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Abstract

We present a novel non-parametric unsupervised seg-
mentation algorithm based on Region Competition [21];
but implemented within a Level Sets framework [11]. The
key novelty of the algorithm is that it can solve N ≥ 2 class
segmentation problems using just one embedded surface;
this is achieved by controlling the merging and splitting be-
haviour of the level sets according to a Minimum Descrip-
tion Length (MDL) [6, 14] cost function. This is in contrast
to N class region-based Level Set segmentation methods to
date which operate by evolving multiple coupled embedded
surfaces in parallel [3, 13, 20]. Furthermore, it operates in
an unsupervised manner; it is necessary neither to specify
the value of N nor the class models a-priori.

We argue that the Level Sets methodology provides a
more convenient framework for the implementation of the
Region Competition algorithm, which is conventionally im-
plemented using region membership arrays due to the lack
of a intrinsic curve representation. Finally, we generalise
the Gaussian region model used in standard Region Compe-
tition to the non-parametric case. The region boundary mo-
tion and merge equations become simple expressions con-
taining cross-entropy and entropy terms.

1. Introduction

Despite much effort and significant progress in recent
years [6, 8, 10, 16, 21] image segmentation remains a no-
toriously challenging computer vision problem. Notwith-
standing Marr’s contention that segmentation is poorly de-
fined as a standalone task [9], there are many applications
for which the partitioning of an image into a tessellation of
non-overlapping regions, each defined by an appropriate ho-
mogeneity criterion, is a useful process. Perhaps driven by

the need to address this restricted definition of the problem,
numerous approaches have been proposed.

Region Competition [21] attempts to unify some the dis-
parate approaches taken to segmentation. One of its main
advantages is that it operates in an entirely unsupervised
manner; it is not necessary to specify the classes nor their
number prior to segmentation. It solves the segmentation
problem using both feature-space and spatial information
simultaneously. This is particularly important for textured
images where region classes can be difficult to distinguish
using feature-space properties alone. However, one diffi-
culty associated with Region Competition is in its imple-
mentation. Typically, a pixel region-membership represen-
tation is employed. Such a representation lacks an intrinsic
curve model which necessitates explicit handling of situ-
ations where multiple regions meet and compete. Further-
more, the original formulation given in the paper uses Gaus-
sian region models which can be problematic, in particular
for images with textured regions.

Recently, the Level Sets methodology [11] has received
a great deal of attention within the Vision community, es-
pecially as a framework for segmentation type problems
[3, 13, 20]. Originally proposed as a form of Active Con-
tour using only edge information [2], the approach has now
been developed to include region information [13]. One of
the key attractions of the Level Sets approach is its ability
to handle changes in curve topology in a natural way. How-
ever, conventional approaches to deal with multiple class
segmentation tasks require N coupled surfaces, or at best
log N such surfaces [3], to represent N classes [20]. This
is not only computationally inefficient but, since these sur-
faces must be set-up prior to surface evolution, an initial
step is required to estimate the desired number of classes
(or for [3] the maximum desired number of classes).

In this paper, we present a novel unsupervised segmen-
tation algorithm using a Region Competition algorithm im-
plemented within a Level Sets framework. Our method
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solves N ≥ 2 -class problems on one embedded surface
and can operate in an unsupervised manner, that is, neither
the number nor the form of the partition classes need to be
specified a-priori. We contend that the Level Sets method-
ology provides a more convenient framework for the imple-
mentation of the Region Competition algorithm than region
membership arrays. Level Sets implicitly define multiple
curve fronts, thereby handling region merging in an intrinsic
manner. Furthermore, region membership can be directly
obtained from the evolving surface. Finally, we generalise
the region models used in standard Region Competition,
which are Gaussian, to the non-parametric case. The re-
gion boundary motion and merge equations become simple
expressions containing cross-entropy and entropy terms.

1.1. Region Competition

Here, we provide a brief overview of the Region Com-
petition algorithm. Further details may be found in [21].
Region Competition is an MDL [6, 14] like segmentation
algorithm but with a simplified image model and a different
cost minimisation algorithm. Whereas Leclerc [6] devel-
oped several different MDL image models, in the original
paper Region Competition concentrates solely on the piece-
wise constant case; images are modelled as comprising of
regions whereby each region pixel is considered as a sample
taken from a single PDF.

The image model comprises three elements. The first is
the region model itself, which, in the original formulation,
region pixels are modelled as samples from a PDF. The sec-
ond part of the model is the overhead cost associated with
the region model itself. Increasing this encourages fewer
regions to be formed. The third part of the model is the
boundary cost; the cost associated with coding the length
of a region’s boundary. This is equivalent to the curvature
term in Active Contours [21].

A two-stage iterative algorithm is used to (locally) min-
imise the global cost in an EM-like manner. The method
is initialised by placing ‘seeds’ across the image. In the
first stage, COMPETE, the number of regions is fixed and
their boundaries are adjusted as to minimise the global cost.
The second stage, MERGE, is to consider the merging of
regions by measuring the change in global cost if two ad-
jacent regions are merged. In essence, the purpose of this
operation is to overcome local minima in the search space.
For example, the local boundary competition might arrive at
a steady state between two regions, whereas a lower global
cost could be achieved through merging the regions.

2. Non-Parametric Region Competition

The standard Region Competition cost function, in fact
most statistical region-based segmentation methods, typi-

cally assume parametric PDFs for modelling the regions,
often a Gaussian. The reasons are mainly mathematical
tractability. However, we have found that the use of such
models makes the algorithm very sensitive to values of the
initial seed size, local scale and merge cost parameters espe-
cially where the region statistics diverge from the Gaussian
case. Li et al [7] have proposed the Wilcoxon W-statistic
as a means of generalizing Region Competition and more
recently Tu and Zhu [17] have proposed a non-parametric
segmentation method using MCMC search. Here, we de-
rive a non-parametric region model directly from the MDL
cost function.

The general expression for the statistical region force
acting on a point x = (x, y) from a region Ri [21] is:

FRi
(x, y) =

1
m

∫ ∫
W(x,y)

logP (I(u,v)|αi)dudv (1)

where I(u,v) ∈ D = {d1, d2, . . . , dr} and m is the size of
the local window, W taken around x and αi are the param-
eters of the statistics in region Ri. Equation 1 measures the
average probability of the pixels in window W conditional
on the parameters of the PDF of region Ri. Therefore we
can rewrite (1) as sum over the pixels (1..m) in W:

FRi
(x, y) =

1
m

m∑
j=1

log (pRi
(Ij)) Ij ∈ W(x,y)

=
1
m

[log (pRi
(I1)) + . . .+ log (pRi

(Im))](2)

Next, defining the counting function C(s) =
∑

j δIjs where
δpq = the Kronecker delta, we can rewrite (2) as a sum over
the descriptor values D as follows:

FRi
(x, y) =

1
m

[C(d1) log (pRi
(d1)) + . . .

+C(dr) log (pRi
(dr))]

=
∑
d∈D

pW(x,y)(d) log (pRi
(d)) (3)

where pW(x,y)(d) and pRi
(d) are the PDFs of the image in

a local window W around x and the region Ri respectively.
We may recognise that Equation 3 is the (negative) cross-
entropy between these regions. Similarly, we derive an ex-
pression for the merge cost:

∆EM = −λ+ nRi

∑
d∈D

pRi
(d) log pRi

(d) +

nRj

∑
d∈D

pRj
(d) log pRj

(d)

−nRij

∑
d∈D

pRij
(d) log pRij

(d) (4)

where pRi
(d), pRj

(d), pRij
(d) and nRi

, nRj
and nRij

are
the PDFs and numbers of pixels inside regions Ri, Ri and
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Rij respectively. We may recognise that the region parts
of Equation 4 are simply the (negative) entropies of pixels
within each region. In our implementation normalised his-
tograms are used to approximate the local region PDFs.

3. Level Set Region Competition

Where the number of classes is greater than two, seg-
mentation algorithms implemented within a Level Set
framework have used multiple coupled surfaces to date.
Such an approach is difficult to adopt here since Region
Competition demands that regions be created and destroyed
dynamically. We note that the problem is essentially one
of representation; the conventional single surface Level Set
approach can represent only two classes: positive and neg-
ative regions of the surface ψ. Therefore we need a so-
lution whereby disconnected regions are considered sepa-
rately. Our solution is to use a connected region labelling
algorithm at each iteration of the curve evolution to extract
the separate regions.

The only problem that remains is to control the merging
of the regions such that merging is only allowed if the global
cost is reduced. Our solution to this is to detect when two or
more disconnected regions of the same polarity come near
one another1 and depending on the outcome of a merge cost
calculation, allow them to merge or cause them to compete
over the boundary pixels. This condition can be detected by
conducting a local neighbourhood search for pixels of the
same polarity but differing region label at each boundary
point in the current surface function.

Although the proposed approach is straightforward in
principle, it requires some careful definitions and coding.
We detail these in the following sections. The main iteration
part of the algorithm (i.e. this is applied after initialisation)
is given in Section 4 in pseudo-code. The pseudo-code is
provided to give a concise and complete explanation of the
proposed algorithm, but the principles of our approach may
be implemented in many different ways. That having been
said, it should be noted that the order of the operations is
important in the pseudo-code.

3.1. Evolution Equation

The update equation used in our implementation is:

ψ = ψ −FRegion|∇ψ| ∗ dt (5)

where FRegion is the speed function defined in Section 3.4
and dt is the time step used in the discrete derivative, typ-
ically set to 0.4. Equation 5 is implemented using conven-
tional Level Set finite difference approximations [15]. We

1In practise, due to the manner in which regions are defined we need
only detect one of the same polarity cases; i.e. either positive/positive or
negative/negative. In our implementation we choose to detect the posi-
tive/positive case.

-+ + + +

ψ

ψ=0

BB

- - - - + +++ ++ -

ψ

ψ=0

B BB B

(a) FG/BG Interface (b) FG/FG Interface

Figure 1. Illustrative example depicting two
regions in the proposed scheme. The ver-
tical dash lines represent pixel boundaries.
Boundary pixels (’B’) for each region include
pixels in the zero level set and the adjacent
negative pixels. Hence, two negative pixels
must separate each positive region.

also employ the Narrow Band optimisation technique [1] in
our implementation. We have not include the conventional
curvature dependent term. If required, it can be included as
an extra term as part of the cost functions.

3.2. Region and Boundary Definition

We define three main elements, Boundaries (B), Fore-
ground (FG) and Background (BG), as follows:
Boundaries. The zero level set of ψ, or in practise the near-
est positive and negative pixels. Marked ‘B’ in Figure 1.
Foreground Regions. The positive regions of ψ but include
the boundary pixels. In Figure 1(a) the light grey region is
the foreground and in Figure 1(b) both the dark and light
grey regions are foreground.
Background Regions. These are defined as the negative
regions of ψ excluding any pixels assigned to foreground.
In Figure 1(a) the dark grey region is the background.

The use of these unconventional region and boundary
definitions simplifies the implementation of the region con-
trol logic. For example, with these definitions the fore-
ground regions can both grow and shrink; to grow outwards
a positive region has to increase above zero those pixels be-
yond its positive boundary and to shrink it must reduce be-
low zero those pixels at the edge of its positive boundary.

Initialisation is carried out in the conventional manner;
seeds are placed either on a grid, randomly or as a result
of some pre-processing step. In our implementation, seeds
are defined as foreground regions. Direct evaluation of the
signed distance function or a fast-marching method may be
used to generate ψ.

In order to obtain the pixel memberships of different re-
gions from ψ, a modified region labelling algorithm is used.
This is step 01 in Section 4. Two modifications are made.
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The first, is to label foreground regions with positive labels
and background regions with negative labels, and the sec-
ond is to label as foreground those negative pixels immedi-
ately adjacent to foreground regions. The first, although not
strictly necessary, facilitates a simpler algorithm description
and implementation. The second is necessary for the defi-
nitions of regions.

Boundary pixels are found using a standard zero cross-
ing detector modified such that both positive and negative
pixels are classified as boundaries. This is step 02 in Sec-
tion 4. Speeds are set only at or in the immediate vicinity
of boundary pixels and most of the region control logic op-
erates on and around the boundary pixels. For example, see
steps 03, 07 and 21 in Section 4.

It should be noted that despite the above definitions, both
types of region are treated in an identical manner by the cost
function; the distinction is necessary only for the different
COMPETE and MERGE operations for each case. These
are discussed next.

3.3. Merging and Competition

For the COMPETE part of the algorithm, the change in
energy at a particular pixel, ∆E(x,y) is calculated, for the
Gaussian region model, by:

∆E(x,y) = log σ2
i

σ2
j

+
(

(Ī(x,y)−µi)
2

σ2
i

− (Ī(x,y)−µj)
2

σ2
j

)
+(

S2
(x,y)

σ2
i

− S2
(x,y)

σ2
j

)
(6)

where µi, σ
2
i are the mean and variance for region i; µj , σ

2
j

the mean and variance for region j; and Ī(x,y), S(x,y) are
the mean and variance in a local window around a bound-
ary pixel (x, y). For the non-parametric region model case,
∆E(x,y) is given by:

∆E(x,y) =
∑

d∈D pW(x,y)(d) log
(
pRj

(d)
) −∑

d∈D pW(x,y)(d) log (pRi
(d)) (7)

where pW(x,y)(d) represents the PDF in a local region
around the boundary pixel (x, y), and pRi

(d), pRj
(d) are

the PDFs within region i and region j respectively.
The MERGE part of the algorithm evaluates potential

merges by calculating the change in global cost, ∆EM . For
the Gaussian region model, this is given by:

∆EM(i,j) = −λ+
1
2

(
nRi

log
σ2

ij

σ2
i

+ nRj
log

σ2
ij

σ2
j

+ 1

)
(8)

where λ is the overhead cost in encoding a region; σ2
i , σ

2
j

and σ2
ij are the variances for regions i, j and the union of

regions i and j respectively; and nRi
, nRj

are the numbers
of pixels in regions i, j respectively.

For the non-parametric region model, ∆EM is given by:

∆EM(i,j) = −λ+ nRi

∑
d∈D pRi

(d) log pRi
(d) +

nRj

∑
d∈D pRj

(d) log pRj
(d) −

nRij

∑
d∈D pRij

(d) log pRij
(d) (9)

where λ is the overhead cost in encoding a region; pRi
, pRj

and pRij
are the PDFs for regions i, j and the union of re-

gions i and j respectively; and nRi
, nRj

and nRij
are the

numbers of pixels in regions i, j and the union of regions i
and j respectively.

An important point to note is that merges must be re-
stricted such that only unique pairs of regions can merge at
each step. The problem is that due to the local way in which
merges are tested, two regions might be incorrectly merged
via a third adjacent region. In our implementation this is
done by setting a flag for each region indicating pending
merges. The flag, MFlag(label) is set to the label num-
ber of the region with which it is about to merge and zero
otherwise. In Section 4, steps 38-39 set this flag and 25-26
test it.

3.4. Region Control Logic

The two stages of COMPETE and MERGE require dif-
ferent operations depending on whether adjacent regions are
foreground or background. In order to produce the correct
behaviour, it is first necessary to detect whether nearby re-
gions are foreground or background. This can be done by
conducting a local neighbourhood search at each bound-
ary pixel; an 8- or 16-neighbourhood can be used. Fore-
ground regions are present where any of the pixels in the
local search area have a positive label and this label differs
from that of the current boundary pixel. Conversely, back-
ground regions are present where any of the pixels in the
local search area have a negative label. See steps 07-09
and 21-23 in Section 4 for the pseudo-code definitions for
these tests respectively. The appropriate actions for each of
these combinations is specified below.
Foreground vs. Background. The operation in COM-
PETE mode for this case is straightforward. For each mem-
ber in the set of boundary pixels the front speed is calculated
according to:

FRegion(x, y) =

{
− = 1 if ∆E(x,y) <= 0
+ = 1 if ∆E(x,y) > 0

(10)

where − = 1 and + = 1 indicate decrement and increment
operations. For simplicity we have used a binary speed
function. A smoother speed function would result in im-
proved convergence and final segmentation. Investigation
of alternative speed functions is ongoing.

The MERGE operation operates by ‘overriding’ the
speed set by the Foreground vs. Background COMPETE
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Figure 2. Segmentation of a synthetic image
composed of 4 regions containing Gaussian
noise with identical means (128) and different
variances (0.01, 0,02, 0.04, 0.08). Gaussian
region model.

if it causes the overall cost to reduce. Potential merge op-
erations of adjacent regions are tested at each iteration by
calculating the change in global cost if the merge were to
take place. If the global cost is reduced then the speed for
the foreground region is set to -1 (i.e.’grow’), otherwise the
speeds from the COMPETE calculations are used:

FRegion(x, y) =

{
−1 if ∆EM(i,j) < 0
COMPETE if ∆EM(i,j) >= 0

(11)
Equation 11 gives the speed at boundary pixel (x, y) which
separates regions i and j.
Foreground vs. Foreground. For the COMPETE opera-
tion in this case, we would like one region to push the other
away if it causes the global cost to decrease. Equations 6 or
7 for the Gaussian and non-parametric models respectively,
determine which of any adjacent Foreground regions should
grow and which should shrink.

To effect the required behaviour, our approach is to cause
the region(s) with the weaker statistical force, that is the re-
gion whose statistics are less similar to those of the local
region around the boundary position under consideration,
to shrink (speed=1); stronger regions are not moved. This
causes a small background region to appear between adja-
cent regions and at the next iteration the stronger will move
into that area in the normal Foreground vs. Background
COMPETE operation. This is done in steps 33-34 in Sec-
tion 4.

For the MERGE operation, the merge criterion (Equa-
tions 8 or 9) is tested. If the global energy is reduced by

allowing two regions to merge then nothing needs to be
done; the normal Foreground vs. Background COMPETE
will cause the two to merge.

3.5. Cleaning up old boundaries

Due to their definition, boundary pixels from foreground
regions that previously merged remain in the boundary map.
This does affect the region map but does result in a confus-
ing the boundary map. We can correct this behaviour by
setting the default speed of all boundary pixels that meet
other boundary pixels from the same region (label <= 0
and labelFG1 = labelFG2) to grow (speed=-1).

4. The Algorithm

In this section, we provide an pseudo-code description
of one iteration in the proposed algorithm.
01 Label=Find all region labels
02 BoundaryList=Find all boundary pixels
03 For each boundary pixel (x,y) in BoundaryList do: /* Grow Speeds */
04 Speed(x,y)=-1
05 For each pixel (u,v) in an 8 neighbourhood around (x,y) do:
06 If (Label(x,y)!=Label(u,v)) then Speed(x,y)=0
07 For each boundary pixel (x,y) in BoundaryList do: /* FG vs. BG */
08 For each pixel (u,v) in an 8-neighbourhood around (x,y) do:
09 If (Label(x,y)!=Label(u,v) AND Label(u,v)<0) then:
10 {
11 DELTA_EM=CalcMergeCost(Label(x,y), Label(u,v))
12 If (DELTA_EM>=0) then: /* COMPETE */
13 {
14 LStats=CalcLocalStats(x,y)
15 DELTA_E=CalcCoherence(LStats, Label(x,y), Label(u,v))
16 If (DELTA_E>0) then Speed(x,y)+=1
17 Else Speed(x,y)-=1
18 }
19 Else Speed(x,y)=-1 /* MERGE */
20 }
21 For each boundary pixel (x,y) in BoundaryList do: /* FG vs. FG */
22 For each pixel (u,v) in an 8-neighbourhood around (x,y) do:
23 If (Label(x,y)!=Label(u,v) AND Label(u,v)>0) then:
24 {
25 DELTA_EM=CalcMergeCost(Label(x,y), Label(u,v))
26 If (DELTA_EM>=0 OR ( MFlag(Label(x,y))>0
27 AND MFlag(Label(x,y))!=Label(u,v) )) then: /* COMPETE */
28 {
29 Speed(x,y)=0
30 LStats=CalcLocalStats(x,y)
31 DELTA_E=CalcCoherence(LStats, Label(x,y), Label(u,v))
32 If (DELTA_E>0) then
33 For each pixel (s,t) in an 8-neighbourhood around (x,y) do:
34 If (Label(s,t)=Label(x,y)) then Speed(s,t)=1
35 }
36 Else /* MERGE */
37 {
38 MFlag(Label(x,y))=Label(u,v)
39 MFlag(Label(u,v))=Label(x,y)
40 }
41 }

CalcMergeCost and CalcCoherence are Equations
8 or 9 and 6 or 7 respectively.

5. Results

In the first experiment, the algorithm was applied to an
image comprising regions with identical means but with dif-
ferent variances; a similar test image was used in [21]. Fig-
ure 2 shows the results. This example is useful because
it demonstrates that the competition part of the algorithm
works correctly. In the initialisation, we deliberately placed
a seed point on the boundary between two image regions2.

2We use the term image region to mean the regions of the image and
segmentation region to mean the regions defined by the Level Set function.
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a b c

Figure 3. Segmenting the ‘Icecream’ image in
Gaussian noise with variance 0.3 (column a),
0.5 (column b) and 1.0 (column c). Parameters
were local window scale=3, λ=50, Gaussian
model.

This segmentation region contains a mixture of the pixels
from each of the adjacent image regions, and hence initially
grows since adjacent pixels from both image regions match
the local PDF. However, some time later adjacent segmenta-
tion regions will compete with it for ownership of its pixels
and will win because it is cheaper to code those pixels as
part of a homogeneous segmentation region than a hybrid
region.

In the second experiment, another standard test image is
used, ‘Icecream’ — three circles filled with different grey-
values. The results are shown in Figure 3. The aim here is
to demonstrate the robustness of the method to increasing
amounts of noise. In this case, Gaussian noise has been
used. Three cases are shown with increasing amounts of
noise, each one is segmented using the Gaussian model and
with the same parameters — local window scale=3, λ =
50. The segmentation is initialised with a regular grid of
circular seed points.

The aim of the third experiment is to compare the rela-
tive performances of the Gaussian and the non-parametric
region models. The image is the same as in the previous
experiment, however this time with ‘Salt and Pepper’ noise
added (density 0.5), causing the regions to be quite non-
Gaussian. Figure 4 shows the results. Three parameters
have been used for each region model; for the Gaussian
case λ = 15, 20, 25 and for the non-parametric case (32
bin histogram) λ = 50, 100, 200. The local scale was set to
3 for all cases and the same initialisation from the previous

Gaussian : λ = 15 Gaussian : λ = 20 Gaussian : λ = 25

Hist32 : λ = 50 Hist32 : λ = 100 Hist32 : λ = 200

Figure 4. Segmenting the ‘Icecream’ image in
‘Salt and Pepper’ noise with density of 0.5,
using Gaussian and non-parametric (Hist32)
region models. Local window scale = 3

experiment was used.
The difference is quite clear. For the Gaussian case,

only the λ = 15 case comes close to correctly segment-
ing the image, whereas in the non-parametric model case
the correct segmentation is found in all cases, even though
the λ varies over a larger range. We would expect that for
non-synthetic images the non-parametric region model will
make the algorithm more robust and less sensitive to precise
setting of the parameters. Furthermore, a non-parametric
region model becomes a necessity for segmenting textured
images. The statistics of many texture descriptors, such as
those based on wavelets, are typically non-Gaussian.

Typical execution times for these synthetic images (all
256x256 8-bit grey-levels) were in the range of 10-20 s3.

In the fourth experiment, we have used a commonly used
segmentation test image, ‘smhouse’, to ease comparison to
results of previously published methods, such as [12]. The
algorithm was run using the non-parametric region model
(16 bin histogram) with parameters λ = 100 and local scale
= 5. The initialisation was a regular grid similar to that used
in the previous experiment. The results are shown in Figure
5(a). The segmentation is quite reasonable except where the
sky has been partitioned into two regions. This is a problem
with the region model. Though at first glance the sky re-
gion looks constant, it is in fact a gradient, ranging from
grey-level 188 at the top to 174 at the horizon. Replacing
the piecewise-constant model with a piecewise-smooth one
would correct this problem. An alternative solution could be
to increase the region cost λ, in effect encouraging regions
to merge. However, in experiments we have found that con-
trary to expectations, other, more perceptually distinct re-

3All execution times are given for a AMD Athlon MP 2000+ machine
with 1.5GB memory.
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a b

Figure 5. Segmentation of original (a) ‘sm-
house’ image and noisy (b) using non-
parametric (Hist16) region model. Parame-
ters λ=100, local window scale=5. The addi-
tion of the noise improves the segmentation.

gions, such as the bushes and lawn, merge at lower incre-
ments of λ than the two sky regions. There are several pos-
sible causes of this curious effect. One probable explanation
is that the Region Competition cost function assumes a spa-
tially constant noise model (Leclerc [6] derived MDL mod-
els for spatially varying noise). When this is not the case,
regions with large variances are more likely to merge than
those with small variances. A similar effect occurs in the
non-parametric case; high entropy regions are more likely
to merge than low entropy ones. In the ‘smhouse’ image,
the sky region has a very tight variance whereas the bushes
by the house exhibit a considerably larger variance. Recent
graph-cut approaches can overcome this problem since they
do not employ such strong region models [4, 16].

To illustrate this effect Figure 5(b) shows the results of
the algorithm applied to the ‘smhouse’ image with added
noise, using an identical set of parameters and initialisation
as in the previous case. The addition of noise increases the
variance (and entropy) of the sky region such that it can
be grouped together. However, improved results aside, the
concept of adding noise to an image to improve segmenta-
tion is somewhat counter-intuitive.

Another problem with our method can be seen in the re-
gion map image. Where there are a number of adjacent fore-
ground regions, for example the bushes and the wall of the
house, there is a small gap consisting of very small back-
ground regions. They are marked black on the region map.
These occur because our speed function is binary; we set the

Figure 6. Segmentation of ‘MyBrain’ MRI brain
scan images using non-parametric (Hist32)
model. Parameters λ=200, local window
scale=15, 5.

speed to either +1 or -1. In most cases this does not cause
a problem, but in some cases, such as these, it causes the
competing foreground regions never to settle next to each
other. A smoother speed function, one related to the statis-
tical region forces, is necessary. Typical execution times for
this image (190x190) were in the range of a 1-2 minutes for
the non-parametric case (Hist16).

In the final experiment, the objective is to demonstrate
that good results can be obtained over a class of images, in
this case MRI images of the brain, using one set of parame-
ters, λ = 200, local window scale=15 and 5. The two scales
are used in a coarse-to-fine strategy: first, the segmenta-
tion is carried out at the coarse scale, and after convergence
the fine scale is used. This is a common technique used to
speed up convergence and allow smoother segmentations.
The non-parametric model is used with 32 bins. A similar
initialisation to previous experiments was used.

Three slices of the ‘MyBrain’ set are shown in Figure
6. Overall, the results are good. However, as with the ‘sm-
house’ image, a smooth gradient in the central regions in
the top slice has resulted in two regions being detected.
MRI images are ideally piecewise constant up to the par-
tial voxel effect in which tissues of two different types e.g.
grey matter and white matter are present in the same voxel
and the signal is a linear combination of the white and grey
responses. However, imperfections in the B1 RF field gen-
erate a low frequency distortion known as the bias field
distortion. The bias field can be estimated accurately for
brain images and retrospectively corrected for [5, 18, 19]. A
piecewise smooth region model could also be used to over-
come this problem. Typical execution times for this image
(256x256) were in the range of a 3-5 minutes for the non-
parametric case (Hist32).
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6. Summary and Conclusions

In this paper we have described an unsupervised segmen-
tation algorithm based on Region Competition but imple-
mented within a Level Sets framework. The main contribu-
tions are as follows:

Our Level Set algorithm can represent multiple classes
using one embedded surface or phase. Previous methods
such as [12, 13] require N coupled phases (or at best log N
[3]) for N classes. This is beneficial for two reasons: firstly,
it promises to be computationally more efficient; secondly it
allows for dynamic splitting and merging of regions, hence
facilitating unsupervised algorithms. It should be noted
however that the execution times reported here are gener-
ally larger than those of previous methods such as [3, 12]. It
should be noted that our implementation has not been opti-
mised and there are likely to be many opportunities for com-
putational savings. For example, our Narrow Band imple-
mentation uses a ‘brute-force’ approach to re-initialise the
fronts whereas Fast Marching algorithms are a much faster
alternative. In some applications memory requirement is
also an important factor, for example 3D segmentation, and
here the our approach should prove advantageous since it
requires only one surface to be stored between iterations.

Formulating the Region Competition algorithm in a
Level Set framework overcomes the implementation dif-
ficulties associated with the pixel list approach, since
the Level Set technique can implicitly handle topological
changes such as merging and splitting and is essentially a
curve evolution technique. Finally, we have generalised the
standard Region Competition expressions for competitive
and merging stages. This generalisation makes the algo-
rithm more robust and less dependent on a careful choice
of parameters. We have provided results of our algorithm
applied to a number of synthetic and real images.
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