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Abstract

In recent years particle filters have become a tremen-
dously popular tool to perform tracking for non-linear
and/or non-Gaussian models. This is due to their simplic-
ity, generality and success over a wide range of challeng-
ing applications. Particle filters, and Monte Carlo methods
in general, are however poor at consistently maintaining
the multi-modality of the target distributions that may arise
due to ambiguity or the presence of multiple objects. To
address this shortcoming this paper proposes to model the
target distribution as a non-parametric mixture model, and
presents the general tracking recursion in this case. It is
shown how a Monte Carlo implementation of the general
recursion leads to a mixture of particle filters that interact
only in the computation of the mixture weights, thus lead-
ing to an efficient numerical algorithm, where all the results
pertaining to standard particle filters apply. The ability of
the new method to maintain posterior multi-modality is il-
lustrated on a synthetic example and a real world tracking
problem involving the tracking of football players in a video
sequence.

1. Introduction

Tracking involves the detection and recursive localisa-
tion of an object or objects of interest based on sequential
data measurements. Typical examples include face track-
ing in video sequences [6], tracking aircraft using radar
returns [2], localising a mobile robot using laser range
measurements [12], and many more. In practical settings
there are many factors that contribute towards the uncer-
tainty in an object’s exact location and configuration. These
include measurement noise, inaccurate modelling, clutter
(false positives), fluctuations in environmental conditions,
etc. To adequately capture the uncertainty due to these fac-
tors a probabilistic framework is required.

Within a tracking context one particularly popular ap-
proach is Bayesian Sequential Estimation. This framework
allows the recursive estimation of a time-evolving posterior

distribution that describes the object state conditional on all
the observations seen so far, commonly known as the filter-
ing distribution. It requires the definition of a Markovian
dynamic model that describes how the object state evolves,
and a model to evaluate the likelihood of a hypothesised
state giving rise to the observed data. This, in theory, is
sufficient to allow recursive estimation of the filtering dis-
tribution. However, the likelihood models for tracking often
lead to intractable inference, requiring approximation tech-
niques.

In recent years Sequential Monte Carlo Estimation, oth-
erwise known as Particle Filtering [4], has proved to be a
popular approximation methodology. Its popularity stems
from its simplicity, generality and success over a wide range
of challenging applications. It represents the filtering distri-
bution with a set of samples, or particles, and associated im-
portance weights, which are then propagated through time
to give approximations of the filtering distribution at subse-
quent time steps. It requires only the definition of a suitable
proposal distribution from which new particles can be simu-
lated, and the ability to evaluate the likelihood and dynamic
models.

One important shortcoming of particle filters, and Monte
Carlo methods in general, is that they are poor at consis-
tently maintaining the multi-modality in the target distribu-
tion. Multiple modes arise if there is ambiguity about the
object state due to insufficient measurements or clutter, or
if the measurements come from multiple objects. In the first
case it is desirable to track all the modes until the ambiguity
can be naturally resolved, and in the second, it is often re-
quired to track all the objects present. In a practical particle
filter implementation, however, it often happens that all the
particles quickly migrate to one of the modes, subsequently
discarding all other modes.

This paper introduces a strategy that is better able to
maintain multi-modality. Working from the assumption that
mixture models are inherently more effective at capturing
multiple modes, the target distribution is formulated as a
non-parametric mixture of filtering distributions. As is the
case for Bayesian sequential estimation a general frame-
work is derived in which the mixture filtering distribution
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can be computed recursively in two steps: a prediction step,
followed by an update step when the new data becomes
available. A Monte Carlo implementation of the general
framework essentially leads to a mixture of particle filters
that interact only in the computation of the mixture weights.
This result is elegant in the sense that all the results that hold
for standard particle filters transfer to the individual mixture
components. Furthermore, the approach can be combined
with any convenient strategy to obtain and update the mix-
ture representation.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the general mixture tracking framework.
Section 3 shows how a Monte Carlo implementation of the
general framework leads to a mixture of particle filters. Sec-
tion 4 discusses some important issues regarding the initial-
isation and updating of the mixture representation. In Sec-
tion 5 the proposed algorithm is compared to the standard
particle filter on two problems. The first is a synthetic exam-
ple where the multi-modality is due to ambiguity, whereas
the second is a real world problem involving the tracking of
multiple football players in a video sequence. The paper is
summarised in Section 6.

Related Work

The weakness of particle methods to maintain multi-
modality has been acknowledged before. The authors in
[9] introduce the idea of clustered particle filtering to guard
against samples sets becoming prematurely impoverished
in the context of mobile robot localisation in highly sym-
metric environments. The algorithm essentially groups the
particles into clusters that are independently tracked. Each
cluster is assigned a probability that is tracked using another
Monte Carlo filter operating at a higher level. The cluster
with the highest probability at any particular time step is
deemed to correspond to the true robot configuration at that
instant.

In the special context of multi-object tracking a vast body
of literature exists. However, most algorithms broadly fall
into one of two categories. The first builds multi-object
trackers by multiple instantiations of single object tracking
algorithms, e.g. [3, 11]. Strategies with various levels of so-
phistication have been developed to interpret the output of
the resulting trackers in the case of occlusions and overlap-
ping objects. The second category of multi-object trackers
explicitly extends the state-space to include components for
all the objects of interest, e.g. [7, 8]. A variable number of
objects can be accommodated by either dynamically chang-
ing the dimension of the state-space, or by a correspond-
ing set of indicator variables signifying whether an object is
present or not.

2. Mixture Tracking

Let xt denote the state of the object of interest, and yt =
(y1 · · ·yt) the observations up to time t. For tracking the
distribution of interest is the filtering distribution p(xt|yt).
In Bayesian sequential estimation this distribution can be
computed using the two step recursion:

predict: p(xt|yt−1) =
∫

D(xt|xt−1)p(dxt−1|yt−1)

(1)

update: p(xt|yt) =
L(yt|xt)p(xt|yt−1)∫
L(yt|st)p(dst|yt−1)

, (2)

where the prediction distribution follows from marginali-
sation, and the new filtering distribution is a direct conse-
quence of Bayes’ rule. The recursion requires the speci-
fication of a dynamic model describing the state evolution
D(xt|xt−1), and a model that gives the likelihood of any
state in the light of the current observation L(yt|xt). The
recursion is initialised with some initial distribution p(x0).

To capture multi-modality this paper formulates the fil-
tering distribution as a M -component mixture model, i.e.

p(xt|yt) =
M∑

m=1

πm,tpm(xt|yt), (3)

with
∑M

m=1 πm,t = 1. Note that no parametric model is as-
sumed for the individual mixture components. The remain-
der of this section shows how this non-parametric mixture
representation can be updated recursively in the same fash-
ion as the two step approach for standard Bayesian sequen-
tial estimation.

Assuming that the mixture filtering distribution
p(xt−1|yt−1) is known, the new prediction distribution is
obtained by substitution into (1), leading to

p(xt|yt−1) =
M∑

m=1

πm,t−1

∫
D(xt|xt−1)pm(dxt−1|yt−1)

=
M∑

m=1

πm,t−1pm(xt|yt−1),

with pm(xt|yt−1) =
∫

D(xt|xt−1)pm(dxt−1|yt−1) the
prediction distribution for the m-th component. Thus the
new prediction distribution is straightforwardly obtained by
computing the prediction distribution for each of the com-
ponents individually, and combining them in a mixture that
retains the original component weights.

To obtain the new filtering distribution the prediction dis-
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tribution is substituted into (2), leading to

p(xt|yt) =
∑M

m=1 πm,t−1L(yt|xt)pm(xt|yt−1)∑M
n=1 πn,t−1

∫
L(yt|st)pn(dst|yt−1)

=
M∑

m=1

[ πm,t−1

∫
L(yt|st)pm(dst|yt−1)∑M

n=1 πn,t−1

∫
L(yt|st)pn(dst|yt−1)

]

×
[ L(yt|xt)pm(xt|yt−1)∫

L(yt|st)pm(dst|yt−1)

]
.

In the second line the second term in brackets is easily
recognised as the new filtering distribution for the m-th
component, i.e.

pm(xt|yt) =
L(yt|xt)pm(xt|yt−1)∫
L(yt|st)pm(dst|yt−1)

.

The first term in brackets is independent of the state xt, and
if this is taken to be the new weight, i.e.

πm,t =
πm,t−1

∫
L(yt|st)pm(dst|yt−1)∑M

n=1 πn,t−1

∫
L(yt|st)pn(dst|yt−1)

=
πm,t−1pm(yt|yt−1)∑M
n=1 πn,t−1pn(yt|yt−1)

,

(4)

the new filtering distribution is again a mixture of the indi-
vidual component filtering distributions, as in (3). This is an
elegant result indeed and means that the filtering recursion
can be performed for each component individually. The cor-
rect target distribution is maintained as long as the mixture
weights are updated according to (4). The new component
weight is the normalised weighted likelihood for the com-
ponent. This is the only part of the procedure where the
components interact.

3. Particle Approximation

The general mixture tracking recursion introduced in the
previous section yields closed-form expressions in only a
small number of cases. A notable example occurs if both
the dynamic and likelihood models are linear and Gaus-
sian, resulting in a mixture of Kalman filters [1]. For mod-
els that are non-linear and/or non-Gaussian approximation
techniques are required.

One popular approximation strategy is Sequential Monte
Carlo methods [4], otherwise known as Particle Filters.
These have gained tremendous popularity in recent years
as a numerical approximation strategy for complex mod-
els. This is due to their simplicity, generality and modelling
success over a wide range of challenging applications. The
particle filter is a Monte Carlo method that represents the
target distribution with a weighted set of samples that are
propagated in such a manner so as to maintain a properly

weighted sample from the target distribution at subsequent
time steps. The remainder of this section presents the details
of a particle approximation to the general mixture tracking
recursion.

In what follows let Pt = {N,M,Πt,Xt,Wt, Ct} denote
the particle representation of the mixture filtering distribu-
tion in (3), with N the number of particles, M the num-
ber of mixture components, Πt = {πm,t}M

m=1 the mixture

component weights, Xt = {x(i)
t }N

i=1 the particles, Wt =
{w(i)

t }N
i=1 the particle weights, and Ct = {c(i)

t }N
i=1 the com-

ponent indicators, i.e. c
(i)
t ∈ {1 · · ·M}, with c

(i)
t = m if

particle i belongs to mixture component m. The particle
representation implies a Monte Carlo approximation of the
mixture filtering distribution of the form

p(xt|yt) =
M∑

m=1

πm,t

∑
i∈Im

w
(i)
t δ

x
(i)
t

(xt),

where δa(·) is the Dirac delta measure with mass at a, and
Im = {i ∈ {1 · · ·N} : c

(i)
t = m} is the set of indices of the

particles belonging to the m-th mixture component. Note
that the mixture component weights and the particle weights
for each mixture component sum to one, i.e.

∑M
m=1 πm,t =

1 and
∑

i∈Im
w

(i)
t = 1, m = 1 · · ·M .

Given a particle set Pt−1 that is approximately dis-
tributed according to p(xt−1|yt−1), the objective is to com-
pute the new particle set Pt such that it is a sample set from
p(xt|yt). Recall that in the general mixture tracking recur-
sion each mixture component evolves independently, and
that the mixture components interact only in the computa-
tion of the mixture weights. In the same way the particle
representations for the mixture components also evolve in-
dependently. Considering the m-th component, the sam-
ples {x(i)

t−1, w
(i)
t−1}i∈Im

is a properly weighted sample set
from pm(xt−1|yt−1). New samples are generated from a
suitably chosen proposal distribution, which may depend
on the old state and the new measurement, i.e. x(i)

t ∼
q(xt|x(i)

t−1,yt), i ∈ Im. To maintain a properly weighted
sample set the new particle weights are set to

w
(i)
t =

w̃
(i)
t∑

j∈Im
w̃

(j)
t

, w̃
(i)
t =

w
(i)
t−1L(yt|x(i)

t )D(x(i)
t |x(i)

t−1)

q(x(i)
t |x(i)

t−1,yt)
.

The new sample set {x(i)
t , w

(i)
t }i∈Im

is then approximately
distributed to pm(xt|yt).

To obtain the new mixture weights it is necessary to
compute the component likelihoods pm(yt|yt−1), m =
1 · · ·M . Using the particles a Monte Carlo approximation
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to the m-th component likelihood can be obtained as

pm(yt|yt−1) =
∫∫

L(yt|xt)D(dxt|xt−1)pm(dxt−1|yt−1)

≈
∑

i∈Im

w
(i)
t−1

L(yt|x(i)
t )D(x(i)

t |x(i)
t−1)

q(x(i)
t |x(i)

t−1,yt)
=

∑
i∈Im

w̃
(i)
t .

Substituting this result into (4) leads to an approximation
for the new mixture weights given by

πm,t ≈ πm,t−1w̃m,t∑M
n=1 πn,t−1w̃n,t

, w̃m,t =
∑

i∈Im

w̃
(i)
t .

From time to time it is necessary to resample the particles
to avoid degeneracy of the weights (see [5] for more de-
tails on degeneracy and resampling procedures). Standard
resampling, however, is insensitive to the locations of the
particles, and may lead to a loss of support in the target
distribution. A very important point to note here is that the
mixture modelling approach allows independent resampling
of each of the mixture components according to the compo-
nent particle weights, thus naturally preserving the support
of the posterior distribution. Following such a procedure
the new particle weights become w

(i)
t = 1/|Im|, i ∈ Im,

where | · | denotes the set size operator.

4. Mixture Computation

The discussion up to this point showed how a mixture
representation for the filtering distribution can be propa-
gated, once such a representation is available. So far noth-
ing has been said about how to obtain and maintain the
mixture representation. In the ideal case there would be
one mixture component for each of the modes in the tar-
get distribution. In practice, however, the number of modes
in the target distribution is rarely known beforehand. Fur-
thermore, the number of modes is unlikely to remain fixed,
but may fluctuate as ambiguities arise and are resolved, or
objects appear and disappear.

Thus, from time to time it is necessary to recompute the
mixture representation to take account of these fluctuations.
For example, it may be desirable to merge components that
have a significant degree of overlap, and split components
that have become too diffuse. Fortunately this is easy to
achieve using the particle representation.

Denote by (C′
t,M

′) = F(Xt, Ct,M) a spatial reclus-
tering procedure. It takes as inputs the particles and the
current mixture representation (component indicators and
number of components), and computes a new mixture
representation that may or may not have the same num-
ber of components as the original representation. Such a
function encapsulates any mixture computation operation
of interest, including merging, splitting, reclustering etc.

What remains is to compute the new mixture and particle
weights, Π′

t and W ′
t, so that the new mixture approxima-

tion P ′
t = {N,M ′,Π′

t,Xt,W ′
t, C′

t} is equal in distribution
to Pt. These are straightforwardly obtained by developing
the mixture representation for Pt as follows:

p(xt|yt) =
M∑

m=1

πm,t

∑
i∈Im

w
(i)
t δ

x
(i)
t

(xt)

=
N∑

i=1

π
c
(i)
t ,t

w
(i)
t δ

x
(i)
t

(xt) =
M ′∑

m=1

∑
i∈I′

m

π
c
(i)
t ,t

w
(i)
t δ

x
(i)
t

(xt)

=
M ′∑

m=1

π′
m,t

∑
i∈I′

m

w
′(i)
t δ

x
(i)
t

(xt),

where the new mixture and particle weights are given by

π′
m,t =

∑
i∈I′

m

π
c
(i)
t ,t

w
(i)
t , w

′(i)
t =

π
c
(i)
t ,t

w
(i)
t

π′
c
′(i)
t ,t

.

With these weights the recomputed mixture P ′
t represents

exactly the same distribution as Pt, and can be substituted
for Pt without affecting the convergence properties of the
particle filter. Note that the particles Xt are not affected in
the new representation.

The reclustering function F can be implemented in any
convenient way. For the applications in this paper the initial
mixture representation is obtained by K-means clustering of
the initial sample set, which is simulated from some initial
state distribution p(x0). At each iteration the mixture repre-
sentation is recomputed by merging clusters with significant
overlap, and splitting clusters that have become too diffuse.
Following this the new mixture components are refined by
a run of the K-means algorithm, initialised with the compo-
nents obtained after the merging and splitting procedures.
This simple strategy that allows both the mixture compo-
sition and the number of mixture components to vary was
found to work well in the applications considered here, as
illustrated in the following section.

5. Experiments and Results

This section compares the performance of the proposed
mixture particle filter with that of the standard particle filter
on two multi-modal tracking problems. The first is a syn-
thetic example where the multimodality is due to ambiguity.
The second is a real world problem involving the tracking
of multiple football players in a video sequence.

5.1. Synthetic Example

The purpose of this example is to establish a baseline
performance comparison between the standard and mix-
ture particle filters on a problem where the ground truth is
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known. The model considered is scalar, and the governing
equations are given by

D(xt|xt−1) = N(xt|xt−1, σ
2
x)

L(yt|xt) = N(yt|x2
t , σ

2
y),

where N(·|µ, σ2) denotes the univariate Gaussian distribu-
tion with mean µ and variance σ2. In the results reported
here the parameters were set to σx = σy = 0.1. The
symmetry of the Gaussian random walk dynamics and the
quadratic term in the likelihood means that the filtering dis-
tribution has two modes of equal mass1 at ±x∗

t , with x∗
t the

true state. An exception occurs when |x∗
t | is close to zero,

in which case the two modes merge, resulting in a single
mode at zero.

Figure 1 shows some synthetic data for 100 time steps.
Note that the true state was not simulated from the model,
but deterministically generated to be sinusoidal. The ability
of the standard and mixture particle filters to maintain the
ambiguity was tested on this data set. In both cases the ini-
tial particles were uniformly generated, and the particle pro-
posal was taken to be the dynamics, so that the new particle
weights become proportional to the old weights multiplied
by the corresponding likelihoods. The mixture particle filter
was constrained to have a maximum of two components.

The comparative results for a typical run with 100 parti-
cles are given in Figure 1. The standard particle filter loses
track of the true mode after time step 60. This behaviour
is common in particle filters, and Monte Carlo methods in
general. The mixture particle filter, however, is able to suc-
cessfully track both modes throughout.

To determine the generality of this result the experiment
was repeated 20 times for different numbers of particles.
For each run the performance score was defined as the
fraction of time steps during which both modes were rep-
resented, thus ranging from zero (only one mode tracked
throughout) to one (both modes tracked throughout). The
results are given in Figure 2. As expected the performance
of the standard particle filter increases with an increase in
the number of particles, up to 500 particles, from which
point it is able to consistently track both modes. Even with
a small number of particles the mixture particle filter never
fails to track both modes. It is interesting to note the be-
haviour of the first mixture component weight, also depicted
in Figure 2. Since both modes are equally strong the mean
weight is approximately 0.5 over all the time steps, regard-
less of the number of particles. The variability in the weight
behaviour, however, decreases with an increase in the num-
ber of particles.

1Assuming that the initial state distribution is also symmetric.

10 20 30 40 50 60 70 80 90 100
time step

10 20 30 40 50 60 70 80 90 100
time step

true state
false state
observation

Figure 1. Simulated particles. (Top) Standard
particle filter with 100 particles. (Bottom) Mix-
ture particle filter with a maximum of two mix-
ture components and 50 particles per compo-
nent. The standard particle filter loses track
of the true mode after time step 60, whereas
the mixture particle filter tracks both modes
throughout.

5.2. Visual Tracking

This section considers the problem of tracking football
players in a video sequence. In this setting the multi-
modality is due to the presence of multiple objects (football
players), and to some extent, clutter.

More precisely, the object of interest is represented by
its bounding box. However, more general object models
can easily be accommodated. The reference bounding box
to be tracked is specified by the user, and parameterised as2

Bref = (xref , yref , lx, ly), where (xref , yref ) is the centre
of the bounding box, and lx and ly are the bounding box
width and height, respectively. For the tracking the state
of the bounding box is taken to be x = (x, y, sx, sy), so

2In what follows the time subscript is suppressed for the sake of brevity.
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Figure 2. Multiple runs. (Top) Score curves.
Performance score and error bars as a func-
tion of the number of particles. (Bottom) Mix-
ture component one weight behaviour for an
increasing number of particles. The mean
weight is indicated by a solid line, and is ap-
proximately 0.5, since both modes are equally
strong. The dashed one standard deviation
lines indicate a decrease in the weight vari-
ability as the number of particles increases.

that the corresponding hypothesised bounding box becomes
Bx = (x, y, sxlx, syly). The variables sx and sy thus act
as scale factors. The components of the state are assumed
to follow independent Gaussian random walk models with
variances (σ2

x, σ2
y, σ2

sx
, σ2

sy
). The measurements are taken

to be the normalised histograms of the pixel colour compo-
nents within the bounding box, i.e. y = (hR

Bx
,hG

Bx
,hB

Bx
).

Note that the measurements depend on the object state. The

likelihood for a hypothesised state is defined as

L(y|x, Bref ) ∝ exp
[
−(

B2(hR
Bx

,hR
Bref

)

+ B2(hG
Bx

,hG
Bref

) + B2(hB
Bx

,hB
Bref

)
)
/2σ2

]
,

where B(h1,h2) is the Bhattacharyya distance between the
normalised Nb bin histograms h1 and h2, defined as

B(h1,h2) =
[
1 −

Nb∑
b=1

√
hb,1hb,2

]1/2

∈ [0, 1].

Thus the closer the colour histograms in the hypothesised
bounding box are to the corresponding colour histograms in
the reference bounding box, the higher the likelihood for the
hypothesis. The width of the likelihood is controlled by the
variance parameter σ2. This likelihood is highly non-linear
due to the mapping from the state to the measurements. A
similar model was employed in the context of object track-
ing before in [10].

This model with Nb = 30, σ = 0.15, and
(σ2

x, σ2
y, σ2

sx
, σ2

sy
) = (2.5, 1.5, 0.05, 0.05), was used to

track the football players in red in the video sequence for
which a number of keyframes appear in Figure 3. For both
the standard and the mixture particle filters the proposal was
taken to be the dynamics, and the initial particles were gen-
erated around the red football players in the first frame. For
the standard particle filter 200 particles were used, whereas
the mixture particle filter was constrained to have a maxi-
mum of 10 components, with 20 particles for each compo-
nent alive. Thus the total number of particles for the mix-
ture particle filter is always equal or less than that for the
standard particle filter.

A typical tracking result for both algorithms is depicted
in Figure 3. Both algorithms are initialised in exactly the
same manner around the four players to be tracked. Even
with a large number of particles the standard particle filter
is unable to maintain the multi-modality for more than a
few frames. The mixture particle filter, however, quickly
discovers the four main modes, and successfully track them
throughout the video sequence.

6. Conclusions

This paper proposed to model the filtering distribution as
a mixture model to better cope with the multi-modality that
may arise due to ambiguity or the presence of multiple ob-
jects. The general tracking recursion for the mixture model
was shown to comprise a prediction step and an update step,
similar to the standard Bayesian recursion for a single com-
ponent model. It was also shown how a Monte Carlo im-
plementation of the general recursion leads to a mixture of
particle filters that interact only in the computation of the
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initialisation #17 #21 #105

Figure 3. Visual tracking results. (Top) Standard particle filter with 200 particles. (Bottom) Mixture
particle filter with a maximum of 10 mixture components and 20 particles per component. All the
particles for the standard particle filter quickly migrate to one of the modes. The mixture particle filter
rapidly discovers the four main modes and successfully track them throughout the video sequence.

mixture weights. This mixture particle filter is able to main-
tain the multi-modality inherent in tracking problems where
the standard particle filter fails, as was illustrated on a syn-
thetic and a real world tracking problem.
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