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Abstract

Most of the work on 3-D object recognition from range
data has used an alignment-verification approach in which
a specific 3-D object is matched to an exact instance of the
same object in a scene. This approach has been successfully
used in industrial machine vision, but it is not capable of
dealing with the complexities of recognizing classes of sim-
ilar objects. This paper undertakes this task by proposing
and testing a component-based methodology encompassing
three main ingredients: 1) a new way of learning and ex-
tracting shape-class components from surface shape infor-
mation; 2) a new shape representation called a symbolic
surface signature that summarizes the geometric relation-
ships among components; and 3) an abstract representa-
tion of shape classes formed by a hierarchy of classifiers
that learn object-class parts and their spatial relationships
from examples.

1. Introduction

Over the past two decades, the problem of recogniz-
ing free form objects from 3-D range data scenes has been
intensively studied in computer vision research due to its
prominent relevance to a variety of application fields. These
include, among others, robot vision, autonomous naviga-
tion, automated inspection and measurement, satellite im-
age analysis, and more recently, retrieval of 3-D objects
based on shape [15]. However, most of the successful ap-
proaches developed up to date have concentrated on design-
ing surface shape representations for recognizing specific
objects in a database, and very little attention has been paid
to the more general problem of recognizing objects belong-
ing to a particular shape class, a collection of 3-D objects
that share a set of defining surface characteristics that are
visually similar and occur in similar geometric configura-
tions. Figure 1 shows instances of four shape classes con-
sidered in this work: human heads, rabbits, snowmen, and
floppy-eared dogs.

Recognizing members of object classes from their shape

Figure 1. Instances of four shape classes: human heads,
rabbits, snowmen and dogs.

is difficult for several reasons. In the first place, how to
construct a quantitative description of a shape class that ac-
counts for the complexities in the categorization process is
an open question. In real applications, human perception,
knowledge and judgment are used to make qualitative defi-
nitions of a class and to make distinctions among different
classes. However, categorization in humans is not yet well
understood, and no one knows what information is used and
what kind of processing takes place when constructing cat-
egories [13]. For these reasons, learning classes of objects
for recognition purposes generally occurs in a supervised
setting, an ill-defined problem that must be regularized by
introducing constraints [22]. In the third place, the surface
shape representation is very important in a recognition pro-
cedure. Which representation is more suitable for learning
shape classes is not currently known. Finally, the nature of
the input data is complex. Real range scenes may contain
multiple objects and the class members have to be identi-
fied amongst varying amounts of clutter. Range scenes also
contain noise and occlusion so there is only incomplete in-
formation pertaining to the objects of interest.

Most of the successful 3-D object recognition systems
reported in the literature use a technique called alignment
[11] that finds sets of point correspondences between a 3-
D model and a 2-D or 3-D scene using attributes of these
points, such as surface signatures. A surface signature at a
given point on a surface is a descriptor that encodes the ge-
ometric properties measured in a neighborhood of the point.
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The correspondences are used to solve a set of linear equa-
tions that determine the parameters of a potential rigid body
transformation from the model to the scene. Using this
transformation, the model is projected to the scene and ver-
ification techniques are used to determine if this is a good
match. The various verification techniques all compare the
points of the transformed model to points of the scene to
determine how well the model overlays on the scene. This
type of verification is dependent on a specific object model
of which there is an exact instance in the scene. It has been
used very successfully in industrial machine vision, but it
does not extend well to recognizing classes of similar ob-
jects.

In this paper we describe and empirically test a 3-D
shape detector that implements a component-based ap-
proach for recognizing members of classes of 3-D ob-
ject shapes in real range scenes. Our shape detector at-
tempts to overcome the problems inherent to alignment-
based recognition systems by learning the shape-class com-
ponents and their spatial configuration. The key elements
of our methodology are: 1) a novel way of processing 3-D
surface shape information for learning and extracting shape-
class components; b) a new shape representation called a
symbolic surface signature that encodes the spatial relation-
ships among the class components; and c) a shape class
model that consists of a three-level hierarchy of classifiers
that learn object-class parts and their relationships from a
set of surface signatures embedded in a Hilbert space. The
first two levels of the hierarchy extract the components. The
third level verifies their geometric relationships. The sur-
face shape representations combined with the hierarchy of
classifiers result in an abstract representation of an object
shape class that is robust to scene clutter and occlusion.

We used support vector machines (SVMs) for imple-
menting the classifiers used by our 3-D shape detector. Spe-
cific details are described in Section 3.2. The readers in-
terested in the basics of SVMs for pattern recognition are
invited to consult [18].

The outline of the paper is as follows. We summarize the
related work in Section 2. Section 3 is devoted to our sym-
bolic surface signatures and our recognition method. Sec-
tion 4 describes the experimental protocol and the results.
Finally, Section 5 summarizes the key points of our investi-
gation, open questions and future work.

2. Related Work

Free-form object recognition in range data has been a
very active area of research. The existing approaches span
many different axes. In early work, Faugeras and Hebert
[8], and Besl [1] studied the difficulties in matching free-
form objects using point, curve and surface features. Neva-
tia and Binford [14] used generalized cylinders to create
symbolic descriptors for recognizing free-form articulated

objects in the presence of occlusion. Raja and Jain [16] de-
veloped a technique for fitting and classifying deformable
superquadrics to range data, where the deformations con-
sidered were tapering and bending. Surface curvature has
also been used to define local descriptors of surface shape.
Besl and Jain [3] used Gaussian curvature and mean cur-
vature to classify local surface shape into basic categories
such as peaks, pits, ridges and valleys. Dorai and Jain
[7] defined two new curvature measures (shape index and
curvedness) along with a discrete spectral extension of sur-
face categories to build a view-dependent representation of
free-form objects. Their COSMOS system uses a histogram
of the shape index value to characterize the curvature of a
particular view, and constructs an object database consisting
of many views of each object to be recognized. Delingette
et. al. [6] developed the spherical attribute image (SAI) for
representing 3-D surfaces. The SAI representation maps
points of an object surface to a tessellated sphere. Local
features are stored at the vertices of the sphere that corre-
spond to the surface points. Matching between two objects
reduces to finding the best rotation aligning the scene and
model SAIs.

Stein and Medioni [20] used changes in surface orienta-
tion to match local regions of surfaces. They utilized the
so-called “splash” representation and a structural indexing
approach to matching. Chua and Jarvis [5] developed the
“point signature”, a local descriptor of shape that encodes
the minimum distances from points on a 3-D contour to a
reference plane. The idea of “point signatures” was fur-
ther developed in various investigations. These include the
spin image representation of Johnson and Hebert [12], the
curvature signatures of Yamani et. al. [23], the harmonic
shape images of Zhang and Hebert [24] and the spherical
spin images of Ruiz-Correa et. al. [17]. Recently, Os-
ada et. al. [15] developed the shape signature of a com-
plete 3-D model as a probability distribution sampled from
a shape function measuring geometric properties of the 3-D
model. Funkhouser et al. [9] extended the work on shape
distributions by developing a representation of shape for
object retrieval from multi-modal queries. The represen-
tation is based on a spherical harmonics expansion of the
points of a polygonal surface mesh rasterized into a voxel
grid aligned to the center of mass of the object. Query ob-
jects are matched to the database using a nearest neighbor
classifier. Shape distributions and harmonic descriptors can
operate on degenerate surface mesh models but they lack
robustness to scene clutter and occlusion due to their global
character.

3. Our Approach
The main contribution of our 3-D shape detector is the

novel way surface shape information and geometrical rela-
tionships are combined in a hierarchy of classifiers to form
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Figure 2. The numeric surface signature for point P is
constructed by accumulating in a 2-D histogram the coordi-
nates � and � of a set of contributing points (such as Q) on
the mesh representing the object.

an abstract representation of an object shape class. The
method utilizes three methodologies. First, a numeric sur-
face signature representation is used for encoding local sur-
face shape information. Secondly, our symbolic signature
representation is used for encoding the geometrical rela-
tionships among the shape-class parts. Finally, the SVM
technologies are used for learning the parts and their spatial
dispositions.

3.1. Surface signatures

The surface signatures developed by Johnson and Hebert
[12] encode the surface shape of free form objects. In con-
trast to the shape distributions and harmonic descriptors,
they are robust against the clutter and occlusion generally
present in range data. Experimental evidence has shown
that the spin image and some of its variants are the pre-
ferred choice for encoding surface shape whenever the nor-
mal vectors of the surfaces of the objects can be accurately
estimated [17]. We use spin images as the numeric signa-
tures in this work.

Numeric surface signatures. A spin-image [12] is a
two-dimensional histogram computed at an oriented point
� of the surface mesh of an object (see Figure 2). The
histogram accumulates the coordinates � and � of a set of
contributing points � on the mesh. Contributing points are
those that are within a specified distance of � and for which
the surface normal forms an angle of less than the specified
size with the surface normal � of � . This angle is called
the support angle. As shown in Figure 2, the coordinate� is
the distance from � to the projection of � onto the tangent
plane �� at point � ; � is the distance from � to this plane.

Labeled surface regions. Our symbolic surface sig-
natures (defined below) encode the spatial relationships
among a set of shape-class components. A shape class com-
ponent is a group of connected surface mesh points whose
numeric signatures are similar as defined by the clustering
algorithm to be described in Section 3.2. The different com-
ponents of a class can be represented on a labeled surface
mesh ( Fig. 3a); each vertex of the mesh has an associated

symbolic label referencing the component in which it lies.
The geometric configuration of the class components can be
extracted from the labeled surface mesh using our symbolic
surface signatures.

Symbolic surface signatures are somewhat related to
numeric surface signatures in that they also start with a point
� on the surface mesh and consider a set of contributing
points �, which are still defined in terms of distance from
� and support angle. The main difference is that they are
derived from the labeled surface mesh (shown in Figure 3a).
For symbolic surface signature construction, the vector ��
in Figure 3b is projected to the tangent plane at � where
a set of orthogonal axes � and Æ have been defined. The
direction of the Æ � � axes is arbitrary, since no curvature
information was used to define preferred directions. This
ambiguity will be resolved by the methods described in Sec-
tion 3.2. The discretized version of the � and Æ coordinates
of �� are used to index a 2D array, and the indexed posi-
tion of the array is set to the component label of �. Note
that it is possible that multiple points Q that have different
labels project into the same bin in the symbolic surface sig-
nature. In this case, the label that appeared most frequently
is assigned to the bin. The resultant array is the symbolic
surface signature at point � . The signature captures the re-
lationships among the labeled regions on the mesh. It is
shown as a labeled color image in Figure 3c.
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Figure 3. The symbolic surface signature for point P on
a labeled surface mesh model of a human head. The signa-
ture is represented as a labeled color image for illustration
purposes.

3.2. Learning shape classes

We consider the learning task for which we are given �
surface meshes � � ���	 � � � 	 ���, which are samples of
the shape class �. The problem is to use the given training
examples to construct an algorithm that determines whether
or not a new mesh � belongs to class �. We start by assum-
ing that the correspondences between all the mesh points of
the instances in � are known. This can be achieved by us-
ing a morphable surface models technique such as the one
described in [19]. We also assume the number of samples
in� is large enough to allow SVM learning. In some appli-
cations, however, this may not be the case, and prior knowl-
edge about the shape class must be used to create virtual
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examples for training. This is not an uncommon practice
when learning from examples. In some cases, the train-
ing set is enlarged in order to incorporate invariances in the
class model [18]. In others, such as in learning facial com-
ponents for face detection, 3-D head models are used to au-
tomatically generate faces with arbitrary pose and arbitrary
illumination [10].

Before shape class learning can take place, one has to
specify salient feature components associated with �. Each
component of a class is identified by a particular region lo-
cated on the surface of the class members. The components
are constructed according to step I of the algorithm de-
scribed below. Once the class components have been found,
our proposed 3-D shape detector is trained using the steps
II and III of the following algorithm.

Step I . The input of this phase is a set � of surface
meshes that are samples of object class �. The goal is to ex-
tract a set of components associated with � . The extraction
process is performed using the following region growing al-
gorithm.

1. Select a set of critical points on a training object for class �;
the number � of points and their locations are currently chosen
manually by the experimenter.
2. Use known correspondences to find the corresponding critical
points on all training instances in�.
3. For each critical point �, compute the numeric surface signature
of the corresponding points on each instance of �. This set of
signatures is the training set �� for critical point � of class �.
4. For each critical point �, train a component detector (imple-
mented as a single class �-SVM) to learn a component about that
point, using the training set ��. Initially, the component detector
learns only the selected critical point (in each object of the train-
ing set). Then iteratively, the region about the point is grown by
selecting an adjacent point, recomputing the error of the classifier,
and adding the new point to the region if the new error is lower
than the previous error. The error measure used [21] is given by
� � #���	
, where ���� is the number of support vectors in
the component detector for �, and 
 is the number of samples used
to train the component detector.

This component-growing technique is related to the one
used by Heisele [10] et. al. for categorizing objects in 2-D
images by learning and combining object parts. An example
of the components grown by this technique on a training set
of ��� human heads is shown in Figure 3a. The first two
objects in Figure 1 are typical examples of this training set.

At the end of step I, there are 
 component detectors,
each of which can identify the component of a particular
critical point of the object shape. That is, when applied to a
3-D mesh, each component detector will operate as a filter
that determines which vertices it thinks belong to its learned
component (positive surface points), and which vertices do
not. These
 classifiers are the Level-� output of our proce-
dure. Note that due to the nature of the data or to classifica-
tion errors, more than one classifier may label a mesh point

as a positive point. This is expected, since each of the 

classifiers is trained individually on a particular component.
The ambiguity can be resolved by training a multiple-class
classifier to discriminate among components as described
below.

Step II. The goal of this step is to improve the accu-
racy of the output labels of the component detectors, which
our experiments proved to be not reliable enough. The in-
put of this step is the training set of numeric signatures and
their corresponding labels for each of the 
 components
in �. The labels are determined by the step-I component
detectors previously applied to �. The output is a compo-
nent classifier (implemented as a pairwise multi-way classi-
fier that uses binary �-SVMs) which, when given a positive
surface point of a 3D mesh previously processed with the
Level-� filter, will determine the particular component of
the 
 components to which this point belongs. The com-
ponent classifier is essential for the proper operation of our
method.

Step III. The purpose of this step is to learn the spa-
tial relationships of the labeled components within class �.
The input data is the set � of training meshes with each
vertex labeled with the label of its component or zero if it
does not belong to a component. The training proceeds as
follows. 1) Select � shape points on a surface mesh in �
that will be used to characterize the object shape class. (In
our experiments, � � � was used, but an arbitrary num-
ber is possible.) Again use known correspondences to find
the corresponding points on each training sample of �. 2)
Compute symbolic surface signatures at each shape point of
each training instance and form the corresponding training
set. 3) Use the training set to teach a symbolic signature de-
tector (implemented as a single-class �-SVM) to determine
which symbolic surface signatures are associated with the
class being learned. The output is a symbolic signature de-
tector for object class � that takes in a labeled mesh with
associated symbolic surface signatures and decides for each
point if there is evidence of the component configuration
that defines class membership in class �.

A Mercer kernel for symbolic surface signatures. In
order to train a single-class SVM to recognize symbolic sur-
face signatures, they must be embedded in a vector space.
To perform the mapping in the context of SVMs, we de-
signed a simple kernel function for measuring the similarity
between symbolic signatures. The kernel is constructed as
follows. Let 
 and � be two square matrices of dimen-
sion � storing arbitrary labels. Let 
 � � denote a binary
square matrix whose elements are defined as �
 � ���� �
���	
 ��
��� 	 ������, where ���	
 ��	 �� � � if � � �,
and � otherwise. The symmetric mapping � 
	� ��
������

�
�� �
����� , whose range is the interval ��	 ��, can

be interpreted as the cosine of angle ��� between two unit
vectors on the unit sphere lying within a single quadrant.
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The angle ��� is the geodesic distance between them. Our
kernel function is defined as ��
	�� � 
����������

��. It
allows us to embed our symbolic signatures into a Hilbert
space of infinite dimension. One can design other kernel
functions that take local correlations into consideration. We
defer their study to a future paper.

As noted in the previous section, the symbolic surface
signatures are defined up to a rotation. For this reason we
use the virtual SV method for training the single-class SVM
[18]. The method consist of training a single-class SVM
on the symbolic surface signatures to calculate the support
vectors. Once the support vectors are obtained, new vir-
tual support vectors are extracted from the labeled surface
mesh in order to include the desired invariance transforma-
tion; that is, a number � of rotated versions of each support
vector is generated by rotating the coordinate system used
to construct each symbolic signature (see Fig. 3). Finally,
the single-class SVM used in the recognition algorithm is
trained with an enlarged data set consisting of the original
training data and the set of virtual support vectors.
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Objects 
SymbolicTraining 
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Figure 4. Components grown by our technique on sample
training instances of the snowman and rabbit classes. The
symbolic signatures for points A and B form a 2-D repre-
sentation of these components.

3.3 Recognizing shape class members

Figure 4 illustrates two examples of the components pro-
duced by our method on a snowman and a rabbit. The figure
shows the components on the actual training objects used in
the experiments to be described in Section 4. Figure 5 il-
lustrates the recognition procedure for the snowman class.
Given an input surface mesh from a test scene, the compo-
nent detector and component classifier of the learned model
are applied to the numeric surface signatures of its points
(Fig. 5a). Boundary points are excluded since their nor-
mal vectors cannot be accurately estimated. The output of

this phase is the labeled surface mesh shown in Fig. 5b.
The labeled mesh is further processed by applying a con-
nected components algorithm. Each connected component
consist of groups of labeled points connected by a path on
the mesh. Components with less than 5 points are filtered
out. The symbolic signature detector is then applied to the
symbolic surface signatures of each of the points of the fil-
tered mesh. The symbolic signatures of four such points
are shown in Fig. 5c. The output of this step is a new la-
beled surface mesh. The label assigned to a point of the new
mesh is set to � if it belongs to the learned symbolic sig-
nature class, and � otherwise. The connected components
algorithm is applied and the resulting components are fil-
tered again based on their size. Components with less than
3 elements are discarded. The remaining components cor-
respond to regions in the scene where the shape points of
the models are likely located (Fig. 5d).

A
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B

d)

b)

Class  Members
Recognized

a)

D

Surface Mesh
Labeled3−D Scene

BA

Symbolic 

DC

c)

Surface Signatures

Figure 5. Recognition Example. a) 3-D scene containing
three members of the snowman class. b) Labeled surface
mesh (detail) obtained after processing the numeric signa-
tures of the original scene with the first two levels of classi-
fication. The labels of the mesh are shown as small colored
spheres centered in the vertexes of the mesh. c) Symbolic
surface signatures of points A, B, C, and, D. The signatures
are represented as color images for illustration purposes. d)
Recognition results. The red blobs indicate the regions in
the scene where the shape class model associated with the
snowman was found.

4 Experiments

We developed an experimental protocol to validate our
algorithm. The protocol consisted of three recognition tasks
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Virtually Deformed 

Training Objects 

Figure 6. Recognitions examples. The first two snowmen
on the first row are training objects. The others are test
objects recognized by our algorithm. All except the last
three are real objects.

of increasing level of difficulty that allowed us to investigate
the generalization ability of our method on the one hand,
and its performance with respect to clutter and occlusion,
on the other. The first task considered scenes with a single
class member and low levels of occlusion (� ���). The
second task considered scenes with multiple objects con-
taining relatively low clutter and occlusion. The third task
included scenes with large values of occlusion and clutter.

Data sets and training. Three object classes were con-
sidered for learning: snowmen, rabbits, and dogs. Two real
objects for each class were used for initializing the training
sets. Eighteen objects were used to create the testing sets
(14 snowmen, 2 rabbits and 2 dogs). Training and testing
data sets were enlarged by applying local and global defor-
mations to the original models. The enlarged data set con-
tained ��� models for each class. The global deformations
included 8 parametric morphings such as tapering, twisting,
and bending, and each deformed model included at least 5
different morphings. The morphings and their respective
parameters were randomly selected from a specific range.
The local deformations were produced by constructing elas-
tic models of the original two objects and applying small
random forces to their surfaces using a multi-resolution ap-
proach [4]. For all the experiments described below, the
numeric signatures had the following parameters: bin size �
(mm), image width ��, and support angle ���. For the sym-
bolic signatures the bin size was � (mm), the image width

��, and support angle ���. The resolution of all the surface
meshes in the study was set to � (mm). All the SVMs used
by our method were trained using a parameter � � ����
[18]. We also used a Gaussian kernel function for the com-
ponent detectors and component classifier. The parameter
� of the kernel functions was selected using cross valida-
tion. The number of rotations � for training the novelty
detector that learns the symbolic signatures was set to 10.
For each shape class model, a total of ��	 ��� numeric sig-
natures were considered for training the first two levels of
the classifier hierarchy. In turn these classifiers generated
�	 ��� labeled surface models from which ��	 ��� symbolic
surface signatures were extracted for training the third clas-
sifier.

The construction of shape class models is a time consum-
ing task. It takes about two days to produce a single class
model. The process includes the construction of the surface
meshes, the generation of training and testing sets, and the
training of the classifiers. Each hand-made clay snowman
took about 3 hours to create, and the realistic human heads
took two days each. Collecting and preprocessing each of
the scenes in the database took about 45 minutes per scene.
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Figure 7. Recognitions examples for several typical 3-D
scenes in our database. The regions where the snowmen
were recognized are highlighted in red, rabbits in blue, and
dogs in green.

Task 1 (generalization performance). A total of 580
experiments using scenes containing a single object were
conducted to test the generalization performance of the al-
gorithm. Four hundred scenes had complete virtually de-
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formed objects. One hundred and sixty contained real ob-
jects in arbitrary pose. The algorithm was able to categorize
previously unseen real test objects including 14 snowmen, 2
dogs and 2 rabbits. The recognition rate obtained for these
experiments was �����. Figure 6 shows ten of the actual
snowmen recognized in this task.

Tasks 2 and 3 (recognition in complex scenes). A total
of �� 3-D objects were used in the study. Our test database
consisted of 510 range images created by placing, without
any systematic method, two to six models in the 3-D scene
by hand. Each scene always contained at least one mem-
ber of the learned classes. For each of the ��� scenes, the
recognition state was classified as a true positive if the algo-
rithm detected a class member in the scene; a false positive
if the algorithm labeled an object a member of a class to
which did not belong, or if the region found did not match
the location of the shape points; a true negative if a non-
class member was judged as such; and a false negative if a
member of a class was not recognized. The level of clutter
and occlusion were measured using the methods described
in [17]. In task 2 the recognition algorithm was executed
on all the scenes with levels of clutter and occlusion smaller
than ��� and ���, respectively (about 75% of the total).
In task 3, all the scenes in the database were processed.

Qualitative Results. Figure 7 shows the recognition of
class members in typical 3-D scenes in our database. The
colored blobs indicate the region of the scene where the
class members were found. From the views it is clear that
the models are closely packed, a condition that creates a
cluttered scene with occlusions. However the proposed al-
gorithm is able to recognize most of the class members.
Some objects were not recognized because insufficient data
was present. Scenes 1 and 4 contain false negatives for the
snowman and rabbit classes. The level of occlusion for the
unrecognized models was greater than ��� in all cases. For
the same models, the level of clutter was ������ ������,
and ������, respectively. Scenes 2 and 3 have one false
positive result each. A plausible reason for the presence of
false positives is the fact that a single class model is used for
recognition. This model was constructed around relatively
close critical points on the surface of the training objects
in order to minimize the effects of the clutter and occlusion.
For example, in scene 3 the rounded back of an angel’s head
was interpreted as a snowman head.

Quantitative Results. Table 1 summarize the average
performance of our algorithm. For task 2, the recognition
rate is roughly ���. These are reasonable measures consid-
ering that in reality, the objects in a scene are not as packed
as they are in scenes in our database. The recognition rate
for task 3 was roughly ���. This rate is relatively high
considering the high levels of occlusion and clutter present.
The false positives rate is relatively high in both cases. Fi-
nally, the average CPU time for the classifiers to process a

single correspondence was ������ ����� (ms) for levels 1
and 2, and ����� � ����� (ms) for level 3, on a 2.0 GHz
Pentium 4 processor. The average processing time for the
scenes in our database was roughly 12 min mainly due to
unoptimized code. Optimization should reduce the average
processing time in half.

TASK 2 TASK 3
C RR FN FP TN RR FN FP TN

S 91 9 31 69 87.5 12.5 28 62
R 90.2 9.8 27.6 72.4 84.3 15.7 24 76
D 89.6 10.4 34.6 65.4 88.12 11.88 22.1 77.9

Table 1. Algorithm performance (%) for recognition tasks
2 and 3. Key: (C) class, (RR) recognition rate, (FP) false
positives rate, (TN) true negatives rate, and (FN) false neg-
atives rate. (S) snowman, (R) rabbit, and (D) dog.

5. Conclusions and Future Work

We have presented a new paradigm for recognizing
members of classes of 3-D shapes. Our approach contains
three new processes: 1) extracting shape-class components
from mesh representations of free form 3-D objects using
a novel component-growing approach based on a bound on
the expected probability error of a single-class classifier; 2)
representing the spatial arrangement of class components
by 2-D symbolic signatures; 3) abstracting a shape class
from a hierarchy of classifiers. Preliminary experiments
have been performed on three shape classes, snowman, rab-
bit and dog, with promising results. The method had a high
recognition rate and was able to generalize, even in the pres-
ence of significant scene clutter and object occlusion.

Despite these encouraging results, there are issues to in-
vestigate. 1) Our method is able to model shape classes
containing significant shape variance and can absorb about
20% of scale changes. A multiresolution approach could be
used for applications that require full scale invariance. 2)
The algorithm described uses a single shape class model to
recognize class members. The shape class model is con-
structed around critical points that are relatively close to
each other in order to minimize the effect of clutter and oc-
clusion. This makes the algorithm prone to false positives.
This could be alleviated by utilizing several shape models
on the same object class to make a decision. Multiple shape
points could also be used. 3) The selection of critical and
shape points for making the models is also an issue. We
are investigating ways of making the selection of salient
features semi-automatic. 4) Finally, the method has been
tested only on clay models. We would like to apply it to a
real life problem and plan to attempt to recognize classes
of genetically-caused deformations in human faces. These
craneofacial pathologies can be reproduced using the same
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techniques employed for creating the virtual models in our
training sets.
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