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Abstract

Natural eye designs are optimized with regard to the tasks
the eye-carrying organism has to perform for survival. This
optimization has been performed by the process of natural
evolution over many millions of years. Every eye captures
a subset of the space of light rays. The information con-
tained in this subset and the accuracy to which the eye can
extract the necessary information determines an upper limit
on how well an organism can perform a given task. In this
work we propose a new methodology for camera design. By
interpreting eyes as sample patterns in light ray space we
can phrase the problem of eye design in a signal processing
framework. This allows us to develop mathematical criteria
for optimal eye design, which in turn enables us to build the
best eye for a given task without the trial and error phase of
natural evolution. The principle is evaluated on the task of
3D ego-motion estimation.

1. Introduction

Cameras nowadays become smaller and more affordable
by the day, thus soon it will be in anyones reach to use as-
semblies of cameras for the tasks they try to solve. Since
these assemblies can be reconfigured easily, the design of
new eyes will be possible with little effort. But what is the
right design for a given task?

One scientific discipline that has studied this problem is
sensory ecology [9]. It studies the relationship between the
behavior of an organism, the information it extracts to con-
trol its behavior and the environment where it exists.

It has been estimated that eyes have evolved no fewer
than forty times, independently, in diverse parts of the an-
imal kingdom. One things that these eye designs and the
images that they capture have in common, is that they are
highly adapted to the tasks the organism has to perform to
survive in its environment. In these organisms all the com-
ponents of the imaging pipeline from image capture to neu-
ronal encoding and higher level feedback circuits are opti-

mized to increase the fitness of the organism. Examples are
the neuronal circuits that encode the captured image in a
way that maximizes the amount of information that can be
processed with regard to the range of intensities in the envi-
ronment, or the design differences between the compound
eyes of diurnal or nocturnal insects that reflect the tradeoff
between light gathering power and visual acuity.

To mimic nature and design a task specific eye, we need
to answer the following two questions:

1. What is the relevant visual information that we need
to extract to solve our task and how is this information
encoded in the visual data that an eye can capture?

2. What is the camera design and image representation
that optimally facilitates the extraction of the relevant
information?

To answer the first question, we first have to think about
what we mean by visual information. When we think about
vision, we usually think of interpreting the images taken by
(two) eyes such as our own - that is, perspective images ac-
quired by camera-type eyes based on the pinhole principle.
These images enable an easy interpretation of the visual in-
formation by a human observer. Nowadays though, most
processing of visual information is done by machines, thus
there is no need to confine oneself to the usual perspective
images. Instead we propose to study how the relevant in-
formation is encoded in the plenoptic video geometry, that
is the geometry of the time-varying space of light rays, to
utilize all possible visual information.

To answer the second question we have to determine how
well a given eye can capture the necessary information. We
can interpret this as an approximation problem where we
need to assess how well the relevant subset of the space of
light rays can be reconstructed based on the samples cap-
tured by the eye, our knowledge of the transfer function of
the optical apparatus, and our choice of function space to
represent the image. By modeling eyes as spatio-temporal
sampling patterns in the space of light rays we can use well
developed tools from signal processing and approximation
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theory to evaluate the suitability of a given eye design for
the proposed task and determine the optimal design.

This design approach can result in all-purpose eyes like
ours that need to provide input for a variety of different
tasks, or it could result in a highly specialized sensor similar
to the eyes of stomapods that use up to 16 types of receptors
to capture a multi-spectral image of their environment.

Natural evolution suggests a holistic approach to solving
visual tasks where hardware and software should be opti-
mized in unison based on the statistics of environment in
which the sensors are supposed to operate. The statistics
of the space of light rays are hard to capture using con-
ventional imaging devices, but since its brightness struc-
ture is very regular we can approximate its statistics from
the statistics of natural perspective image sequences which
have been studied extensively. This statistical modeling of
an ”average” environment allows us to design fitness crite-
ria based on mathematical theories that make it possible to
short-cut the process of evolution by directly determining
the optimal design of a sensor.

1.1. Prior Work

The space of light rays is the most complete visual rep-
resentation of a scene. It was first studied in the context
of photometry and integral photography at the beginning of
the 20th century (for an overview see [17]). A mathemat-
ical description of the space of light rays is given by the
plenoptic function as described by [1]. For each position in
space it records the intensity of a light ray for every direc-
tion, time, wave length, and polarization, thus providing a
complete description of all visual information.

The study of non-perspective subsets of the plenoptic
function for vision applications has intensified recently.
This is inspired partly by the interest the computer graph-
ics and computer vision community took in using non-
perspective subsets of the plenoptic function to represent vi-
sual information to be used for image-based rendering such
as light fields [13] and lumigraphs [11], or to recover the
observed scene from video sequences [5].

This exploration led to studies of new non-perspective
imaging geometries (e.g., [12, 18, 19]) and new camera de-
signs that show promise to simplify a large number of vision
tasks. Examples are the work on catadioptric sensors [14]
for panoramic vision, combinations of filters and lenses for
high dynamic range imaging [3], and the design of plenop-
tic cameras for depth [2, 10] and motion estimation [15].
Despite these advances in the area of eye design, a general
framework that relates the design of an imaging sensor to
its usefulness for a given task is still missing.

1.2. Outline of Paper

In this work, we attempt to fill this void and propose a
new framework for the design of eyes. It consists of the
following three steps:

1. Study the structure of the time-varying plenoptic func-
tion to determine how the relevant information is en-
coded.

2. Phrase the eye design problem in a function approx-
imation framework and determine a fitness function
that describes how accurately the union of eye design
and image processing operators can extract the relevant
information from the space of light rays.

3. Compute the optimal eye design by evaluating this fit-
ness function using natural scene statistics and validate
the design in the real world.

In the following section, we describe how an eye can
be understood as a sampling operator in the space of light
rays. Finally, we use a recent result from approximation
theory to determine how accurately visual information can
be extracted by a given eye design and image representa-
tion, and evaluate the approximation error based on natural
image statistics. We then demonstrate the proposed frame-
work for eye design by determining the optimal eye for a
robot navigating based on visual information.

2. Cameras as Sampling Operators in the
Space of Light Rays

In abstract terms, a camera is a mechanism that forms
images by focusing light onto a light sensitive surface
(retina, film, CCD array, etc.). Different camera designs can
be obtained by varying the camera geometry (the geometry
of the surface and the geometric distribution of the photore-
ceptors), and camera optics (the way light is collected and
projected onto the surface, e.g. single or multiple lenses, or
tubes as in compound eyes, and the optical properties of the
photoreceptors). We will use the term polydioptric cam-
era to denote a generalized camera that captures a multi-
perspective subset of the space of light rays. We distinguish
between the terms plenoptic, that denotes the ideal concept
of all visual information that can possible be captured, and
polydioptric that denotes the discrete set of visual measure-
ments made by a physical sensor to emphasize the notion
that all visual information can only be captured with finite
precision by any visual sensor.1

1The word plenoptic is derived from the words complete and view,
while polydioptric can be loosely translated as ”something that is assist-
ing vision by refracting and focusing light in many ways”.
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(a) (b) (c)

Figure 1. (a) Light field parameterization (b) Light ray correspondence (here shown only for the light field slice
spanned by axes x and u). (c) Fourier spectrum of the (x,u) light field slice (epipolar plane) where the depth of
scene varies between Zmin and Zmax, and the perspective image of the scene is band-limited with bounds Bu.

2.1. Parameterization of the Space of Light Rays

At each location x in free space, the radiance, that is
the light intensity or color observed at x from a given di-
rection r at time t, is measured by the plenoptic function
L(x; r; t); L : R

3 × S
2 × R+ → Γ. Γ denotes here the

spectral energy, and equals R for monochromatic light, R
n

for arbitrary discrete spectra, or could be a function space
for a continuous spectrum. S

2 is the unit sphere of direc-
tions in R

3.
In a transparent medium such as air the color and inten-

sity of light does not change, thus we can assume that in
free space the radiance along the view direction r is con-
stant which implies ∇xLTr = ∇rLTr = 0 where ∇xL
and ∇rL are the partial derivatives of L with respect to po-
sition x and direction r. Therefore, the plenoptic function
in free space reduces to five dimensions – the time-varying
space of directed lines for which many representations have
been presented.

Due to the difficulties involved when using signal pro-
cessing operators in a mixed spherical-Cartesian coordinate
system, we will choose the two-plane parameterization that
was used by [11, 13] to represent the space of light rays.
All the lines passing through some space of interest can be
parameterized by surrounding this space with two nested
cubes and then recording the intersection of the light rays
with the planar faces of the two cubes. We only describe
the parameterization of the rays passing through one pair of
faces, the extension to the other pairs is straight forward.
Without loss of generality we choose both planes to be per-
pendicular to the z-axis and separated by a distance of f .
As seen in Fig. 1a, We denote one plane as focal plane Πf

indexed by coordinates (x, y) and the other plane as image
plane Πi indexed by (u, v), where (u, v) is defined in a lo-
cal coordinate system with respect to (x, y). Both (x, y) and
(u, v) are aligned with the (X,Y )-axes of the world coor-

dinates and Πf is at a distance of ZΠ from the origin of the
world coordinate system.

This enables us to parameterize the light rays that
pass through both planes at any time t using the tuples
(x, y, u, v, t) and to record their intensity in the time-
varying light field L(x, y, u, v, t).

2.2. Plenoptic Image Formation

A polydioptric camera can be implemented in many
ways. The simplest design is an array of ordinary cameras
very close to each other (e.g., [23]) or one could use spe-
cialized optics or lens systems such as described in [2, 10].

Whatever design one uses, it is not possible to capture
the plenoptic function with arbitrary precision. To be able to
account for this uncertainty in algorithms at later processing
stages, it is important to have an accurate estimate of the
approximation error.

Shannon’s sampling theorem tells us that a band-limited
signal can be recovered exactly when it is sampled at or
above the Nyquist rate. On the basis of this [6] examined
which rays of a densely captured light field need to be re-
tained to reconstruct the continuous light field without alias-
ing.

Since natural signals are in general not band-limited in
a strict sense, we need to apply a more general sampling
theory to our problem. All natural signals have finite en-
ergy, thus we can represent the light field as an element of
L2(R5), the space of measurable, square integrable func-
tions defined on R

5, and phrase the light field reconstruction
problem as a function approximations problem in L2(R5)
using recent results in approximation theory [4].

We will use the two-plane parameterization and assume
that the imaging elements of the camera sample the light
field on a regular lattice in the 5-D space of light rays
which corresponds to a choice of camera spacing, image
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Figure 2. Imaging pipeline expressed in a function
approximation framework

resolution, and frame rate. An example setup would be
a set of cameras with their optical axes perpendicular to
a plane containing the focal points (see Fig. 1a). Then
we can describe the 5D periodic lattice A using 5 vectors
[a1, a2, . . . , a5] which form a lattice matrix A such that
A = {Ak|k ∈ Z

5}. A unique tiling of the space of light
rays can be achieved by associating with each lattice site a
Voronoi cell, which contains all points that are closer to the
given lattice site then to any other.

Our model of the image formation pipeline of a poly-
dioptric camera is based on the mathematical framework de-
scribed in [22] and is summarized in the diagram in Fig. 2.

The camera output is modeled as the inner product of the
light field with different translates of an analysis function ϕ

cϕ(k) =
∫
L(x)ϕ(x −Ak)dx; cϕ(k) ∈ l2(Z5) (1)

which models the effects of the Pixel Response Function
(PRF) such as scattering, blurring, diffraction, flux integra-
tion across the pixel’s receptive field, shutter time, and other
signal degradations. The function ϕ : R

5 → R is sampled
according to the lattice pattern which results in Eq. (1).

The continuous reconstructed light field I(x) can be
expressed as a linear combination of synthesis functions
φ : R

5 → R centered on the lattice points, that is

I(x) =
∑
k∈Z5

cφ(k)φ(x −Ak); cφ(k) ∈ l2(Z5) (2)

where l2 is the space of square-summable sequences
(
∑

k∈Z5 |c(k)|2 <∞).
The coefficients cφ are determined from the camera out-

put cϕ using a linear convolution filter ψ which acts as a
correction filter to optimize the projection of the light field
signal into the space of images:

cφ(k) =
∑

i

ψ(i)cϕ(k − i). (3)

How should we choose the filter ψ? In general, since we
do not have access to the original signal L, the best we can

do is to perpendicularly project the sampling space spanned
by the set of analysis functions {ϕ(x − ·)} on to the image
space spanned by the set of synthesis functions {φ(x− ·)}.
This ensures that the image I(x) passes through the imag-
ing pipeline unchanged, thus to the camera it ”looks” the
same as the true light field.

We can also choose the prefilter ψ such that the recon-
structed signal interpolates the input signal at the lattice
sites, that is I(Ak) = L(Ak). The coefficients of the pre-
filter can then be determined from the interpolation condi-
tion using filter design techniques.

In any case, to evaluate how the error of the light field
reconstruction depends on the camera sampling geometry,
we compute the average L2-error ε2 = ‖L− I‖L2 using an
integral of the Fourier spectrum of L̂(Ω) and an error kernel
E(Ω) [4]:

ε2 ≈ µ2(A) =
1

(2π)5

∫
R5

|L̂(Ω)|2E(A−T Ω)dΩ (4)

Here A is the sampling lattice matrix, and the error kernel
E(Ω) is defined as

E(Ω) = 1 − |φ̂(Ω)|2
âφ(Ω)

+ âφ(Ω)

∣∣∣∣∣ ˆ̃ϕ(Ω) − φ̂(Ω)
aφ(Ω)

∣∣∣∣∣
2

. (5)

Here as before φ is the synthesis function, ϕ̃ is the the
combination of image transfer function ϕ and prefilter ψ,
and aφ is the sampled auto-correlation function of φ.

If the light field L is a band-limited then we have the
equality ε = µ for all phase shifts of the signal with respect
to the camera, otherwise µ is equal to the average error over
all possible phase shifts L(Ak + ∆) where ∆ ∈ {Ax|x ∈
[0, 1)5}. This is exactly the expression we are looking for
because the relative position of the world with respect to the
camera should not matter. Thus, Eq. (4) gives us a means
to assess how accurately a given camera design is able to
reconstruct the space of light rays in an environment, and
thus how accurate we are able to estimate the quantities of
interest that we need to compute to solve our task.

2.3. Evaluation of Approximation Error based
Natural Image Statistics

To evaluate Eq. 4 we have to choose a synthesis function
φ, determine the image transfer functionϕ and compute the
appropriate prefilter ψ. In addition, we need to have an idea
about the power spectrum of the light field |L̂(Ω)|2. The
power spectrum of course depends on the scene in which
the sensor operates. If the sensor will only operate in a very
constrained environment, then we could capture a number
of light fields of this environment, and compute the power
spectrum based on this data. This becomes quickly infeasi-
ble, if we want to design a visual sensor that performs well
in many different environments. Fortunately, to simulate
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an ”average scene” we can utilize recent studies about the
statistics of natural images which we can use (see [20] for
a review). The most relevant observation for our purpose
is that the power spectrum of a natural image falls approx-
imately inversely proportional to the square of the spatial
frequency. Dong and Atick [8] demonstrate how a similar
scaling law can be derived from first principles for spatio-
temporal sequences. We can use their formalism to find an
expression for the power spectrum of a light field.

The power spectrum PL(Ω) = |L̂(Ω)|2 depends on the
spatial frequencies of the textures in the scene, the orienta-
tions of the scene surfaces, as well as the depth and veloc-
ity distribution of the objects in the scene. For now we will
disregard the effect of occlusions and assume that the power
spectrum of a perspective image of the scene is rotationally
symmetric, that means there is no special direction. For
natural scenes this should be roughly satisfied, although it
has been observed that horizontal and vertical orientations
are often more predominant especially in man-made envi-
ronments. To simplify the exposition, we will show how
only how to determine the power spectrum of a light field
subspace formed by the axes u-x-t (time-varying epi-polar
plane). The extension to the full 5D light field is straight for-
ward by replacing scalar variables with the corresponding
vector variables. For the power spectrum of the static per-
spective image row we can assume that it follows a power
law Pu(Ωu) = |L̂0(Ωu)|2 = K

‖Ωu‖m where m ≈ 2.3 and K
is a normalization constant [8].

We know from [6] that if we disregard occlusions the
energy of the Fourier transform of an epipolar plane (x-u-
plane) observing an object at a constant depth z is concen-
trated along the line (we assume unit focal length) Ωx =
Ωu/z. Thus the power spectrum of a static epipolar plane
is given by Pu(Ωu)δ(Ωx − Ωu/z). If the depth is vary-
ing, then the power spectrum will spread out to a wedge-
shaped region bounded by the minimal and maximal depth
(see Fig 1c). For a given image region that moves in the
image plane with velocity (optical flow) ẋ, the power spec-
trum of a perspective spatio-temporal image plane is con-
centrated along the line Ωt = Ωuẋ. By combining these
two constraints, we can write the power spectrum of the
time-varying epipolar plane as follows:

PL(Ωx,Ωu,Ωt, z, ẋ) (6)

=Pu(Ωu)δ(Ωx − Ωu/z)δ(Ωt − Ωuẋ) (7)

Given a probability distribution for the velocitiesDẋ(ẋ) and
depths Dz(z), and using the fact that the term under the
integral is only nonzero (due to the delta functions) for

z = Ωu/Ωx and ẋ = Ωt/Ωu, (8)

we can express an ”average” light field power spectrum by

integrating over these distributions as:

|L̂(Ωx,Ωu,Ωt)|2 = Pu(Ωu)·
∞∫
0

∞∫
0

δ(Ωx − Ωu

z
)δ(Ωt − Ωuẋ)Dz(z)Dẋ(ẋ)dzdẋ

=
K

‖Ωu‖m
Dẋ(

Ωt

Ωu
)Dz(

Ωu

Ωx
). (9)

This expression allows us now to evaluate Eq. (4) given
a depth and velocity distribution. In conclusion, by com-
bining Eqs. (9) and (4) we can evaluate how accurately a
given camera assembly is able to capture the light field of
an ”average scene”. When this error estimate is combined
with a sensitivity analysis of the vision algorithm that will
operate on the images, then we can define a mathematical
fitness function over the space of camera assemblies, and
by optimizing over the camera geometry (as defined by the
lattice matrixA) and the camera optics (analysis function ϕ
and prefilter ψ), we can determine the optimal camera for
the task at hand.

3. Case Study: Designing Eyes for a Robot

In this section we will demonstrate the camera design
methodology as described in the previous sections, by de-
signing eyes for a robot that needs to navigate based on vi-
sual information. We use 3D motion estimation as an ex-
ample task because it is one of the fundamental problems in
vision and a fundamental component of many algorithms in
navigation, virtual reality, tele-immersion, and graphics.

To determine the optimal eye for the robot, we first have
to analyze the brightness structure of the plenoptic function
to determine what plenoptic subspace the robot eye should
capture.

3.1. How is 3D motion information encoded in the
space of light rays?

In a static world the brightness structure of the space of
light rays is time-invariant, thus if a camera moves rigidly
and captures two overlapping sets of light rays at two differ-
ent time instants, then a subset of these rays should match
exactly and would allow us to recover the rigid motion from
the light ray correspondences. If we choose the camera co-
ordinate system as our fiducial coordinate system, we can
describe this motion by an opposite rigid coordinate trans-
formation of the ambient space of light rays in the camera
coordinate system. This rigid transformation, parameter-
ized by the rotation matrix R(t) and a translation vector
q(t), results in the following exact equality which is called
the discrete plenoptic motion constraint [16]:

L(R(t)x + q(t);R(t)r; t) = L(x; r; 0). (10)
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Subspace Subspace Example Motion Constraint Equation (zero columns Parameters Need to esti-
Dimension Axes imply that no constraint exists for that parameter) to estimate mate depth?

2D:
xt,yt
ut,vt

−Lt = Lu

(
f
z 0 −u

z 0 u2
f +f 0

) ( q̇
ω

)
2+N yes

3D:
xyt,xvt
yut,uvt

−Lt =
(

Lu

Lv

)T( f
z 0 −u

z −uv
f

u2
f +f −v

0 f
z − v

z −( v2
f +f) uv

f u

)(
q̇
ω

)
5+N yes

3D: xut,yvt −Lt =
(

Lx

Lu

)T( 1 0 −u
f 0 ux

f +ZΠ 0

0 0 0 0 u2
f +f 0

)(
q̇
ω

)
3 no

4D:
xyut,xyvt
xuvt,yuvt

−Lt =
(

Lx

Lu

Lv

)T

 1 0 −u

f 0 ux
f +ZΠ 0

0 0 0 −uv
f

u2
f +f −v

0 f
z − v

z −( v2
f +f+ f

z ZΠ) vu
f + vx

z u+ f
z x


( q̇

ω

)
6 + N yes

5D: xyuvt −Lt =

(
Lx

Ly

Lu

Lv

)T



1 0 −u
f −uy

f
ux
f +ZΠ −y

0 1 − v
f −( vy

f +ZΠ) vx
f x

0 0 0 −uv
f

u2
f +f −v

0 0 0 −( v2
f +f) vu

f u


( q̇

ω

)
6 no

Table 1. Information content of the different plenoptic subspaces with regard to the 3D motion estimation prob-
lem

It expresses the fact that the rigid motion maps the time-
invariant space of light rays upon itself.

As was shown in [16], if the motion of the camera is
small, then we can express the differential changes in a
spatio-temporal light field in terms of the light field co-
ordinates (x, y, u, v, t) and light field derivatives Lx =
∂L/∂x, . . .. ([·; ·] denotes the vertical stacking of vectors):

−Lt = [Lx, Ly, Lu, Lv][Mt,Mω][q̇; ω] (11)

where

Mt =

(
1 0 −u

f

0 1 − v
f

0 0 0
0 0 0

)
, Mω =




−uy
f

ux
f +ZΠ −y

−( vy
f +ZΠ) vx

f x

−uv
f

u2
f +f −v

−( v2
f +f) vu

f u


 .

This linear constraint equation allows us to compute the mo-
tion of the camera directly from the captured image infor-
mation by solving a simple over-determined set of linear
equations in the 6 rigid motion parameters.

In both the discrete and the differential case we see that
if a sensor is able to capture a continuous non-degenerate
subset of the plenoptic function, then the problem of esti-
mating the rigid motion of this sensor is independent of the
scene and the only free parameters are the six degrees of
freedom of the rigid motion. This global parameterization
leads to a highly constrained estimation problem.

One question comes to mind. Do we truly need to cap-
ture the full plenoptic function to utilize this constraint?
Unfortunately, the answer is yes. If we only have ac-
cess to a lower-dimensional subspace of the light field, we
can only form reduced motion constraint equations from
Eq. (11) by omitting the dimensions along which we can-
not make measurements or utilizing the triangulation rela-

tion ship between the flow in the focal and image planes
([u̇; v̇] · z(x, y, u, v) = f [ẋ; v̇] as illustrated in Fig. 1b).
We collected the motion constraint equations for all the
plenoptic subspaces in Table 1, and we see that the cam-
era that makes the motion estimation problem the easiest
is the one that samples the whole plenoptic function (or a
multi-perspective 3D slice of it for the case of planar mo-
tion) because the motion estimation problem is reduced to a
low-dimensional image registration problem as said before.

Another important criteria is the range of directions
(field of view) of the sensor. A small field of view makes
the motion estimation ill-posed (see [7] for a study on this
subject), thus for accurate and robust motion estimation the
sensor needs to have a wide field of view. Combining the
two criteria, the field of view and the subset of the space of
light rays that a sensor captures, we can rank different eye
design in a hierarchy as shown in Fig. 3 which expresses a
qualitative measure of how hard the task of motion estima-
tion is to solve for a given sensor design [16].

3.2. What Camera Design Can Best Extract the
Motion Information?

The qualitative hierarchy of camera designs in Fig. 3a
can be quantitatively analyzed by applying the framework
presented in section 2. To simplify the exposition we as-
sume that the robot is only able to move on a planar, flat
surface, thus the locomotion of the robot is limited to a hor-
izontal planar motion, and that the camera designs under
study are restricted sets of horizontally aligned pinhole line
cameras. As summarized in Table 1 in the previous section,
we can see that we can extract the 3 planar motion param-
eters directly from the image data if we are able to capture
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Figure 3. Hierarchy of Cameras for 3D Motion Estimation. (a) Qualitative Hierarchy: The different camera mod-
els are classified according to the field of view (FOV) and the number and proximity of the different viewpoints
that are captured (Dioptric Axis). The camera models are clockwise from the lower left: small FOV pinhole cam-
era, spherical pinhole camera, spherical polydioptric camera , and small FOV polydioptric camera. (b) Metric
on Space of Cameras for the ”theoretically average” environment: Relative error planar rotation estimate in
dependence on camera spacing and field of view of cameras. The plot was generated by evaluating Eqs. (4)
and (9). (c) Metric on Space of Cameras for an empirical environment: The plot was generated by averaging the
estimation errors over many line-image sequences generated from an epipolar volume.

the full x-u-t subset of the light field surrounding the robot.
If we only have a single line camera, then we can only com-
pute the heading direction and explicitly need to estimate
the depth of the scene.

Given such a hardware setup, how accurately can we
approximate the x-u-t subspace of the light field and es-
pecially its derivatives? It was shown in [4] that cubic B-
splines offer the best compromise between order of approx-
imation and and minimal support, thus we will choose them
as our synthesis basis function φ. For the camera itself we
will assume that the camera is an ideal acquisition device,
thus we choose ψ as the B-splines prefilter. For this case [4]
give an explicit formula of the error kernel for the case of
cubic B-Splines. To evaluate how accurate we can compute
the image derivatives, we need to replace the light field L
and the synthesis function φ in Eq. (4) by their respective
derivatives. Then we choose a distribution of depths and
velocities in the scene, which leaves the sampling lattice
A of the camera assembly as the variable to optimize over.
Since there is a linear relationship between differential light
field derivatives and the rigid motion parameters, the sen-
sitivity analysis of the motion estimation can be evaluated
by utilizing results from the perturbation theory of the lin-
ear least-squares problem [21] where the distribution of the
errors depends on the approximation error computed using
Eq. (4). In Fig. 3b we plot the relative error in the estimate
of the rotation angle of the planar camera motion for vary-
ing field of view and distance between the camera centers.

Another approach to simulating and evaluating camera
designs without actually building them is based on resam-
pling previously recorded subsets of the space of light rays.
We captured a number of epipolar volumes [5] of differ-
ent scenes which varied in depth and texture complexity.
Given such a continuous subset of the plenoptic function
we are able to generate new line-camera image sequences
by resampling this set of light rays. These generated image
sequences are essentially identical to the image sequences
that a true physical line camera would capture as long as the
camera motion is chosen such that all pixels of the camera
can be interpolated from the voxels of the epipolar plane
volume. By varying the spatio-temporal sampling pattern
we can simulate a wide range of camera motions as well
as camera designs. We generated a large number of im-
age sequences for various camera motions and distances be-
tween the camera centers. For each frame of a sequence we
formed the plenoptic motion constraint equations (consist-
ing in this case of the rows of Eq. (11) corresponding to a
planar motion) and solved for the planar motion parameters
using the plenoptic derivatives. As an example result, we
show in Fig. 3c how the accuracy of the rotation estimate
improves when the field of view increases, and how the ac-
curacy decreases when the spacing between the cameras in-
creases. As expected, the empirical metric on the space of
cameras is qualitatively similar to the theoretically derived
average metric in Fig 3b, although the exact shape of the
error surface is not very similar. Whether the theoretical
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or the empirical approach to defining a metric on the space
of cameras will be more useful for designing new sensors
needs to be further examined and is subject of current work.

4. Summary and Conclusions

In this paper we presented a new methodology for the
design of eyes which interprets camera assemblies as sam-
pling operators in the space of light rays. This opens up the
treasure chest of signal processing tools to aid in the design
of new cameras, and we showed how the problem of cam-
era design can be rephrased as a filter optimization prob-
lem. This optimization problem can then be solved by uti-
lizing domain knowledge such a natural image statistics and
depth and velocity distributions in the scene, or by simulat-
ing the behavior of the sensor using real plenoptic data such
es epipolar volumes or light fields. The methodology was
demonstrated by assessing the influence of two camera de-
sign parameters on the accuracy of ego motion estimation.
We believe that rephrasing the problem of camera design
in terms of a function approximation framework has great
potential especially with advent of optical nano-technology
around the corner which will offer new opportunities to de-
sign revolutionary different cameras that sample the space
of light rays in ways unimaginable to us today.
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