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Abstract

Detecting the dominant normal directions to the decision
surface is an established technique for feature selection
in high dimensional classification problems. Several ap-
proaches have been proposed to render this strategy more
amenable to practice, but they still show a number of impor-
tant shortcomings from a pragmatic point of view. This pa-
per introduces a novel such approach, which combines the
normal directions idea with Support Vector Machine classi-
fiers. The two make a natural and powerful match, as SVs
are located nearby, and fully describe the decision surfaces.
The approach can be included elegantly into the training of
performant classifiers from extensive datasets. The poten-
tial is corroborated by experiments, both on synthetic and
real data, the latter on a face detection experiment. In this
experiment we demonstrate how our approach can lead to a
significant reduction of CPU-time, with neglectable loss of
classification performance.

1. Introduction
In linear discriminant analysis (LDA) we are interested in
those linear features which reduce the dimensionality and
simultaneously preserve class seperability. Suppose we are
dealing with D-dimensional data x = [x1 x2 . . . xD]T

which are drawn from a set of c classes with labels ωi

and respective probability density functions p(x|ωi) and
priors P (ωi), i=1,...,c. We are now looking for d < D
features represented by the linearly independent column-
vectors φ1,φ2, . . . ,φd which transform the datum x to
a new feature vector y = [φT

1 x φT
2 x . . . φT

d x]T =
[y1 y2 . . . yd]T . This transformation can be expressed by

y = ΦT x , (1)

where Φ = [φ1 φ2 . . . φd] is a (D×d)-rectangular matrix.
To quantify the notion of class seperability, we have to

make a connection with classification theory. According
to Bayes’ decision rule (MAP-rule), an observation x is
assigned to the class for which the a-posteriori probabi-
lity p(ωi|x) is maximal. The resulting classification error

is called the Bayes-error, and for the 2-class problem it is
given by

εX = P (ω2)
∫

R1

p(x|ω2)dx + P (ω1)
∫

R2

p(x|ω1)dx ,

(2)
in which R1 and R2 are the regions where the MAP-rule
decides for ω1 and ω2, respectively. No other decision rule
can yield a smaller probability of error. The dimension re-
duction achieved by (1) necessarily results in loss of infor-
mation. Therefore, the best we can hope for is that the error
of classification in Y -space does not exceed the error in the
original X-space. More specifically, we can evaluate the
discriminant effectiveness of the transformation Φ by the
ratio η = εY /εX . This ratio is larger or equal to 1 and ex-
presses the increase of the probability-of-error of the best
possible classifier after transforming the data to a lower di-
mensional subspace. The intrinsic discriminant dimension
[6] is the lowest possible dimension of a subspace wherein
the same classification accuracy can be obtained as in the
original space, i.e. with associated η = 1. The objectives
of LDA are now twofold: based on a sample of the under-
lying distributions, (i) predict the intrinsic discriminant di-
mension of the problem, and (ii) extract a minimal set of
features with maximal discriminant effectiveness.

In this paper, we propose a new algorithm for feature
extraction based on the decision boundary. The algorithm
provides an estimate of the intrinsic discriminant dimen-
sion and extracts the necessary feature vectors. It starts off
from ideas laid out by Fukunaga et al. [4] [5] and further
developed by Lee et al. [6]. Lee et al. introduce the de-
cision boundary feature matrix ΣDBFM which allows to
compute the intrinsic discriminant dimensionality and the
associated optimal linear transformation. However, the cur-
rently available algorithms for estimating ΣDBFM cannot
be applied to large scale learning problems (e.g. appearence
based object detection) which often involve hundreds-of-
thousands of training examples. We propose that Support
Vector Machines (SVMs) offer a natural framework to es-
timate ΣDBFM . Furthermore, by means of the bootstrap
learning procedure introduced in [9], an arbitrary amount
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of training data can be processed. Note that our approach
should not be confused with the so-called kernel discrimi-
nant analysis, which incorporates kernel tricks into classical
LDA to derive a non-linear extension of the algorithm and
which returns non-linear discrimative features.

The paper is organized as follows: First, we give an
overview of parametric and nonparametric LDA. We dis-
cuss some pitfalls of parametric LDA and describe how
these can be mended by introducing a non-parametric
counter version of the algorithm. We show how SVMs pro-
vide for an elegant implementation of these ideas. In the
next section, we compare our algorithm with the original
Fukunaga algorithm. Both methods are extensively tested
for a whole range of parameter settings and we describe
an evaluation framework based on the effectiveness ratio η.
In the fourth section, we demonstrate the procedure for the
particular case of face detection. We end the paper with
some general conclusions and a description of future work.

2. Parametric vs. Nonparametric LDA
2.1. Parametric LDA
The most popular way to find the best linear features makes
use of so-called scatter matrices. The within-class scatter
matrix specifies the spread of the samples around their re-
spective class expected vectors, and is defined as

Σw =
∑c

i=1 P (ωi)E[(x − µi)(x − µi)T ]
=

∑c
i=1 P (ωi)Σi ,

(3)

where µi and Σi are the expected vector and covariance
matrix of the ith class, respectively. The between-class scat-
ter matrix, on the other hand, specifies the spread of the in-
dividual class means around the overall mixture mean µ0,
and is defined as

Σb =
c∑
i

P (ωi)(µi − µ0)(µi − µ0)T , (4)

One possible way to achieve class separability of the
transformed data y is to demand that the class means in
Y-space are well separated while simultaneously the spread
of the data around their respective class means is small, i.e.
the classes remain compact. To this end we can define a
criterion function that attains its maximal value when both
demands are met. A typical criterion is the following:

J = tr(Σ̂−1
wY Σ̂bY ) , (5)

where the subscript Y indicates that the sample scatter ma-
trices are computed in Y-space and tr(.) represents the trace
operation. We can now express this function in X-space as
follows:

J = tr((ΦT Σ̂wXΦ)−1(ΦT Σ̂bXΦ)) . (6)

It is easy to show that J is maximized by using the first d
eigenvectors of Σ̂−1

wXΣ̂bX , corresponding to the highest d
eigenvalues, as the columns of Φ. This result is the same as
obtained by classical Fisher LDA.

One of the reasons of the popularity of this approach is
the fact that the optimum is analytically defined. There are,
however, several problems associated with the procedure.
First of all, because the sample between-class scatter ma-
trix Σ̂bX is derived from only c class-means, its rank and
therefore also the rank of Σ̂−1

wXΣ̂bX is maximally c − 1.
This implies that at most c−1 eigenvalues of Σ̂−1

wXΣ̂bX are
non-zero and the discriminant subspace computed in this
way will have at most c− 1 dimensions. Second, if a class
has a mean vector very different from the mean vectors of
the other classes, that class dominates ΣbX , which results
in ineffective feature extraction [6].

2.2. Nonparametric LDA
The forementioned problems can be overcome by introduc-
ing a non-parametric between-class scatter matrix, which
measures between-class scatter on a local basis in the neigh-
borhood of the decision boundary. We first briefly review
some basic properties of discriminant subspaces, for a more
complete description and proofs we refer to [6].

Property 1 If a vector is parallel to the tangent hyper plane
to the optimal decision boundary S at every point on S, this
vector is discriminantly redundant. In any other case, the
vector is discriminantly informative.

This property can be explained as follows: if a vector φ
is parallel to the tangent hyper plane to S at every point of
S, then moving any point x in the direction of φ can never
move the point across the boundary, i.e. can never influence
the classification outcome. Hence φ is discriminantly re-
dundant. It is easy to see that the discriminant effectiveness
of a vector is proportional to the area of the optimal decision
boundary that has a normal pointing in the same direction.
The decision boundary feature matrix is now defined as

ΣDBFM =
1
C

∫
S

N(x)N(x)T p(x)dx , (7)

where N(x) is the unit normal vector to the optimal de-
cision boundary S at point x, p(x) is the data density,
C =

∫
S p(x)dx and all integrations are performed over

the boundary. This matrix can be seen as the covariance
structure of the boundary surface normal vectors where the
density on S is defined by p(x)/

∫
S p(x)dx. Notice that the

decision boundary feature matrix characterises the between-
class scatter in the neighborhood of the decision boundary.
The matrix has some interesting properties:

Property 2 The rank r of the decision boundary feature
matrix equals the intrinsic discriminant dimension of the
classification problem.
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Property 3 The eigenvectors of the decision boundary fea-
ture matrix corresponding to the r non-zero eigenvalues are
the necessary feature vectors for the optimal transforma-
tion, i.e. the transformation with effectiveness ratio η = 1.

Unfortunately, in general it is not possible to compute
ΣDBFM . First of all, it relies on the optimal decision
boundary for which accurate estimations of the a posteri-
ori class probabilities are required. These are hard to ob-
tain, especially when the dimensionality of the problem in-
creases. Second, we need to integrate the density p(x) over
the optimal decision surface. For a D-dimensional classifi-
cation problem this surface is a (D − 1)-dimensional man-
ifold which is only implicitly described. Except for very
simple and low-dimensional problems, integration is impos-
sible. Nonparametric LDA relies on sample-based approxi-
mations of the decision boundary feature matrix.

In the approach of Fukunaga et al. [4], the normal vec-
tors on the boundary are approximated by the directions of
the lines that connect points from one class to points in the
other class. More specifically, every point from one class
is connected to the average of its k nearest neighbors in the
other class. A non-parametric scatter matrix Sbk is formu-
lated as

Sbk = 1
N

∑N1
i=1 wi(xi −Mk

2 (xi))(xi −Mk
2 (xi))T

+ 1
N

∑N2
i=1 wi(xi −Mk

1 (xi))(xi −Mk
1 (xi))T ,

(8)
whereN1 andN2 are the number of samples of both classes,
N=N1+N2 is the total number of samples, Mk

j (xi) is the
average of the k nearest neighbors in class ωj to a point xi

and wi is a weight. The weighting function is defined as

wi =
min{‖xi − x(1)

kNN‖α, ‖xi − x(2)
kNN‖α}

‖xi − x(1)
kNN‖α + ‖xi − x(2)

kNN‖α
, (9)

where x(j)
kNN is the k-th nearest neighbor of the point xi

in class ωj , ‖.‖ is the Euclidean norm and α is an integral
power. The purpose of this weight is to de-emphasize the
contribution of samples that lie far from the classification
boundary. For a sample far from the boundary, the distance
to the k-th NN in its own class is much smaller than the dis-
tance to the k-th NN in the other class, resulting in a small
value for wi. Note that the algorithm has a combinatorial
nature, because it needs to compute the distance between
all pairs of points of both classes. Furthermore, it needs to
store the connecting vector between every element of either
class and the average of its k NNs in the other class. For
a typical pattern recognition problem in computer vision
(e.g. face detection), the ’non-object’ class is the rest of the
world and the learning machine needs to process hundreds-
of-thousands negative examples to represent it well. Apply-
ing the Fukunaga algorithm in this context is not possible
due to the size of the problem.

In the approach of Lee et al. [6] a quadratic decision sur-
face, based on the class-covariance matrices, is computed.
Next, this surface is intersected with all lines that connect a
point from one class to a point from the other class. Finally,
the decision boundary normal vectors are computed as the
normalized gradient of the decision surface evaluated at the
intersection points.

2.3. SVM-based Nonparametric LDA
In this paragraph we explain how SVMs can be used to es-
timate the decision boundary feature matrix. We restrict
ourselves to the 2-class problem, an extension to the multi-
class case is given at the end of this paragraph.

Suppose we have a set of training data (x1, y1), . . . ,
(xN , yN ) where xi is a D-dimensional vector with class la-
bel yi ∈ {−1,+1}. Suppose both classes can be separated
by a hyperplane w · x + b = 0. From all planes that sep-
arate the classes, the SVM algorithm chooses the one with
maximal margin [1]. The classification function is given by

f(x) = sign(
Nsv∑
i=1

λiyixix + b) , (10)

where the summation is performed over the support vectors
xi. These vectors are a subset of the training data and are
called ’Support Vectors’ (SVs) because they completely de-
termine the decision plane; if they were the only data avail-
able, exactly the same solution would have been obtained.
An interesting characteristic of the SVs is that they lie ge-
ometrically nearby the decision plane. If the data are not
linearly separable, they are mapped from input space R

D to
a high dimensional feature space F where linear separation
is possible. Next, a separating hyper plane is computed in
F . The decision function becomes

f(x) = sign(
Nsv∑
i=1

λiyiK(xi,x) + b) , (11)

where K(.) is a kernel function. Several kernels are pos-
sible, including radial basis functions, polynomial and sig-
moid kernels. The choice of the kernel and kernel param-
eters (e.g. the degree of the polynomial kernel) has to be
made by the user, and the optimal choices are problem de-
pendent. Furthermore, in the optimisation procedure under-
lying the SVM algorithm, an error weighting constant C is
introduced, which assigns a cost to the misclassification of
certain examples. The value of C must also be set by the
user.

From (11) we can see that the decision boundary corre-
sponds to the level surface s(x) = 0 of the function

s(x) =
Nsv∑
i=1

λiyiK(xi,x) + b . (12)
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Since the SVs are geometrically nearby the decision sur-
face, the gradient of s(x), evaluated at the positions of the
SVs, provides a good approximation of the normal direction
of the decision boundary nearby the SVs. This property was
used in [2] to define the most important pixels (MIPS) in a
face-detection algorithm. We can now approximate the de-
cision boundary feature matrix as follows:

Sb =
1
C

GGT , (13)

with G = [∇s(x1)∇s(x2) . . .∇s(xNsv )]
C =

∑Nsv

i=1 ‖∇s(xi)‖2 .

The first d eigenvectors of Sb, corresponding to the highest
d eigenvalues, are used as the columns of the transformation
matrix Φ.

The next question is how we can choose an appropriate
value for the dimension of the subspace. The sum of all
eigenvalues, which equals the trace of Sb, is referred to as
the total scatter. The eigenvalue corresponding to a particu-
lar eigenvector can be interpreted as the amount of scatter
explained by this vector, and is a measure for the impor-
tance of the feature. If the intrinsic discriminant dimension
is smaller than the original dimension D, the rank of Sb

should be smaller than D. However, in practice the last
eigenvalues will be small but not exactly zero. In this case,
we can choose the number of features such that the frac-
tion of explained scatter relative to the total scatter exceeds
a certain threshold, say 99%. So, we can choose for d the
minimal value for which the following inequality holds:

∑d
i=1 vi∑D
i=1 vi

≥ 0.99 , (14)

where the eigenvalues vi are ordered from high to low.
This SVM-based approach has several desirable fea-

tures:

• SVMs have a proven ability to separate very high di-
mensional data.

• Using the unnormalised gradient-vectors like in (13) is
a natural weighting scheme: at locations where both
classes are nearby, the gradient of s(x) is high and as
a result these regions are well represented in the ap-
proximation of ΣDBFM . Therefore, in the resulting
discriminant subspace these regions will be relatively
well preserved. Conversely, relatively less attention is
paid to regions where both classes are well separated.

• Contrary to the previously described methods, we do
not need to incorporate all training-examples in the ap-
proximation. Only the SVs are needed, because they
fully specify the computed decision boundary.

The procedure can be easily extended to the multi-class
case. If we have c classes, the one-against-the-rest method
[1] is used to construct c classifiers. Here, the i-th classifier
separates the i-th class from all the others. Suppose we have
a total of N training examples, of which Ni belong to the
i-th class. An approximation for Sb is then given by

Sb =
c∑

i=1

(Ni

N

)( 1
Ci

GiGT
i

)
, (15)

where Ci and Gi are based on the i-th classifier and de-
fined as in (13), and the fraction Ni/N is an estimate for
the class prior P (ωi). Including the class priors places more
weight on the representation of the boundaries of the domi-
nant class(es).

3. Experiments with Synthetic Data
3.1. Experimental Setup
In this section we compare the SVM-based approach
with the Fukunaga-algorithm, described in section 2.2, for
the 2-class case. We use the discriminant effectiveness
η = εY /εX as a means to measure and compare the per-
formance of both algorithms. In the experiments, we de-
fine a probability density function p(x|ωi) for each class
from which we sample a (labeled) data set. Based on these
samples, we compute the transformation y = ΦTx and we
estimate the Bayes error, both in X- and Y -space, like in
Eq. (2). This is done by numerical integration of the original
densities p(x|ωi) and transformed densities p(y|ωi) over
the MAP-defined regionsR1 andR2. Obviously, the results
will be different for every sample. Therefore, the procedure
is repeated a number of times and we report the average η̄.

In our experiments, we make use of mixture-of-Gaussian
densities. For class ωi, the pdf is defined as

p(x|ωi) =
Li∑

j=1

πijG(x; µij ,Σij) , (16)

whereG(.) is the Gaussian density function, Li is the num-
ber of mixture components, and πij , µij and Σij are the
mixture proportion, the expected vector and the covariance
matrix of the j-th component of the mixture density, respec-
tively. The Gaussian density has the interesting property
that it remains Gaussian under linear transformations. More
specifically, given the transformation y = ΦTx where Φ is
a (D × d)-rectangular matrix (d ≤ D) with linearly inde-
pendent columns, the pdf of the transformed data becomes

p(y|ωi) =
Li∑

j=1

πijG(y; ΦT µij , ΦTΣijΦ) . (17)

Prior to analysis, the samples are whitened. In this pro-
cess, the sample within-class scatter matrix Σ̂w is trans-
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formed to the identity matrix, by applying the linear trans-
formation z = Λ−1/2ΨTx. Here Ψ = [ψ1 . . . ψD] is
a square matrix with the eigenvectors of Σ̂w as columns,
and Λ−1/2 is a matrix whose diagonal elements are the
inverse square roots of the eigenvalues of Σ̂w. This nor-
malisation step assures that all individual features in the
original space get a similar metric. Note that after the ex-
traction of the discriminant features φi, this transformation
needs to be accounted for. So, the full transformation from
the original X-space to the discriminant subspace becomes
y = ΦT Λ−1/2ΨTx. The Gaussian mixture densities in (16)
have to be transformed likewise. We can now present the
experimental procedure in its entirety:

• Define the densities p(x̃|ω1) and p(x̃|ω2) for x̃ ∈ R
2.

Compute εX̃ by numerical integration of (2) over a reg-
ular grid. In our experiments we used a grid of 200 by
200.

• Extend the dimensionality of the input space by com-
plementing the feature vectors of each class with
D − 2 i.i.d. features. To that end, we choose a Gaus-
sian distribution with zero mean and unit variance.
This transforms each component of the mixture den-
sities from G(x̃; µ̃ij , Σ̃ij) to G(x; µij ,Σij) with

µij = [µ̃T
ij 0 . . . 0]T and Σij =

(
Σ̃ij 0
0 1

)
,

where the 0’s are zero matrices and 1 is a diagonal ma-
trix with unit diagonal elements. Because the added
features are identically distributed for both classes,
they are discriminantly redundant. Therefore, the
Bayes-error in R

D is the same as in R
2, i.e. εX = εX̃ .

In our experiments we added 18 extra dimensions ren-
deringX-space equal to R

20.

• Sample both density functions and compute and apply
the whitening transformation. We assumed equal pri-
ors and sampled 100 data points from each class.

• Compute the transformation matrix Φ = [φ1 φ2]. Be-
cause the intrinsic dimensionallity of the problem is
maximally 2, this transformation should suffice to re-
trieve all relevant information.

• Transform the density functions p(x|ω1) and p(x|ω2)
to Y -space. Compute εY by numerical integration over
a regular grid, and output η = εY /εX .

3.2. Results and Discussion
We defined 3 problems, hereafter referred to as problem A,
B and C. The parameters of the mixture-of-Gaussian pdf’s
are given in table 1 and the contour plots of the densities are

shown in figure 1. Problem A is the most simple case: both
classes consist of one Gaussian, and the intrinsic discrim-
inant dimension is 1. For problems B and C the intrinsic
discriminant dimension is 2.

class 1 class 2
π1j µ1j Σ1j π2j µ2j Σ2j

problem A 1 [5 5]T Σ 1 [6 5]T Σ

problem B 1/3 [4 5]T Σ 1/3 [6 5]T Σ′

1/3 [5 4]T Σ′ 1/3 [7 6]T Σ
1/3 [5 6]T Σ′ 1/3 [6 7]T Σ′

problem C 1 [5 5]T Σ′′ 1/4 [4 5]T Σ
1/4 [5 6]T Σ′

1/4 [6 5]T Σ
1/4 [5 4]T Σ′

Σ =

„
1
9

0
0 1

3

«
Σ′ =

„
1
3

0
0 1

9

«
Σ′′ =

„
1
9

0
0 1

9

«

Table 1: The mixture-of-Gaussian parameters of both
classes for problems A, B and C.

In the SVM-based approach, we used a polynomial ker-
nel of degree p which is defined as follows:

K(x,y) = (xy + 1)p . (18)

Note that for p= 1, this results in a linear classifier which
tries to separate the data with a hyperplane. All SVMs
were trained with SVMlight [3]. In the experiments, we
computed η for several combinations of parameters. The
polynomial degree p was varied from 1 to 7, while the cost
factor C was set to 1, 10, 100, 1000 and 10000. For the
Fukunaga algorithm, we experimented with different val-
ues for the number of nearest neighbours k, and the power
in the weighting function α. Every experiment was re-
peated 100 times, and we report the average η̄ together with
a 95%-confidence interval. The results of both algorithms
are shown in tables 2 and 3.

From table 2 we can see that the Fukunaga algorithm is
quite robust with respect to its parameters, i.e. the differ-
ences between the solutions for different combinations of k
and α are relatively small. In fact, the value of α seems to
exert no influence on the solutions at all. For problems A
and B, the best solutions (η̄ = 1.29 and 2.44, respectively)
are obtained for k = 1. This is rather counterintuitive be-
cause we would expect a more robust estimate of the nor-
mal direction for k > 1. For problem C, on the other hand,
the best solution (η̄ = 1.91) is obtained for k = 3, i.e. the
optimal parameter settings seem to be problem dependent.

From table 3 we see that the SVM-based approach is sen-
sitive with respect to its parameters. This is logical because
the shape of the decision boundary is directly related to the
kernel parameter p and the error weighting constant C. For
example, in problem C, the best solution is obtained for p
= 7 and C = 10000. Obviously, no good solution can be
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Figure 1: Contour plots of the probability density functions for problem A (left), B (middle) and C (right). The MAP-defined
regionsR1 andR2 are shown with different shades of gray, and the optimal decision boundary is the transition between these
regions. The Bayes-errors for problems A, B and C are 6.7%, 4.4% and 10.0%, respectively.

k α A B C

1 1 1.29 ± 0.02 2.44 ± 0.09 2.08 ± 0.17
2 1.29 ± 0.02 2.44 ± 0.09 2.08 ± 0.17
3 1.29 ± 0.02 2.44 ± 0.09 2.09 ± 0.17

2 1 1.31 ± 0.02 2.57 ± 0.07 1.94 ± 0.14
2 1.31 ± 0.02 2.56 ± 0.07 1.94 ± 0.13
3 1.31 ± 0.02 2.56 ± 0.07 1.94 ± 0.13

3 1 1.31 ± 0.03 2.73 ± 0.05 1.92 ± 0.13
2 1.31 ± 0.03 2.72 ± 0.05 1.91 ± 0.13
3 1.31 ± 0.02 2.71 ± 0.05 1.91 ± 0.12

4 1 1.31 ± 0.02 2.82 ± 0.04 1.97 ± 0.13
2 1.31 ± 0.02 2.82 ± 0.04 1.96 ± 0.13
3 1.31 ± 0.02 2.82 ± 0.04 1.96 ± 0.13

5 1 1.31 ± 0.03 2.87 ± 0.03 1.98 ± 0.13
2 1.31 ± 0.03 2.87 ± 0.03 1.97 ± 0.12
3 1.31 ± 0.03 2.87 ± 0.03 1.97 ± 0.12

6 1 1.31 ± 0.03 2.89 ± 0.03 2.00 ± 0.12
2 1.31 ± 0.03 2.89 ± 0.03 1.99 ± 0.12
3 1.31 ± 0.03 2.89 ± 0.03 1.99 ± 0.12

Table 2: Results of the Fukunaga algorithm for problems A,
B and C, and for different combinations of k and α.

expected for p = 1, since the optimal decision boundary is
highly non-linear. Remarkably, for problem B, the best so-
lution (η̄ = 2.80) is obtained for p = 1 and C = 1, i.e. from
a linear classifier. Apparently, the SVM classifier was not
able to discover the non-linearity in the data. Looking at
the results of the non-linear kernels for problem B, we can
also see that the higher the value of C, i.e. the less wrongly
classified points we allow in the solution, the worse the re-
sults get. This means that if we allow the decision surface to
bend, this also introduces overfitting and the net outcome,
at least for problem B, is negative.

If we compare the best results of the Fukunaga algorithm
with the best results of the SVM-based approach, the out-
come is ambiguous. For problem A, both methods perform
roughly equally well, with a slight advantage for the SVM-

based approach (1.26 vs 1.29). For problem B, the Fuku-
naga algorithm performs significantly better (2.44 vs 2.80)
but still the result is not very good. For problem C, the
SVM-based approach performs best (1.76 vs 1.91).

4. An Application to Face Detection
4.1. Discriminant Subspace Computation
The goal of face detection is to determine whether or not
there are any faces in the image, and if present, return the
image location and extent of the face [7]. SVMs, which are
an example of the so-called appearence based methods, try
to separate the face class from the non-face class based an
a set of training examples. However, the non-face class is
not well defined and it is virtually impossible to obtain a
representative sample set from it.

In [9], a bootstrap procedure was proposed to overcome
this problem. The procedure starts off with a sample set F
of facial images and an initial set N of non-face images.
Next, a SVM is trained with these data, and the SVs orig-
inating from N are stored in a new set NSV . The classi-
fier is then applied to an image database which contains no
faces and all detections, which are false positives, are stored
in the set NFP . Finally, NFP and NSV are combined to
form the new non-faces training set N and a new SVM is
trained with these data. The procedure is repeated untill
a preset number of iterations is reached, or the fraction of
false positives drops below a certain threshold. By incorpo-
rating NSV of the previous iteration in every next training,
we assure that the classifier doesn’t unlearn all previously
seen non-face examples, i.e. these SVs serve as a kind of
memory. The net result is that at every iteration the deci-
sion boundary fences off the face examples more tightly. In
this way, millions of non-face examples are processed.

In our experiments, we used templates of size 40×30
(rows× columns). We collected 800 face examples from
the NIST Special Database 18. All examples were alligned
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C p A B C

1 1 1.26 ± 0.02 2.81 ± 0.02 3.20 ± 0.20
2 1.28 ± 0.02 2.84 ± 0.02 3.14 ± 0.18
3 1.28 ± 0.02 2.84 ± 0.02 3.14 ± 0.18
4 1.28 ± 0.02 2.83 ± 0.02 3.14 ± 0.18
5 1.28 ± 0.02 2.83 ± 0.02 3.14 ± 0.18
6 1.29 ± 0.02 2.85 ± 0.02 3.13 ± 0.18
7 1.28 ± 0.02 2.88 ± 0.03 3.13 ± 0.18

10 1 1.26 ± 0.02 2.80 ± 0.02 3.18 ± 0.19
2 1.28 ± 0.02 2.85 ± 0.02 3.14 ± 0.18
3 1.29 ± 0.02 2.90 ± 0.03 3.14 ± 0.18
4 1.29 ± 0.02 2.93 ± 0.03 3.13 ± 0.18
5 1.30 ± 0.02 2.97 ± 0.03 3.13 ± 0.18
6 1.31 ± 0.02 2.99 ± 0.03 3.13 ± 0.17
7 1.32 ± 0.02 3.00 ± 0.03 3.11 ± 0.17

100 1 1.30 ± 0.02 2.92 ± 0.03 3.20 ± 0.19
2 1.30 ± 0.02 3.00 ± 0.03 3.13 ± 0.17
3 1.31 ± 0.02 3.01 ± 0.03 3.10 ± 0.17
4 1.32 ± 0.02 3.03 ± 0.04 2.93 ± 0.18
5 1.33 ± 0.02 3.06 ± 0.04 2.54 ± 0.18
6 1.34 ± 0.02 3.07 ± 0.04 2.22 ± 0.16
7 1.36 ± 0.02 3.08 ± 0.04 2.04 ± 0.13

1000 1 1.33 ± 0.02 3.04 ± 0.04 3.31 ± 0.18
2 1.34 ± 0.02 3.07 ± 0.04 2.09 ± 0.14
3 1.36 ± 0.02 3.08 ± 0.04 1.99 ± 0.11
4 1.38 ± 0.03 3.11 ± 0.04 1.99 ± 0.11
5 1.41 ± 0.03 3.12 ± 0.04 1.98 ± 0.11
6 1.42 ± 0.03 3.12 ± 0.04 1.97 ± 0.11
7 1.44 ± 0.03 3.15 ± 0.05 1.93 ± 0.11

10000 1 1.39 ± 0.03 3.09 ± 0.04 3.35 ± 0.17
2 1.43 ± 0.03 3.13 ± 0.04 1.99 ± 0.11
3 1.46 ± 0.03 3.13 ± 0.04 1.98 ± 0.11
4 1.48 ± 0.03 3.16 ± 0.05 1.93 ± 0.11
5 1.48 ± 0.03 3.20 ± 0.05 1.81 ± 0.11
6 1.48 ± 0.03 3.27 ± 0.06 1.77 ± 0.10
7 1.29 ± 0.03 3.33 ± 0.06 1.76 ± 0.09

Table 3: Results of the SVM based approach for problems
A, B and C, and for different values of C and p.

with respect to the coordinates of the eyes and mouth and
rescaled to the required size. This set was virtually extended
by applying small scale, translation and rotation perturba-
tions and the final training set consists of 16,695 examples.
For the collection of non-faces we used 1000 manually se-
lected images from the Corell� database. Prior to classi-
fication, all image windows are first normalised and then
masked. The normalisation (substraction of the mean and
division by the standard deviation) establishes robustness
against global lighting conditions. The masking sets all pix-
els outside a central elliptic region in the image window to
zero. All SVMs were trained with SVMlight, and we used
a polynomial kernel of degree 5 and set the error weight-
ing constant C to 100, which proved to be optimal in cross
validation experiments on an independent validation set.

Figure 2: The first 4 discriminant features. The homogenous
areas at the corners of the templates result from the masking
of the image windows.
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Figure 3: Cumulative plot of eigenvalues. The first feature
explains 87% of the total scatter. To account for 99% of
the total scatter, the discriminant subspace needs to be 30-
dimensional. This plot suggests that a good classification
performance can be obtained on relatively few dimensions.

The discriminant features are the eigenvectors of (13).
The 4 most important features, i.e. with highest associated
eigenvalues, are shown in figure 2. Note that the most im-
portant feature more or less zeroes out the contribution of
all pixels, except for the ones in the eyes, nose and mouth
region. Figure 3 shows a portion of the cumulative plot of
the eigenvalues. From this figure we can see that the SVM
discriminates between faces and non-faces on relatively few
dimensions. Remarkably, the first feature explains almost
90% of the total scatter, which indicates that large parts of
the decision boundary are planar.

4.2. Classification in Discriminant Subspaces

If we want to separate faces from non-faces in the discrimi-
nant subspace, any classifier could be used. However, if we
use SVMs we can kick-start the training procedure by pro-
jecting the SVs into the subspace and by using these pro-
jections as initial training data in the first iteration of the
bootstrap procedure. In this way, all information about the
decision boundary is immediately incorporated in the new
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training.
We trained several SVM classifiers in different d-

dimensional subspaces, with d ∈ {5, 10, 20, 40}. For all
classifiers, we used a polynomial kernel of degree 5 and set
C to 100. The resulting classifiers were evaluated on the
CMU Frontal Face Test Set [8] which contains 130 images
with 507 faces. The performance was measured with ROC
curves, with as free parameter the constant b in (11). Note
that no form of post-processing (e.g. grouping of detec-
tions) was performed, i.e. the ROC curves represent raw
classification outcome. The results are shown in figure 4.
This figure clearly shows that, compared to the classifier in
the original 1200 dimensions, a similar performance can be
reached in only 40 dimensions. This confirms the results
shown in figure 3.
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Figure 4: ROC curves for classifiers in the original dimen-
sion and several low dimensional subspaces.

If prior to classification the dimensionality of the data is
reduced from D to d, a substantial reduction of CPU-time
can be achieved, as long as d � NSV . For a classification
in D dimensions, the number of operations is 2DNSV +
NKNSV + 2NSV , where NK is the number of operations
needed to evaluate the kernel function on the inner prod-
uct of a SV with the input vector (see Eq.(11)). If we first
perform a reduction to d dimensions, the total number of
operations becomes 2dD + 2dN ′

SV + NKN
′
SV + 2N ′

SV ,
where the first term results from the subspace projection.
For our problem, we typically end up with about 1000 SVs,
in the original dimension as well as in the reduced dimen-
sions. Given D=1200, this means that for d=50, a 10-fold
speed-up can be obtained.

5. Conclusions and Future Work
In this paper, we described a novel approach for feature se-
lection in high dimensional classification problems. The

algorithm estimates the decision boundary feature matrix,
based on the gradient of the SVM decision function evalu-
ated at the SVs. We introduced a testing methodology based
on the discriminant effectiveness ratio. This allows an ob-
jective comparison of LDA algorithms because it does not
refer to any particular classifier on the induced subspace.
The experiments on the synthetic data show that the SVM-
based approach has a performance comparable to the Fuku-
naga algorithm but, contrary to the latter, it can process ar-
bitrary amounts of training data. In a face detection ex-
periment, we demonstrated that it is possible to reduce the
problem dimension to a fraction of the original with negli-
gible loss of classification performance. Currently, we are
investigating the potential of other kernels than the polyno-
mial ones. There are strong indications that RBF-kernels
can still improve the results, e.g. in [10] it was shown that
these kernels perform consistently well on 20 public domain
benchmark datasets. We are also employing the proposed
technique in the construction of a generic real-time object
detection system, which is based on a cascade of classifiers
operating on successively higher dimensional subspaces.
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