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Abstract

In this note we present a coupled optimization model for
boundary determination. One part of the model incorpo-
rates a prior shape into a geometric active contour model
with a fixed parameter. The second part determines the
‘best’ parameter used in the first part by maximizing the mu-
tual information of the image geometry between the prior
and an aligned novel image over all the alignments, that
are the solutions of the first part corresponding to different
parameters. We also present an alternative method, which
generates an intensity model formed as the average of a set
of aligned training images. Experimental results on car-
diac ultrasound images are presented. These results indi-
cate that the proposed model provides close agreement with
expert traced borders, and the parameter determined in this
model for one image can be used for images with similar
properties. The existence of a solution to the proposed min-
imization problem is also discussed.

1 Introduction
In numerous medical imaging modalities, the boundaries
of anatomical structures cannot be detected by algorithms
that only use edge or region information. Reasons for this
problem include significant signal loss, noise, and non-
uniformity of regional intensities. These problems are ever
present for images acquired in cardiac ultrasound, where
the boundary detection problem is further complicated by
the presence of confusing anatomical structures. In some
cases, an image sequence may even have portions of the
myocardium that lie outside of the sector scan so that some
segments of its boundary may not be visible at all.

In an effort to overcome these difficulties, various tech-
niques have been developed to incorporate prior informa-
tion into the segmentation process. In [?] and [?], a sta-
tistical shape model was constructed from a set of corre-
sponding points across the training images. This informa-

tion was used in a Bayesian formulation to find the object
boundary. In [?] a Gaussian model was fit to a training set
of corresponding feature points. In [?] mixed models were
used to fit to the data for specific applications where the
distributions are non-Gaussian. In an alternate approach in
[?], Staib and Duncan specified the shape of the curve by
creating statistical priors on the Fourier coefficients of the
contour. This prior was incorporated into segmentation pro-
cessing in a Bayesian framework. Szekely, et. al. [?] also
developed Fourier parameterized shape models, where an
elastic fit of of the shape model in the subspace of eigen-
modes was used to restrict the deformations. In an another
approach, Tagare [?] matched shape templates to a bound-
ary in an image. In [?] a method of deformable templates
was proposed for feature extraction from faces. The fea-
tures of the interest were described by a parameterized tem-
plate which interacts dynamically with the image to mini-
mize the energy function. More deformable models in med-
ical image segmentation can be found in [?].

Recently, statistical shape knowledge has been incorpo-
rated in edge based or region based active contours. Lev-
enton, et al. [?] extended geometric active contour methods
developed in [?, ?] by incorporating shape information into
the evolution process. A principal component analysis was
used to form a statistical shape model from a training set
represented by using signed distance functions. A segmen-
tation result was obtained by first involving the interface to
capture image gradient, and then a correction was made by
maximizing a posterior estimate of shape and pose. Chen,
et al. [?] presented a variational technique to incorporate
shape information into the geodesic active contours, The ba-
sic idea of their model is the creation of a shape term in the
energy of the geodesic active contour, so that the propaga-
tion of the active contour stops when it arrives at high image
gradients. and forms a shape similar to the prior. The shape
term also recovers a similarity transformation that aligns the
interface to the prior shape. Shape prior has also been used
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in region based segmentation schemes. For example, Cre-
mers, et al. [?] incorporated statistical shape knowledge
into the Mumford-Shah segmentation scheme [?] by adding
a shape term to the Mumford-Shah energy functional. Tsai,
et al. [?] designed a segmentation technique based on a
parametric shape model, where the parameters are calcu-
lated to minimize a region based objective function.

Besides using shape prior, Leventon, et al. [?] incorpo-
rated intensity and curvature priors to segmentation process
by an approach similar to the one he developed in [?].

While experimental results have shown the effectiveness
of prior-based models in numerous medical applications,
many problems remain including the complexity and vari-
ability of the images, the accuracy of the measurements
obtained, and the rapid computation times required by the
user. One practical problem is how to determine the param-
eter that balances the influences from image information
and priors. If the evolution of an active contour is mainly
governed by the force depending on the image gradient,
it may be sensitive to the initial step or may leak through
the boundary where the edge feature is not clearly defined.
Conversely, if the force depending on the shape prior is the
dominating term, the active contour may not arrive at the
boundary of the object of interest even though it has a shape
similar to the prior.

In this paper we propose to use prior intensity profiles to
assist the determination of a parameter that balances the in-
fluence from image information and shape priors. The basic
idea is to find the ’best’ balance of the forces that govern the
evolution of an active contour so that the active contour ar-
rives at high gradients, forms a shape similar to the prior,
and captures the prior intensity profile. Our approach is
to solve a coupled optimization problem. The solution of
the first problem minimizes an energy functional, that con-
sists of two terms depending on image gradient and a prior
shape with respectively with a parameter balancing these
two terms. This solution provides a segmentation and a
transformation that aligns the interface to the prior shape.
The solution of the second problem maximizes the mutual
information of image geometry (see the definition in section
2) between the prior image and the aligned novel image over
all the alignments, that are the solutions of the first prob-
lem. The solution of the second problem provides an opti-
mal estimate for the parameter used in the first problem, and
hence obtain a desirable segmentation. The proposed model
indeed performs segmentation and registration simultane-
ously. The registration in our model combines both a rigid
transformation and a local deformation. The rigid motion
is determined explicitly by shape matching, while the local
deformation is determined implicitly by the image gradient
and prior intensity profile. This idea is similar to the ideas
used in [?, ?, ?] for matching nonequivalent shapes, where
the authors consider a general deformation as the composi-

tion of a group action (rigid or affine transformation) and a
local deformation.

Another reason to use prior intensity profiles to assist
segmentation is that in some cases information of only the
expected shape may not be sufficient to guide the active con-
tour to the boundary of the object of interest. For instance,
in some 2-chamber cardiac ultrasound images, the image
intensities of the myocardium are non-uniform, a signifi-
cant portion of the border appears at low contrast, and their
shapes are not similar to the prior. For this class of images a
model incorporating only prior shape in the active contours
may not be able to give an accurate segmentation.

In this paper, we also present an alternative method for
generating average intensity profiles from a set of training
images. To generate an intensity model in [?] a Gaussian
model was used to compute the joint distribution of the in-
tensity values and signed distances to the boundary from a
set of segmented training images. In ultrasound images sig-
nal is partially in the form of speckle ([?]). Since the statis-
tics of speckle are non-Gaussian. modeling the random-
ness of ultrasound images using a Gaussian model is not
appropriate. Our method of generating an intensity model
is model free and based on maximizing mutual information
of image geometry between the intensity model and aligned
training images.

We report experimental results on apical 2-chamber
echocardiographic images. We show that with appropriate
prior shapes and intensity profiles, our technique is capa-
ble of finding boundaries in images that are complicated by
significant signal loss, poor signal to noise ratio, and non-
uniformality of intensities. Moreover, our experiments in-
dicate that the proposed model is not too sensitive to either
the initial step or the optimized parameter. Finally, the ex-
istence problem for our model is discussed at the end of the
paper.

2 Model description
(1). Shape model:

The notion of shape in our model is assumed indepen-
dent of translation, rotation, and scaling. The shape model
�� used in our algorithm was obtained by averaging the
aligned training contours with similar shapes. The align-
ment of two contours �� and �� was made by finding a
scale �� , a rotation matrix �� � and a translation vector ��
such that the overlap area between the interiors of �� and
���� � � was maximized. In the case when the sample
curves have large shape variations, a clustering process was
required to group the training contours into several clusters.
Then we created shape priors for each cluster as mentioned
above. The details are available in [?].

(2). The Intensity model:
We now construct an average intensity profile across an
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(a)

Figure 1: 20 training images segmented expert epicadial
borders

average shape using the training images.
Let ����� �� � �� � � � ��� be a set of training segmen-

tations in one cluster, and 	� �� � �� � � � ��� be the set of
images associated with ������ Also, let ����� � � ��� ��
be the average shape in this cluster. Our task is to generate
an average intensity profile 	� across �� from the training
images. If 	� is created just by averaging all the sample im-
ages 	� �� � �� � � � ���� 	� will most likely be blurred. To
improve the quality of the averaged images, we select a sub-
group from 	� �� � �� � � � ���, in which the disparity in in-
tensity profiles are relatively small. To do this, we first align
each contour �� �� � �� � � � ��� to �� by a similarity trans-
formation ���� ��� ��� that minimizes 
���� ������ � ���
defined in (2.1).

Next, we examine the similarity in the training intensity
profiles across the training segmentations. Let

��� � �� � ��
���� �� � ���� �	�	�

be a �� neighborhood of ��. If two images 	� and 	� are
related approximately by

	���
��
� ���

� ������� � 
	���
��
� ���

� ������� � � �	�
�

for some constants 
 and �, we may define the similarity
measurement in the intensity profiles near the segmenta-
tions �� and �� by
�
���

�	����� ���
� ��������
	���

��
� ���

� �����������
��

The integral is over ��� rather than the entire image do-
main, since the intensity profiles near the segmentations are

more meaningful. If the relation (2.3) is not valid, max-
imizing mutual information has been proven to be effec-
tive in solving matching problems, in particular in matching
multi-modality images (see e.g. [?, ?, ?, ?, ?, ?]). One of
the advantages of using mutual information is that it does
not require an explicit function that relates two images, but
only assumes that aligned images explain each other better
than when they are not aligned.

The mutual information between two random vectors �
and � is defined as:

�	���� � � ���� ���� ������� ��

where ���� � �
�
��

���� ��
������
� is the Shannon
entropy of a random � -vector � with density ����, and
����� � � �

�
��

�
��

���� �� ��
����� ���
�
� is the
joint entropy of � and � with joint density ���� ��. If 	�
and 	� are two images in the training set, then let ���� �
	���

��
� ���

� ������� and ���� � 	���
��
� ���

� �������. The
common mutual information (MI) of 	� and 	� on ��� is

�	��� �	�� 	�� �

�
��

���� ������ ������
���� ������ ���

����������������

��
���

�	���
where ���� ��, ���� and ���� are computed on ��� . An ex-
tension of the common mutual information is called the mu-
tual information of image geometry (MIIG). By MIIG of 	�
and 	� on ��� � we mean that �		����

�	�� 	�� is equal to
the RHS of (2.4) with ����, ����, �� and �� replaced by the
vectors� ����	��� ������� ����� ������� ����	�� ��
� ��� � 	��� ��� � ��� ����� ��� � ��� ��� � 	�� ��
� ��� ��� ��� ��� �� � and � ��� ��� ��� �	� ��� �� respectively.
The integral in (2.4) is computed over ���.

Note that if the locations of two points in an image is
switched, the intensity profile is changed, but the density
function remains the same. Different from MI the MIIG
uses the neighborhood intensity information, which gives
better discription of the intensity profile at each point under
the consideration. Therefore, in our algorithm we use the
MIIG on ��� as the measurement of disparity in intensity
profiles,

The method was tested against one cluster of a database
of �� apical 	�chamber end diastolic (ED) echocardio-
graphic images acquired retrospectively from �� normal pa-
tients. The images were grouped into three clusters. The 20
images from one of the clusters with expert traced epicar-
dial borders superimposed are displayed in Figure 1.

The average shape�� for this cluster was also created by
aligning their epicardial borders to the average shape ��.
The neighborhood��� was computed as a three pixel neigh-
borhood of ��� By using �		����

�	�� 	�� as the distance
function in the k-means clustering algorithm, we formed a
subgroup of 11 images, which are displayed as the first 11
images in Figure 1.
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(a) (b)

Figure 2: (a) apical 2-chamber average images at ED from
20 normal patients with the average contour. (b) 2-chamber
average images for the same 	� images generated by the
proposed method with the average contour.

Denoting the subgroup of 11 images by 	�� � � � � 	��� we
now describe the construction of the average intensity pro-
file 	� across �� by

���
��

���
�
�

�		����
�	�� 	��� �	���

where �		����
�	�� 	�� is defined as above and � � 	�

and � � 	���
��
� ���

� �� � ����� Since this formulation is
computationally intensive, we restricted ourselves to the
cases where

	� �

���
�
�


�	���
��
� ���

� ��� ����� �	���

and found the weights 
� by using (2.5). We applied this
method to the 20 training images in Figure 1, and obtained
the average intensity profile 	� shown in Figure 2b. More-
over, we computed the sum in (2.5) for the weighted and
unweighted (
� � � ��) average. The results were 196.73
and 184.08 respectively, confirming our suspicion that the
weighted average is better.

(3). Segmentation with Priors:

We now present our variational approach for segmen-
tation using both prior shape and intensity profile infor-
mation. The key point of our model is to propagate a
curve/surface by a velocity that depends on the image gra-
dients, prior shape, and intensity profile. Thus, the propa-
gation stops when the active contour/surface forms a shape
similar to the shape prior, arrives at high gradients, and cap-
tures the prior intensity profile.

To begin the description of the proposed model, we first
briefly review the active contour with a shape prior in [?].
Let ����� �� � ��� ��� be a curve representing the shape
prior. The model in [?] minimizes the energy functional

!��� ���� � � defined as

� �

�

�����	 �������� �
"

	

����� ������ � � ���� �����
��

�	���
where ����� � � are similarity transformation parameters,

���� ��� ��� is the distance from the point ��� �� to the
curve ��, and ����	 �� � �

�����������
� where # � � is

a parameter and ����� � �

�
$�

����

��� � The first term in (2.7)
is the energy functional of a geodesic active contour [?, ?],
that measures the amount of high gradient under the trace
of the curve. The second term is the shape related energy
that measures the disparity in shape between the interface
and the prior. The constant " � � is a parameter that bal-
ances the influence from the image gradient and the prior
shape. The curve � and the transformation parameters ��
�� and � evolve to minimize !��� ���� � �� At the station-
ary point, the contour � lies over points of high gradient in
the image and forms a shape close to ��� This model also
provides estimates for a similarity transformation that aligns
the interface to prior shape. A geometric active contour of-
ten “leaks” through “gaps” in the boundary, which have low
gradients, since it does not have any information about how
the gaps are to be bridged. However, model (2.7) incorpo-
rates the information about the expected overall shape of
the boundary in geometric active contours so that the ac-
tive contour can compare its shape with the expected shape
and bridge the gaps in a meaningful way. The experimental
results in [?] showed model (2.7) is able to get a satisfac-
tory segmentation in the presence of gaps as long as the
boundary of the object of interest has a shape similar to the
prior. However, this model still has problems. First, when
the gaps are a substantial fraction of the overall boundary
or when the shape of the boundary is substantially different
from the prior, the model (2.7) will fail to provide an ac-
curate segmentation, since insufficient information is avail-
able to decide how the gaps should be bridged. The second
problem is to determine a value of the parameter " in (2.7),
which produces accurate segmentation.

To have a better solution to these two problems, we pro-
pose to incorporate both a prior shape and a prior intensity
profile into the segmentation process. One method could
be the creation of an intensity term in the energy functional
(2.7), which minimizes the disparity between intensity pro-
file and the prior shape across the interface:

���
	
�
�
�

� �

�

�����	 ���������
"�
	

���������� ���� �����
�

�"��	�	��� �	
����� 	���������� � ���� �	���

where ��� is defined in (2.2), �� represents the prior shape,
	� represents the intensity profile, and "� � � and "� �
� are parameters balancing the influences from the image
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gradient, prior shape, and prior intensity profile. By adding
the third term in (2.7), the active contour governed by (2.8)
is forced to arrive at a high gradient location, form a shape
similar to the prior, and capture the prior intensity profile
near the feature. However, the problem of determining the
best choice of these parameters is not trivial.

In this paper we present an alternative approach that is
not only able to incorporate both shape and intensity infor-
mation into the segmentation process, but also able to pro-
vide an estimate for the parameter used in the model. Our
model consists of a coupled optimization problem. The first
problem is

���
	
�
�
�

!
��� ���� � ��

with

!
��� ���� � � �

� �

�

�����	 ���
"

	

���������� ���� �����
��

�	���
The second problem is

���
��
��
��

% ��
� �
� �
��

with

% ��
� �
� �
� � �		����
�	����� 	����
 ���


 ����
����
�	����

where MIIG is the mutual information of image geometry
defined in the second part of this section, and �
, �
, and
�
 together with �
 are the solutions of (2.9) corresponding
to a fixed "�

The energy functional in (2.9) is increasing in "� With-
out the joint problem (2.10), !
 in (2.9) takes the smallest
value when " � �� that reduces to the energy functional for
geometric active contour. It will leak through the bound-
aries with weak gradients. By maximizing the energy func-
tional in (2.10) over all the possible solutions (�
� �
� �
)
of (2.9) corresponding to "� we can get the ’best’ estimate
for "� and hence a better segmentation corresponding to this
optimal "�

(4). The Level Set Form and EL Equations:
Level set methods [?] have been used extensively in ac-

tive contour models because they allow for cusp, corners,
and automatic topological changes.

Represent a contour � by the zero level set of a Lip-
schitz function & such that ���&��� � �� is the set in-
side �� Let ���� be the Heaviside function that is defined
by: ���� � � if � � �, and ���� � � if � � ��
If Æ � � ���� (in the sense of distribution) be the Dirac
measure, then the length of the zero level set of & in the
conformal metric 
' � ��� �����
� can be computed by�
�
�����&�� �

�
�
Æ�&���(&�� If the similarity of the

shapes between the zero level set of & and �� is evaluated

by
�
�
Æ�&�
����� � � ��
�� then the level set formulation

of (2.9) is given by

���
�
�
�
�

�
�

Æ�&������	 �� �
"

	

������ � ����&�� �	����

The evolution equations associated with the Euler-Lagrange
equations of (2.11) are

)&

)*
� Æ�&�
�+��� �

"

	

��

�&

��&�
�

)&

),
� �� �, )�� * � �� �	��	�

)�

)*
� �"

�
�

Æ�&�
�
 � ������&�
� �	��
�

)-

)*
� �"

�
�

Æ�&��
�
 � �

�


-
����&�
�� �	����

)�

)*
� �"

�
�

Æ�&�
�
��&�
�� �	����

where � is the rotation matrix in terms of the angle -� 
 is
evaluated at ���� ��

3 Numerical Method and Experi-
mental Results

We used the level set form (2.11) in our experiments. The
minimization problem (2.11) was solved by finding a steady
state solution of (2.12)-(2.15)while the equation (2.12) was
implemented by the following iterative scheme:

&����
� � &��
�
�*

�
�

��
Æ��&

�
�
��

���
��

.�
���

�
�&

���
�
��

���
�&

�
�
��

� �� � �&��
��� � &��
����
� �	���

�

���
��

.�
���

�
�&

���
�
��

���
�&

�
�
��

� �� � �&����
� � &����
��
� �	���

�� �

where

.�
�� � ���
� �

"

	

��
�

��

The function Æ� is a smooth version of the Dirac Æ func-
tion, and &��
� � &�,�*� ��� /��� However, the problem
of solving (2.10) efficiently still remains an open ques-
tion. In our experiments we first solved (2.11) to get a
sequence of solutions (�
� � �
� � �
� � �
�) corresponding
to a sequence of "�, � � �� � � � � 0. We then computed
% ��
� � �
� � �
�� in (2.10) for each � 	 � 	 0� In this
computation we partitioned the intensities into 16 bins, and
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the discrete form of Shannon entropy was used to calcu-
late the MIIG. If % ��
� � �
� � �
� � is minimal, we assigned
�
� � �
� � �
� � �
� as our model solutions. In this way we
could get an improved estimate for "� and hence, a better
segmentation, that captures high gradients, the shape prior,
and the intensity profile. However, since the energy values
in (2.10) was computed for only a finite number of "’s, the
solution may not be optimal

We applied this algorithm to echocardiographic images
acquired from the apical 2-chamber at ED. Even though
portions of the myocardium lay outside the sector scan fpr
some of these images, our task was to find the epicardial
border.

To create the prior shape, epicardial boundaries were
outlined by an expert echocardiographer on �� images ac-
quired at ED from �� patients. Using the method described
in section II(1), the boundaries were grouped into three
clusters and the average shape of each cluster was com-
puted. Using the method described in section II(2), the in-
tensity profile for each average shape was computed. The
average shape �� and the associated average intensity pro-
file 	� for one cluster is displayed in Figure 2b. (The images
in this cluster are the 20 images displayed in Figure 1.)

To segment the epicardial border in a novel image dis-
played in Figure 3b, we used the average contour and in-
tensity profile near the contour in Figure 2b as the pri-
ors. The active contour was initialized with the ellipse
displayed in Figure 3a. Evolving the active contour us-
ing equations (2.12)-(2.15) with a fixed "� we constructed a
segmentation �
 together with a similarity transformation
��
� �
� �
�. By varying " we generated a sequence of so-
lutions of (2.11). We chose the optimal value of " to be the
one maximizing (2.10). Finally, the solutions for the model
(2.11) coupled with (2.10) were chosen as the solutions of
(2.11) corresponding to this optimal ".

The first column of the table displays 8 different val-
ues of ". By the procedure described above we obtained
�
� , �
� � �
� � �
� , �� � �� � � � � ��. The third and the fourth
columns present the �	��� �	

����� 	����
� �
��

�

�� � �
����,
and �		����

�	����� 	����
� �
��

�

�� � �
����, respectively.
Since the ��� column of this table is largest when " � ����,
we selected the solutions of (2.11) to correspond to this
choice of " � ����. The segmentation corresponding to
this " (solid) is shown in Figure 3b together with the expert
traced border (dotted). The distance between the expert and
algorithm generated borders are tabulated in column 2 of
the table. It is defined as

��

�
� 
	�������� �, where 
	�

is the distance function of ��, and ���� is our segmenta-
tion. The units of the distance are the numbers of the pixels
that are sized at 0.62mm
 0.62mm. From this table we see
that the segmentation corresponding to " � ���� is the one
having smallest distance and largest value of MIIG. This
statement is not true for MI.

" dist MI MIIG

0.04 3.1142 1.8894 7.9971
0.20 3.2903 1.9192 7.9794
0.40 3.3552 1.9207 7.9698

2 3.3962 1.9579 7.9623
20 4.7160 1.9207 7.8914
40 6.6697 2.0133 7.7524

0.02 25.4498 0 0
0.004 26.2190 0 0

Figure 3 displays experimental results for three addi-
tional images, where the images in each row are the same.
The segmentation in Figure 3b is the solution of (2.11) when
" � ����� The segmentation in Figure 3c is the solution of
(2.11) when " � 	�� This figure provides visual confirma-
tion of the results presented in the table.

To further test the method, we also used the same initial
contour and the ‘optimal’ value " � ���� on two additional
images. The segmentation results are presented in Figures
3d-3g. The segmentations in the left and right columns are
the solutions of (2.11) corresponding to " � ���� and " �
	�� respectively. Comparing the results in the left column
of Figure 3 with those in the right column, we observe that
" � ���� also provides reasonable segmentations in these
two new images indicating that the ‘optimal’ estimate of "
from one image can possibly be used for other members of
the cluster. Of course, the shapes of the object boundaries
and their intensity profiles must be similar.

Appendix: Existence of the Minimum
To investigate the existence problem for the model (2.11)
coupled with (2.10), we first rewrite (2.11) in the form

���
�� 
�
�
�

�
�

�����	 ���� �
"

	

������ � ���(1��� �.���

where 1� is the characteristic function of ! � �� �
��&��� � ��. This minimization is over all the charac-
teristic functions of ! in 2� ���

Next we prove a lemma from which the existence of a
set of solutions to (A.1) coupled with (2.10) follows.

Lemma: Let � be a topological space, . � �
 � � �
and 2 � � � � be functions satisfying the conditions:

(1). for each " � �, .�"� �� is lower semi continuous
(l.s.c), and coercive w.r.t. a metric on � .

(2). for each � � � , .��� �� is continuous.
(3). 2 is w.l.s.c. on � .
Let 3
 � �� � � �.�"� �� � ������ .�"� ���. Then,
(1). 3
 is nonempty.
(2). For each compact set 4 � �, 

��3
 is compact

in � .
(3). There is a "� � � and �� � 3
� such that

2���� � ���


����

2����
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3: (a) An ellipse used as the initial contour in our
expenments for three images in the following three rows.
(b)-(g) Each row presents the segmentations (solid) and ex-
pert’s borders (dotted) in an image. The segmentations in
the left column and right column are the solutions of (2.11)
corresponding to " � ���� and " � 	� respectively.

Proof:(sketch) The existence of a minimum for .�"� ��
on a compact set can be obtained by using condition (1).
This implies that 3
 is nonempty. Moreover, if 4 is com-
pact, "� � 4, and �� � 3
� , we may, by choosing subse-
qunces, if necessary, assume "� � "�, �� � ��. Then,
.�"�� ��� 	 ��� ��� .�"�� ��� 	 ��� ��� .�"�� �� �
.�"�� �� for any � � � , showing that �� � 3
� . This shows
that 

��3
 is compact in � . Furthermore, by lower semi
continuity of 2, 2 attains its minimum on this compact set,
say at ��. Such �� must belong to some 3
 concluding that

2���� � ���


����

2����

By applying this lemma to . � the energy functional in
(A.1), 2 � the energy in (2.10), and � � ��� ���� � � we
get the following existence result:

Theorem: Let � � �� be a bounded open set with a
Lipschitz boundary. Let also �� be a differentiable con-
tour, and 	� and 	 are continuous on ��. Then the problem
(A.1) coupled with (2.10) has a solution 1� � 2� ���,
� � ��� 
�, - � ��5� 5�, and � � ��
� 
� 
 ��
� 
� for
some 
 � � depending only on the size of ��

4 Conclusion
We proposed a coupling of shape and intensity driven seg-
mentation method and applied to the problem of cardiac
boundary determination in ultrasound images, for which the
methods using edge or region information only can’t give a
good result. Even the active contours with shape prior strug-
gle with such data.

The improvements of this model over existing active
contour algorithms are in two aspects. First, we used max-
imizing MIIG rather than MI to match intensity profiles of
two images. The reason for doing this is that MIIG takes
neighborhood intensity pattern into account, while MI does
not. Secondly, we proposed a coupling minimization frame-
work to determine the optimal selection of the parameter in
one of the minimization problems by minimizing the second
problem over the solution set of the first one corresponding
to different parameters. This idea can be used for the mod-
els with any three constraints.

The proposed model was tested against a database of epi-
cardial borders traced by an expert on echocardiographic
images acquired from the apical 2-chamber view. The pre-
liminary results were encouraging. The existence of the so-
lution to the proposed model was proved. However, much
work needs to be done. The method will be tested against
the entire database of normal images. and the images ac-
quired from patients with some observable abnormality. We
will also extend this model to 3-d cases.
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