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Abstract

This paper addresses the problem of computing the tra-
jectory of a camera from sparse positional measurements
that have been obtained from visual localisation, and dense
differential measurements from odometry or inertial sen-
sors. A fast method is presented for fusing these two sources
of information to obtain the maximum a posteriori estimate
of the trajectory. A formalism is introduced for represent-
ing probability density functions over Euclidean transfor-
mations, and it is shown how these density functions can be
propagated along the data sequence and how multiple es-
timates of a transformation can be combined. A three-pass
algorithm is described which makes use of these results to
yield the trajectory of the camera.

Simulation results are presented which are validated
against a physical analogue of the vision problem, and re-
sults are then shown from sequences of approximately 1,800
frames captured from a video camera mounted on a go-kart.
Several of these frames are processed using computer vision
to obtain estimates of the position of the go-kart. The algo-
rithm fuses these estimates with odometry from the entire
sequence in 150 mS to obtain the trajectory of the kart.

1. Introduction

This paper addresses the problem of computing the tra-
jectory of a camera by combining vision and odometry (or
inertia). This problem has applications in mobile robotics
and is also important for obtaining an initialisation which
can then be used to solve the more general structure and
motion problem.

The problem is shown in Figure 1. A camera mounted
on a vehicle follows some trajectory. Odometry measure-
ments giving estimates of the motion between each frame
(Mi) are available with known uncertainties. Some of the

Figure 1: An example vehicle path. Motion information Mi

is known continuously along the path, but estimates for the
absolute pose Vi are only known in a few places. The task is
to optimally estimate the absolute pose of each point along
the trajectory.

frames have been processed using computer vision to give
estimates of the pose of the camera, also with uncertain-
ties (V0, V3 and V9 in the example). The goal is to obtain a
maximum a posteriori (MAP) estimate for the pose of the
camera at each frame in the sequence (Ei) that maximises

∏
i

P(Mi|Ei)
∏
i:∃Vi

P(Vi|Ei) (1)

In the problem considered in this paper, the sequences con-
sist of approximately 1,800 frames, of which about 30 have
been processed to give position estimates (there are there-
fore approximately 5,400 degrees of freedom).

To illustrate why this problem is not as straightforward
as it might seem, consider the simple case where the odom-
etry states that the vehicle has travelled forward in a straight
line one unit per time step in the x direction for n frames.
Position information from the first and last frames, however,
shows that the vehicle has undergone a sideways translation
in the y direction in addition to its forward motion, and is
pointing in the same direction at both ends of the sequence
(see Figure 2(a)). Further, assume that the position infor-
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(a) (b) (c)

Figure 2: An example trajectory. a) Odometry information Mi indicates an x-translation, while the vision measurements V0 and V3

indicate that there is also some y-translation, but no rotation; b) the naı̈ve trajectory; c) the correct trajectory.

mation is accurate, but that each frame in the odometry con-
tains independent x, y and θ motion errors.

The simple solution to this problem is to optimise in x, y,
θ space. Since the vehicle has not rotated according to the
position estimates (and this is in agreement with the odome-
try), the solution obtained by Kalman smoothing [9] (or any
similar optimisation) shows no rotation in any of the pose
estimates for the sequence. Further, the final estimate for
the vehicle’s motion is a straight line between the two posi-
tion measurements (see Figure 2(b)). Unfortunately this is
the wrong answer. Figure 2(c) shows the correct trajectory.

1.1. Background

This problem is important in both computer vision and
robotics research. In computer vision it is often seen as
part of the structure from motion (SFM) problem [7, 8, 11],
where the task is the identification of not just the trajectory,
but also the building of a three-dimensional model of the
scene. These techniques tend to rely solely on vision in-
formation, and rely heavily on the ability to track features
throughout the sequence, something which is not possible in
every application. In robotics the same problem (although
often in only two dimensions) is known as simultaneous
localisation and map-building (SLAM) [3, 10], although
many robotics applications are solely concerned with robot
localisation [2, 6, 12, 13, 14, 15]. In robotics applications,
vision is usually used as an additional information source
to be used together with some other system such as odom-
etry or inertial sensors, the fusion of the two systems pro-
viding much greater accuracy and robustness than could be
achieved by either alone [15].

Robotics applications are often driven by a requirement
for real-time position information (e.g. [3, 10]). This, how-
ever, is unable to provide the optimal trajectory estimate,
since this can only be calculated after the event. Opti-
mal trajectory estimation is achieved in structure from mo-
tion cases by bundle adjustment [8, 16], a time-consuming
global optimisation. The case of optimal (off-line) trajec-
tory estimation by combining multiple data sources has
only recently been considered in the robotics literature

Figure 3: Three possible poses for E1. Moving from E0

to E1 has uncertainties in both translation and rotation, and
the final pose therefore has correlated uncertainty between
translation and rotation.

[4, 13, 15], the latter two of which tackle problems very sim-
ilar to the one considered in this paper. Jung and Taylor’s
scheme [13] is not optimal, instead largely being an inter-
polation scheme. Strenlow and Singh [15] consider the case
of combined vision and inertial measurements, and perform
Levenberg-Marquardt optimisation over an total error func-
tion to yield an optimal solution. However, they only con-
sider isotropic covariances and do not discuss the problems
of correctly propagating probability distributions.

1.2. Approach

The reason that the trajectory shown in Figure 2(b) is
incorrect is that although the translation and rotation errors
are independent at each link in the chain, the accumulated
errors do not remain so. Consider the single link shown in
Figure 3. If independent errors in translation and rotation
are applied at the start of the link, the error in pose seen at
the end of the link has a correlation between y translation
and rotation.

In order to solve the problem correctly, it is necessary
to formally describe poses and the distributions of these er-
rors. This takes a little care since the manifold of poses in
3D space has non-zero Riemann curvature. Section 2 intro-
duces a formalism for doing this, and then shows how two
estimates of a pose with their uncertainties can be resolved
to find a MAP estimate. Section 3 then shows how uncer-
tainties are propagated and gives a three-pass algorithm for
obtaining a trajectory.

The problem of finding a trajectory has a physical ana-
logue of finding the minimum energy configuration of an
elastically deformable object (e.g. a steel ruler). Section
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4 shows simulation results validated against this analogue,
and then results from sequences obtained from a camera
mounted on a go-kart are shown. It is also described how
this formulation copies elegantly with uncertainty in the
synchronisation of the two data sources.

2. Formulation

In this paper, poses and motions are represented as co-
ordinate frame transformations. A pose (e.g. E, V) is the
transformation from the world coordinate frame to that of
the camera, and a motion (e.g. M) from time t to t + 1 is the
transformation from the coordinate frame of the camera at
time t to that at t+1. These transformations are represented
by 4 × 4 matrices:

E, V, M =
[
R t

000 1

]

Matrices of this type form the Lie group SE(3) and hence
uncertainties in a pose or motion correspond to probability
density functions over SE(3).

Because the manifold structure of SE(3) has non-zero
curvature, defining probability density functions takes a lit-
tle care. One way of doing this is to define a chart. This has
been done using t and representing R using Euler angles
[15], but this approach has difficulties because the solid an-
gle swept out by a given change in Euler angles depends on
the current pose. In this paper, we make use of the expo-
nential map to provide a natural frame in which to define
probability density functions.

The exponential map [1, 17] is a map from the tangent
space of the group at the identity element to the group and,
using this, the tangent space can be used to provide a chart
for a region around the identity, or even the whole group.
Note that elements in this tangent space are also elements
of the Lie algebra of the group. A natural choice of basis
for the tangent space to SE(3) (also known as the generators
of the group) is given by:

G1 =
[

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]
G2 =

[
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
G3 =

[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]

G4 =
[

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]
G5 =

[
0 0 1 0
0 0 0 0−1 0 0 0
0 0 0 0

]
G6 =

[
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]

These generators represent the derivatives of x, y and z
translations and x, y and z axis rotations respectively. The
exponential map then maps a linear combination of these
generator matrices into a transformation matrix by

E = e
∑

i αiGi (2)

for which the shorthand E = eα will be adopted in the rest
of this paper.

Probability density functions over groups can be repre-
sented using the exponential map by defining a probability
density function over α̂ ∈ R

6. The random variable Ê can
then be defined by Ê = eα̂.

It is often convenient to consider zero-mean distribu-
tions, in which case Ê can be written, for Gaussian errors,

Ê = eαE α ∼ N [0, C] (3)

Writing the random transformation on the left of a mean
transformation E is equivalent to representing the uncer-
tainty in the target co-ordinate frame. It is also possible
to represent uncertainties in the source frame by

Ê = Eeα′
α′ ∼ N [0, C′] (4)

but E and eα do not necessarily commute, so in general
C �= C′. There is, however, a relationship between C and
C′, given by the adjoint representation of E. The adjoint
representation of a group is a map from the group to linear
transformations on its algebra and can be defined by

eAd(E)ε = EeεE−1 (5)

i.e. Ad(E) is the action of E on the Lie algebra by conjuga-
tion. Equation (5) can be rewritten as

eAd(E)εE = Eeε (6)

hence α and α′ from (3) and (4) are related by

α = Ad(E)α′ (7)

and C and C′ are related by

C = Ad(E)C′ Ad(E)T (8)

This equation will be important in Section 3 to ensure that
the uncertainties are correctly represented as they are prop-
agated.

2.1. Optimally combining two sources of pose infor-
mation

It is also necessary to know how to combine two inde-
pendent pose estimates to give the optimal (maximum a
posteriori) estimate of the pose, and the associated covari-
ance. This Section will consider the case of combining two
transformations, E1 and E2, with error covariances C1 and
C2 respectively.

The optimal pose, Eopt, is given by a correction to each
of E1 and E2. Let these correction terms be eε1 and eε2

respectively, such that

Eopt = eε1E1 = eε2E2 (9)
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and, rearranging,

E2E
−1
1 = [eε2 ]−1 [eε1 ] = e−ε2eε1 (10)

Since (10) concerns the exponentiation of matrices, which
do not commute under multiplication, the exponents in the
final term cannot be simply added. However, they can be
approximated as

e−ε2eε1 = e(ε1−ε2)+
1
2 [ε1,ε2]+O(ε3

i ) (11)

where [a, b] is the Lie bracket [17]. Since the εi are small, a
linear solution can initially be obtained by

ε1 − ε2 = ln
(
E2E

−1
1

)
(12)

The correction terms ε1 and ε2 are drawn from zero-
mean Gaussian distributions with covariances C1 and C2 re-
spectively. The MAP solution can thus be obtained by max-
imising the probabilities of these two variables subject to
the constraint (12), giving

ε1 = C1 [C1 + C2]
−1 ln

(
E2E

−1
1

)
(13)

ε2 = −C2 [C1 + C2]
−1 ln

(
E2E

−1
1

)
(14)

However, since an approximation was involved in step (11),
in practice

eε1E1 �= eε2E2

although they are usually very close.
Using the estimate given by using (13) in (9) is accept-

able for many applications, but if the true optimal solution
is required, some iteration is needed. In this case, it is best
to return to solutions in the form of (12). For some guess of
the optimal pose Ek

opt (which may be initialised, for exam-
ple, to E0

opt = E1), the distance to each of the two estimates
can be written as

dk
1 = ln

(
E1

[
Ek

opt

]−1
)

(15)

dk
2 = ln

(
E2

[
Ek

opt

]−1
)

(16)

The correction to the current Ek
opt is given by finding the

state vector dk which optimally divides the error between
the two dk

i , which is given by the usual equations for com-
bining two Gaussians,

dk = C1 (C1 + C2)
−1 dk

1 + C2 (C1 + C2)
−1 dk

2 (17)

and then
Ek+1

opt = edk

Ek
opt (18)

The equations (15)–(18) can be iterated until convergence,
which takes very few iterations. The covariance of this esti-
mate is is given by

Copt = C1 [C1 + C2]
−1 C2 (19)

which is a simple rearrangement of the standard expression;
in this form, most of this expression is also used in the cal-
culation of (13) or (17).

3. Combining motion and pose information for
optimal pose estimation

The formulation developed in Section 2 provides the
means to solve the trajectory estimation problem discussed
in the introduction. In this Section the solution to the simple
case of Figure 2 will first be described, and then the exten-
sion to the general case.

Figure 2 shows the case where estimates for the absolute
pose of the object are known only at the start and end of the
path; these are V0 and V3, with related covariance matrices
Φ0 and Φ3, such that

V̂i = eυiVi υi ∼ N [0, Φi] (20)

In contrast, motion information Mi is available continuously,
in each sample point’s local co-ordinate frame. For motions,
it is more convenient to treat the uncertainty symmetrically,
with some before and some after the motion:

M̂i = eεiMie
ε′

i εi, ε
′
i ∼ N [0, Σi] (21)

As discussed in Section 1, the global estimation and op-
timisation of all the poses and covariances is an immense
problem—there are 4 × 3 = 12 degrees of freedom in the
example of Figure 2 alone, and about 5,400 in the case con-
sidered in the trajectories of Section 4.2. However, the the-
ory developed in Section 2 enables a fast and elegant solu-
tion. The pose at all the positions along the trajectory can be
calculated by working along the chain of positions, steadily
propagating and combining the poses and covariances.

3.1. Propagating pose and covariance estimates

The pose and uncertainty at position Ê1 can easily be es-
timated by propagating forwards from the known informa-
tion about V̂0:

Ê
+
1 = M̂0V̂0 (22)

where the superscript + indicates a forward-propagated es-
timate. Substituting with the uncertainties from (20) and
(21) gives

Ê
+

1 = eε0M0e
ε′
0eυ0V0 (23)

The adjoint representation (8) can be used to correctly
gather all of the uncertainty to the left-hand side, so that
it can be written in the usual form Ê

+

1 = ex+
1 E+

1 , with
x+

1 ∼ N
[
0, C+

1

]
. This gives

E+
1 = M0V0 (24)

C+
1 = Σ0 + Ad (M0) [Σ0 + Φ0] Ad (M0)

T (25)

A second, and completely independent estimate for this
pose, Ê

−
1 , is given by propagating backwards from the other
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end of the chain using the inverse motions:

E−2 = M−1
2 V3

C−2 = Σ2 + Ad
(
M−1
2

)
[Σ2 + Φ3] Ad

(
M−1
2

)T

E−1 = M−1
1 M−1

2 V3 (26)

C−1 = Σ1 + Ad
(
M−1
1

) [
Σ1 + C−2

]
Ad

(
M−1
1

)T
(27)

These two propagations have combined all of the known
information up to this point. All that remains is to opti-
mally combine the two estimates Ê

+
1 and Ê

−
1 . This is ex-

actly the situation described in Section 2.1, and the optimal
estimate for Ê1 can therefore be calculated from (15)–(19)
as described earlier.

All of the other poses along the trajectory can be opti-
mised in a similar way—the calculation of the pose Ê2 is
almost exactly the same case as that described above. The
positions of the start and end of the chain (Ê0 and Ê1) must
also be optimised. Although pose estimates Vi are already
known at these points, there are also also alternative esti-
mates provided by propagating all the way from the other
end of the chain. These poses can also be optimised ac-
cording to Section 2.1, this time combining the propagated
information with the absolute pose information.

3.2. The general case: including intermediate pose
estimates

In a more general case, such as that shown in Figure 1,
prior pose estimates may be known at any point along the
trajectory, and not necessarily known at the start and end
(although there must always be at least one somewhere, to
give some absolute pose information). Simple extensions of
the propagation scheme described above allow these cases
also to be treated.

When no pose V0 is provided for the start of the chain,
forward propagation cannot begin until the first pose Vi is
reached. Any optimised pose estimates before this point are
solely provided by backwards propagation. The converse is
true at the opposite end of the chain.

When pose estimates Vi are provided elsewhere along the
chain, they are simply optimised into, and included with,
the propagation. In both the forward and backward prop-
agation stages, if a sample point is reached which is also
provided with a prior pose estimate, these two estimates (the
propagated estimate and the prior) are optimally combined
according to Section 2.1 and the optimised pose and covari-
ances propagated onwards. There is a subtlety here when
it comes to finally combine the forwards- and backwards-
propagated estimates, since the vision measurement should
only included once, but this is simply dealt with as outlined
in Algorithm 1, introduced in the next Section.

3.3. Generating a complete optimal path

The trajectory estimation algorithm developed in this pa-
per provides a fast (linear-time) method for optimally com-
bining continuous motion and sparse pose data, requiring
three passes of the data: forward propagation, backward
propagation, and an final optimisation step to combine the
data from each pass, as summarised in Algorithm 1. The
Combine() function referred to in the algorithm is that de-
scribed in Section 2.1, equations (15)–(19). Forward and
backward propagation begins only at the first pose Vi en-
countered.

Algorithm 1 Complete algorithm for trajectory estimation

Propagate forwards
For each frame i = 1 . . . N
- Calculate E+

i = Mi−1E
+
i−1

- Calculate C+
i = Σi−1 + Ad (Mi−1)

[
Σi−1 + C+

i−1

]
Ad (Mi−1)

T

- If also have pose V̂i, set
{E+

i , C+
i } = Combine

(
E+

i , C+
i , V+

i , Φ+
i

)
using (15)–(19)

Propagate backwards
For each frame i = N − 1 . . . 0
- Calculate E−i = M−1

i E−i+1

- Calculate C−i = Σi + Ad
(
M−1

i

) [
Σi + C−i+1

]
Ad

(
M−1

i

)T

- If also have pose V̂i, store
{EU−

i , CU−
i } = {E−i , C−i } and then set

{E−i , C−i } = Combine
(
E−i , C−i , V−i , Φ−i

)
Optimise frames
For each frame i = 0 . . . N

- If have Ê
+
i , Ê

−
i , and V̂i, then

{Ei, Ci} = Combine
(
EU−

i , CU−
i , E+

i , C+
i

)
(since V̂i has already been combined into Ê

+
i )

- If just have Ê
+
i and Ê

−
i , then

{Ei, Ci} = Combine
(
E−i , C−i , E+

i , C+
i

)
- If only have one of Ê

+
i and Ê

−
i (i.e. at end of chain), then

{Ei, Ci} = {E+
i , C+

i } or {E−i , C−i } as appropriate

4. Results

4.1. Simulation: steel ruler

The problem of finding the trajectory of a vehicle has a
physical analogue in finding the minimum energy config-
uration of an elastically deformable structure (e.g. a steel
ruler). A finite-element model of such structures can be
constructed. The motions between the elements then de-
scribe the preferred shape of the structure (a straight line in
the case of a ruler), and the (negative log) probability of the
uncertainties correspond to the deformation energy at each
element. External pose estimates correspond to fixing parts
of the ruler at different positions in space, and dimensions
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(a) (b) (c)

(d) (e) (f)

Figure 4: Trajectory (ruler) shape and covariances for different test configurations. a) Only one end fixed; b) both ends fixed; c)
both ends fixed and one end rotated; d) both ends fixed, and one end moved vertically; e) one end fixed, and a vertical motion with no
rotation applied part-way along; f) both ends fixed and moved towards each other.

(a) (b)
Figure 5: Shapes adopted by a steel ruler. a) Both ends fixed, and one end moved vertically; b) one end fixed, and a vertical motion
with no rotation applied part-way along. Compare with Figures 4(d) and 4(e).

of large variance in the uncertainties of these estimates cor-
respond to unconstrained degrees of freedom at the fixing
point (e.g. a zero torque fixing such as a hinge).

For the steel ruler example, the motion is set to be unit
translation in the ruler’s local x direction at each element
and the covariance matrix is set to be:

Σi =




0.005 0 0 0 0 0
0 10−6 0 0 0 0
0 0 10−6 0 0 0
0 0 0 10−6 0 0
0 0 0 0 10−6 0
0 0 0 0 0 0.005




The effect of combining this with various different absolute
pose estimates will be considered.

Figure 4(a) shows the simplest scenario, where the tra-
jectory (ruler) is fixed at one end only. This is achieved
by adding into the optimisation a single fixed pose V0 with
very small associated covariances. In Figure 4(b), fixing
both end points greatly reduces the uncertainty, which is
now greatest in the centre of the trajectory, as expected.

The effect of forcing the trajectory into shapes contrary
to that predicted by the motion is seen in Figures 4(c)-(e),
showing, in order, a rotation of an end point, a vertical shift
in an end-point, and a point where the position is fixed, but
not the orientation (achieved by setting low variances on
the translation components of the pose, but high variances
on the orientation components). All three appear exactly
as expected; the second two of these can be compared with
tests on a real steel ruler, Figure 5.

Figure 4(f) shows a pleasing result, considering the case
where the two end points are brought towards each other.
In an ideal case, the symmetry of the problem means that a
straight line still would result. Here, however, a very small
amount of noise has been added into the motion vectors Mi

to break the symmetry. Iteration is then performed over the
whole chain and, as expected, it very quickly converges to
a solution with a bulge to one side or the other.

4.2. Go-kart trajectory estimation

A significant application of the theory developed in this
paper is in fusing the large amounts of data which come
when trying to determine accurate trajectories for (or simply
to localise) moving vehicles. A system has been developed
for determining the trajectory of a go-kart over a lap of a
racing circuit, using a combination of odometry data and
vision. Odometry (and inertial) sensors are reliable over the
very short term, but their cumulative errors are substantial
over time. A visual system for pose estimation provides the
ideal complement to inertial sensors since it gives highly
accurate, but fragile, absolute pose estimation.

Experimental configuration. Odometry data was pro-
vided by wheel-speed and steering-angle sensors on the go-
kart. To add to the difficulty of the problem, testing was
carried out on a wet track, where the speed vi and angle θi
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(a) (b)
Figure 6: Go-kart trajectories overlaid on track map, esti-
mated from odometry alone. a) Complete lap; b) Detail of
bottom-left corner, showing 1-standard-deviation covariance
ellipses. Note the apparent cutting of the corner in (b) (com-
pare with Figure 9).

of the wheels bears only a limited relationship to the speed
and direction of the kart, and there was also some amount
of sideways slip si. The sensors provided a continuous feed
allowing the motion matrix and uncertainty M̂i to be deter-
mined between sample points. The motion parameter vector
and covariance matrix are given by (using the group SE(2)
since the race track is planar)

αi =
[−viT 0 − viT tan θi

L

]
(28)

Σi =


 σ2

v 0 θiσ
2
v

0 σ2
s 0

θiσ
2
v 0 v2

i σ2
θ + θ2

i σ2
v


 (29)

where T is the sampling period (20 mS), L the kart length,
and σv, σθ and σs are the standard deviations in speed, an-
gle and slip respectively. The first two standard deviations
are estimated from the process noise in sections of constant
speed and steering input, and it is assumed that σs = σv.
The trajectory, at this stage based purely on the odometry
data, can then be generated according to the algorithm of
Table 1 given the known starting points.

The odometry alone, with suitable manual tweaking of
both linear and non-linear calibration parameters, give tra-
jectories which appear reasonable at first glance, shown
overlaid on the track map in Figure 6(a). The driver per-
formed two laps of this short loop, one following the outside
of the track, and one following the inside. On closer inspec-
tion, however, it can be seen that the error is as much as one
metre in places, and the fusion of another data source—
vision in this case—is essential to produce an accurate tra-
jectory. Video data is provided by a calibrated video camera
mounted on the kart.

Fusion of odometry and vision. Figure 7 shows a view
from the kart’s video camera. The track has been accurately
surveyed using GPS, and from this a model of the track rib-
bon has been created. The camera is calibrated, which en-
ables this model to be rendered in the video frame as seen
from points on the estimated trajectory. Overlaid on Figure
7(a) is the view of the model from the pose estimated for
that particular video frame. It can be seen that the estimate

(a) (b)
Figure 7: Camera views from the go-kart, with track model
overlaid. a) Using pose estimated from odometry alone (see
Figure 6)—note that it is in error by about 50cm; b) pose ad-
justed using visual tracking until model and video are aligned.
This is the pose estimate V̂i added into the optimisation at
this point.

(a) (b)
Figure 8: Ambiguous camera views. Sample frames from
the curved and straight Sections of the test loop. Both cases
provide high positional accuracy laterally, but high variance
along the direction of travel.

has the camera (and the kart) about 50cm further away from
the edge of the track than it really is. This pose can be used
as an initialisation for a modified version of the visual track-
ing scheme outlined in [5], which adjusts the pose until the
model edges align with edges in the image (Figure 7(b)).
This gives the absolute position of the camera at this frame
Vi, together with an error covariance Φi which is estimated
from the residuals provided by this tracking system. This
data is then added to the optimisation.

The vision system can give accurate pose estimation (to
within a few centimetres), but only when there are sufficient
edge features to resolve all the degrees of freedom. This is
the case in Figure 7, but Figure 8 shows some other video
frames from the lap where there is significant pose uncer-
tainty in the direction of travel. These can still be used in
the optimisation, but will only constrain the trajectory lat-
erally. In many cases, the vision and odometry prove to
be complementary sensors, and the resultant accuracy is far
higher than from either sensor alone.

Unknown synchronisation. The odometry and video
data were gathered independently, i.e. with no synchronisa-
tion. This adds additional uncertainty into the combination
of the two data sources, but this can also be accounted for
in this framework. Temporal uncertainty can be handled by
adding pose uncertainty into the vision measurement, where
the uncertainty corresponds to motion along the local tra-
jectory (which may be a curve). This direction is given by
the vector αi, and the uncertainty can thus be expressed by
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(a) (b)
Figure 9: Go-kart trajectories overlaid on track map, us-
ing optimally combined odometry and vision (cf. Fig-
ure 6). a) Complete lap; b) Detail of bottom-left corner.
The locations of the five vision measurements are marked
and, since the estimated errors are so small, 50-standard-
deviation standard ellipses are shown

αiα
T
i . The total uncertainty used for the vision measure-

ment in the optimisation is therefore

C′i = Ci + λαiα
T
i (30)

where Ci is extracted from the tracking system, as described
above, and λ is one standard deviation of the number of
frames by which the synchronisation can be wrong (λ = 4
in this case).

Final paths. Figure 6(b) shows detail of the bottom-left
of the trajectory (corresponding to the location of the video
frame of Figure 7) before fusion with video data, and it can
be seen that the trajectory is clearly wrong in places, with
the kart shown to be distant from, or crossing, the track edge
at times. Figure 9(b) shows the effect of adding just five
vision measurements, resulting in a trajectory which agrees
very well with the ground truth seen through the video cam-
era. Figure 9(a) shows the complete pair of laps after vi-
sion measurements have been applied at intervals around
the whole lap. Each lap consists of approximately 1,800
data points and associated covariances, together with about
30 vision measurements. The algorithm outlined in this pa-
per optimises each path in approximately 150 mS on a stan-
dard 1.5GHz PC.

5. Conclusions

This paper has shown how the exponential map can be
used to represent probability distributions over a group, and
how these can be correctly propagated along a trajectory. A
fast algorithm is described which calculates the maximum
a posteriori trajectory given continuous differential (odom-
etry or inertial) data, and sparse unsynchronised positional
data from visual localisation.

This algorithm provides a good initialisation for solving
the structure from motion problem where some structure (in
this case the white lines) is already known, and where the
remaining structure in the scene is to be recovered. Future
work will consider integrating the techniques developed in
this paper into the full structure from motion problem.
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