subpart is also determined by three factors: the local
evidence, the predication prior from previous time frame,
and the belief of the neighborhood subparts.

Therefore, the sequential mean field Monte Carlo can be
obtained by modifying the mean field Monte Carlo algo-
rithm in Section 5. At the first step, instead of sampling
from �i�xi�, we should sample the prediction prior instead.

Suppose at t� �, qi�t���xi� is represented by:

qi�t���xi� � fs�n�i�t��� �
�n�
i�t��g

N
n���

The, we can use the following steps to replace the 1st step
in the mean field Monte Carlo algorithm in Section 5:

1.a Re-sampling from qi�t���xi� for fes�n�i�t��� �g
N
n��.

1.b � es�n�i�t , sampling s�n�i�t from p�xi�tjxi�t���.

Impressive results have been achieved and reported in Sec-
tion 7.

We have a rough comparison on the computational
complexity of the proposed approach with the original
Condensation algorithm with joint angle representation.
Assume the articulated body consists of M subparts, each
of which contribute one DoF, and assume a number of T
particles are needed for tracking one subpart. In addition,
we assume when one more DoF is added,Condensation
needs P � T particles to work. Through our experiments,
�
 is reasonable for P . In our mean field Monte Carlo, we
denote the number of mean field iteration by K, which is
5 in our experiments. In both methods, the most intensive
computation is on calculating image observation, while the
extra computation induced byMi�xi� in Eq. 9 is negligible.
Thus, the complexity of our method is O�TKM�, while
Condensation has O�TPM��� which is much larger
than the proposed mean field Monte Carlo algorithm.

In addition, MFMC is different from the partitioned
sampling (PS) method [15, 16], although both can reduce
the exponential complexity. (1) PS applies to centralized
models with independent dimensions, while MFMC can
handle various HDMs including articulation, deformation
and multi-motion; (2) PS uses one high-dimensional parti-
cle filter, while MFMC use a network of low-dimensional
but collaborative particle filters; (3) PS is hierarchical
and uni-directional, while MFMC is networked and multi-
directional.

7 Results
We performed extensive experiments on articulated body

with different DoFs, and obtained impressive results as re-
ported in this section.

7.1 Experimental Setup
Our experiments mainly concerned about 2D tracking.

Thus we adopted a cardboard model where each subpart in
the articulated body is represented by a planar object, and
thus the state of xi is the parameters of a 2D affine trans-
form. The motion model p�xi�tjxi�t��� is a standard 2nd
order const acceleration model for each subpart. Although
the motion model can be learned, we preset the parameters
for simplicity.
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The observation model p�zijxi� is also an important fac-
tor in tracking. We used two types of visual cues: edge
and intensity. We adopted the same method in CONDENSA-
TION [10, 2] for edge observation, where a set of indepen-
dent measurement lines were used to measure the likelihood
of detected edge points. In addition, since the articulated
targets were human body parts and the skin or clothes on
the body parts are similar, we also used the intensity clue
and assumed the distribution of the intensity of a subpart
be a Gaussian distribution. The mean and variance of the
Gaussian density was trained for each individual subpart.

7.2 Results of MFMC Iteration
To verify if the mean field updating does converge and

to check if it is functioning as expected, we collected the
intermediate results on MFMC iteration. Two examples are
shown in Figure 6 and Figure 7. The upper half shows an
example of a 2-part arm, and the lower half 3-part finger.
In both cases, the estimates of the first five iterations are
shown. Before the iteration, the initial status was quite un-
pleasant. But after a couple of mean field iteration, the esti-
mates settled down on the right positions as expected. From
our experiments, most iterations converged in less than five
times.
7.3 Various Articulated Objects

To demonstrate the effectiveness, efficiency and scala-
bility, we performed experiments on various articulated ob-
jects of difference DoFs, including a 2-part arm, 3-part fin-
ger, 6-part upper body, and 10-part full body �.

The first test sequence is a 2-part arm, which consists
of two subparts: upper arm and lower arm. The sequence
consists of 441 frames. The lower arm presents larger mo-
tion than upper arm in the testing sequence. The MFMC
algorithm performed excellently due to the constraint rein-
forcement. Sample frames are shown in Figure 8.

We compared the results from MFMC with multiple in-
dependent trackers (MiT). Although there are only two sub-
parts, MiT did not produce satisfactory results, since ei-
ther one had risks to lose track and there were no other
constraints to get it back except image observations, and
MiT hardly produced plausible results satisfying the phys-
ical link constraints. Some frames of MiT are shown in
Figure 9.

The second test sequence is on a 3-part finger and con-
sists of 182 frames. As expected, MFMC produced very
robust and stable result. Sample frames are shown in Fig-
ure 10.

The third test sequence is on a 6-part upper body, where
complex arm motions present as well as global movement
of the torso and head. The sequence consists of 834 frames.
Although the articulation is quite complicated, it did not fail
MFMC. Sample frames are shown in Figure 11.

�Demo sequences are at http://www.ece.nwu.edu/˜yingwu.

The most complicated test sequence we have experi-
mented is the 10-part full body motion, and sequence has
368 frames. Arms and legs are the most articulated body
parts, and they present significant motion. None of our run
of MiT succeeded, because a leg was easy to get lost and
never be able to come back. Sample frames of MiT are
shown in Figure 12.

When MFMC was applied, the tracking result was still
very stable unlike MiT. Through subjective evaluation, the
tracking quality did not decrease due to the increase of the
complexity of the articulation. Sample frames are shown in
Figure 13.

The MFMC algorithm runs on a single processor PC of
2.0GHz running WindowXP. We did not perform code op-
timization. For all these experiments, the number of mean
field iteration was set to 5. The number of particles for each
part and the frame rates are shown in Table 1.

experiments 2-part 3-part 6-part 10-part

particles/part 200 200 200 200
frame/second 2.02 1.28 0.94 0.56

Table 1: A comparison of the computation of different articulated
objects. The exponential requirement for computation is overcome
as expected.

8 Discussion and Conclusions
Tracking articulated objects is a challenging problem,

since the increase of number of subparts and the physical
connection constraints of them would potentially incur high
dimensionality, and fail tracking algorithms developed for
single target. Thus, algorithms with close to linear com-
plexity would have much better scalability. In this paper,
we propose a collaborative approach to achieve such a goal.
Instead of using the joint angle representation which is irre-
ducible, we adopt a highly redundant representation for ar-
ticulated body, i.e., represent individual subpart by its own
motion parameters, but reinforce the constraints of different
subparts by a Markov network. Variational analysis is per-
formed for approximated analysis of this graphical model.
Interestingly, a set of fixed point equations (i.e., the mean
field equations) is found, which suggests a collaborative
solution to the problem through interaction with neighbor-
hood subparts and through iterations. Then a mean field
Monte Carlo (MFMC) algorithm is designed to achieve ef-
fective computation. Considering motion, we propose a dy-
namic Markov network model and MFMC is extended to a
sequential MFMC algorithm for tracking. Extensive exper-
iments demonstrate the applicability of the proposed meth-
ods.
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Figure 6: The first five iterations of MFMC on the (2-part) Arm sequence.

Figure 7: The first five iterations of MFMC on the (3-part) Finger sequence.

One of the future work is to extend the algorithm to
3D. Since self-occlusion seems a severe issue for articulated
motion, another possible direction is to design collaborative
algorithms for solving the occlusion problem.
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Figure 8: Mean field Monte Carlo (MFMC): tracking 2-part arm.

Figure 9: Multiple independent tracker (MiT): tracking 2-part arm.

Figure 10: Mean field Monte Carlo (MFMC): tracking 3-part finger.

Figure 11: Mean field Monte Carlo (MFMC): tracking 6-part upper body.

Figure 12: Multiple independent tracker (MiT): tracking 10-part full body.

Figure 13: Mean field Monte Carlo (MFMC): tracking 10-part full body.
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