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Abstract

This paper explores the use of multisensory information fu-
sion technique with Dynamic Bayesian networks (DBNs)
for modeling and understanding the temporal behaviors of
facial expressions in image sequences. Our approach to
the facial expression understanding lies in a probabilistic
framework by integrating the DBNs with the facial action
units (AUs) from psychological view. The DBNs provide a
coherent and unified hierarchical probabilistic framework
to represent spatial and temporal information related to fa-
cial expressions, and to actively select the most informative
visual cues from the available information to minimize the
ambiguity in recognition. The recognition of facial expres-
sions is accomplished by fusing not only from the current
visual observations, but also from the previous visual evi-
dences. Consequently, the recognition becomes more robust
and accurate through modeling the temporal behavior of fa-
cial expressions. Experimental results demonstrate that our
approach is more admissible for facial expression analysis
in image sequences.

1. Introduction
A facial expression is indeed the human behavior. It often
reveals not only the nature of the deformation of facial fea-
tures, but also the relative timing of facial actions as well as
their temporal evolution. It is clearly of interest for human-
computer interactions and human behavior analysis that an
automated facial expression recognition system can recog-
nize the facial actions, yet modeling their temporal behav-
ior so that various stages of the development of a human
emotion can be visually analyzed and dynamically inter-
preted by machine. More importantly, it is often the tem-
poral changes that provide critical information about what
we try to infer and understand human emotions that possi-
bly link to the facial expressions. One interesting aspect of
this work is to model such dynamic behaviors and momen-
tary intensities of facial expressions.

1.1. Previous Work
Approaches in facial expression analysis are generally dis-
tinguished as spatial analysis and spatio-temporal analysis.
The major works on spatial analysis for facial expression

recognition have focused on using Neural Networks (NNs).
More recently, Gabor wavelet [1], and rule-based [2] have
also been attempted. A common limitation of these works
is that the recognition bases on static cues from still face
images. We focus on how to model the temporal behav-
iors of facial expressions from dynamic appearances in an
image sequence. Consequently, this sets our work signifi-
cantly apart from the above approaches.

There have been several attempts to track and recognize
facial expressions over time [3]-[7]. The current works
on the spatio-temporal analysis for facial expression under-
standing, in our view, have the following shortcomings: 1)
facial motion information is obtained mostly by computing
dense flow between successive image frames. Flow esti-
mates are easily disturbed by the variation of lighting and
non-rigid motion, and also sensitive to the inaccuracy of im-
age registration and motion discontinuities; 2) facial tempo-
ral information usually takes from three discrete expression
states in an expression sequence: the beginning, the peak
and the end of the expression. The facial movement itself is
not measured. Hence, this can not reflect the temporal evo-
lution and the momentary intensity of an observed expres-
sion, which are indeed more informative in human behavior
analysis; 3) besides HMM, most of proposed methods lack
the sufficient expressive power to capture the temporal be-
haviors exhibited by facial expressions. HMM can model
uncertainties and time series, on the other hand, it lacks the
ability to represent induced and non-transitive dependen-
cies. However, a facial expression is induced not only by
its temporal information, but also by a great number of AU
combinations and transient cues, which are non-transitive;
4) the issue of the occlusion in facial expressions has not
been directly addressed by the existing works.

1.2. Overview of Our Approach
The following constitutes the framework based on which
our approach is developed: 1) Facial Motion Measurement:
the measurement of facial motion is through tracking of fa-
cial features by simultaneously using an active Infra-Red
(IR) illumination and Kalman Filtering. The pupil positions
detected by using IR illumination are used to constrain the
detection and tracking of other feature positions so that the
facial motion can be accurately measured under large varia-
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tions of head motion; 2) Facial Expression Representation:
facial expression representation integrates the DBNs with
the facial AUs from psychological views. The DBNs pro-
vide a coherent and unified hierarchical probabilistic frame-
work to represent not only the causal relations of facial ex-
pressions to the complex combinations of facial AUs, but
also temporal behaviors of facial expressions; 3) Facial Ex-
pression Recognition: facial expression recognition lies in
a framework of dynamic and active multisensory informa-
tion fusion. This facilitates dynamically modeling temporal
evolution of facial expressions, and increasing the robust-
ness in handling occluded expressions or the uncertainty of
feature measurement in dynamic imagery.

2. Facial Feature Tracking
Our approach to facial feature tracking relies on an active
IR illumination as shown in Fig. 1(a), so that it can de-
tect pupils under large variation in lighting and head ori-
entations. To assist pupil detection, the person’s face is
illuminated with an IR illuminator, which produces the
dark/bright pupil effect [8], [9], as shown in Fig. 1(b)(c).
The detected pupils are subsequently tracked using a tech-
nique based on combining Kalman filtering with mean shift
tracking. The pupil positions are then used to constrain the
possible positions of other facial features. The simultaneous
use of IR illumination and Kalman Filtering makes our ap-
proach more robust and insensitive to the variations in light-
ing, head motion, and non-rigid expression change. Details
on pupil detection and tracking may be found in [9].

(a) (b)

Fig. 1. (a) IR camera setting; (b) dark/bright pupil effect

3. Facial Information Extraction
3.1. Linguistic Descriptions
It is generally believed that the six facial expressions in-
cluding happiness, sadness, anger, disgust, fear, surprise,
can use culture and ethnically independent AUs to linguis-
tically describe them. Such AUs were developed by Ekman
and Friesen in their FACS [10]. We adapt the AU-coded
descriptions of facial expressions in the FACS to describe
the six emotional expressions. To facilitate our introduction
to facial expression modeling, we illustrate the facial AUs
that are pertinent to the six expressions in Fig. 2, which are
directly adapted from [10].

A facial expression is indeed the combination of AUs.
We group AUs of facial expressions as primary AUs and
auxiliary AUs. By the primary AUs, we mean that the AUs
or AU combinations can be clearly classified as or strongly
pertinent to one of the six expressions without ambiguities.
In contrast, an auxiliary AU is the one that can only be
additively combine with primary AUs to provide comple-
mentary support to the facial expression classification. As
such, a facial expression contains primary AUs and auxil-
iary AUs. For example, an AU9 can be directly classified as
a type of a disgust; while it is ambiguous to classify a single
AU17 to be a disgust. When an AU9 and an AU17 appear
simultaneously, the facial appearance is more to be the ex-
pression of a disgust. Table I gives a summary of primary
AUs and auxiliary AUs which are associated with six ex-
pression categories. By combining the primary AUs within
the same category, the belief of classification to that cate-
gory increases, as shown in Fig. 3(a). However, the combi-
nation of the primary AUs across different categories may
result in: 1) a primary AU combination belonging to other
categories, e.g., the combination of AU1 (a primary AU of
the “sadness”) and AU5 (a primary AU of the “surprise”)
generates a primary AU combination of the “fear” as il-
lustrated in Fig. 3(b); 2) increasing ambiguity, e.g., when
AU26 (a primary AU of the “surprise”) combines with AU1
(a primary AU of the “sadness”), the belief of “surprise”
is reduced and the ambiguity of classification may be in-
creased as shown in Fig. 3(c). These characters are system-
atically represented by a probabilistic framework presented
in Section 4.

(a) (b) (c)

Fig. 3. Examples of AU combination; (a) AU12+AU6 enhances the hap-
piness; (b) AU1+AU5 becomes the fear; and (c) AU26+AU1 increases
ambiguity between the surprise and fear

3.2. Facial Feature Extraction
In order to automatically extract the activation of the mus-
cles from a face image, we have to quantitatively code AUs
into facial feature movements that can be extracted directly
from the face image. Fig. 4 presents facial geometrical re-
lationships and furrow regions. In order to adapt the FACS
description for machine recognition of facial expressions,
there is a need to establish a simple and unique relation be-
tween changes of the feature points and the corresponding
AUs. Table II gives quantitative description of AUs based

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



AU1 AU2 AU4 AU5 AU6 AU7

AU9 AU10 AU12 AU15 AU16 AU17

AU20 AU23 AU24 AU25 AU26 AU27

Fig. 2. Face action units for the components of six basic facial expressions (adapted from Ekman and Friesen [10])

TABLE I

SIX EMOTIONAL EXPRESSIONS ASSOCIATED WITH AUS, AU COMBINATIONS AND TRANSIENT FEATURES

Emotional Primary Visual Cue Auxiliary Visual Cue
Category AU(s) AU(s) AU(s) AU(s) AU(s) AU AU AU AU AU Transient Feature(s)
Happiness 6 12 25 26 16 wrinkles on eye outer corners;

presence of nasolabial furrow
Sadness 1 15 17 4 7 25 26
Disgust 9 10 17 25 26
Surprise 5 26 27 1+2 furrows on the forehead
Anger 2 4 7 23 24 17 25 26 16 vertical furrows between brows
Fear 20 1+5 5+7 4 5 7 25 26

on their linguistic descriptions. Consequently, the facial vi-
sual changes are automatically measurable on imagery. Ad-
ditionally, the symmetric property of human face allows us
to generate the redundant visual information for some fea-
ture points (e.g., feature points surrounding eyes) which can
be used to reduce the information uncertainty possibly re-
sulted from missing feature, inaccurate tracking or partial
occlusions. Some feature points, such as eye outer corners,
are vulnerable to be occluded by head rotation, and thus,
we use more than one way to measure the feature displace-
ments related to these points. Failure of one way is therefore
supplemented by another way. Take AU4 for example, we
measure not only � HFI (see Fig. 4), but also the movement
about the vertex of the upper eyelids as shown in Fig. 5.

The regions of facial wrinkles and furrows as shown in
Fig. 4 are located by the facial feature positions through
feature tracking. The presence of furrows and wrinkles on
an observed face image can be determined by edge feature
analysis in the areas that transient features appear. Fig. 6
shows the examples of transient feature detection. The con-
traction and extension of facial muscles may deform the
initial nasolabial fold to a particular shape as depicted in
Fig. 7(a). After a nasolabial fold is detected, we approxi-
mate the shape of a nasolabial fold as a quadratic form by
fitting a set of the detected edge points in a least-square
sense. The coefficients signifies the curvature of the na-
solabial fold exhibited by some facial AUs.

TABLE II

THE DESCRIPTIONS OF FACIAL VISUAL CUES

AUs Facial Visual Cues Visual Channel(s)
AU1 � FHJ , JF increased OR

JF increased, l8 non-increased Brow
AU2 l8 increased and JF non-increased

furrow in �Z increased Brow, Wrinkler
AU4 l8, FJ , JJ′ decreased,

� HFI increased and
wrinkle in �Y increased Brow, Wrinkler

AU5 l6, JF and JJ′ increased Lid
AU6 nasolabial furrow presence and Nasolabial,

wrinkle in �V increased Wrinkler
AU7 � HFI non-increased and

� HGF increased Lid
AU9 wrinkle increased in �X

nasolabial furrow presence OR Wrinkler,
PF , FJ decreased Nasolabial

AU10 l4 decreased and |FC − F ′C′|
increased, nasolabial presence OR Lip,
OD decreased, DB, C′C increased Nasolabial

AU12 FC, F ′C′ decreased,
CC′ increased, GI non-increased LipCorner

AU15 FC, F ′C′, CC′ increased LipCorner
AU16 OD non-change, DB decreased Lip
AU17 OB decreased and

wrinkle in �U presence Chin, Wrinkler
AU20 CC′ increased and

FC, F ′C′ non-change LipCorner
AU23 DB, CC′ decreased Lip
AU24 DB decreased, CC′ non-change Lip
AU25 DB increased, DB < T1,

CC′ non-increased Mouth
AU26 T1 < DB < T2, CC′ non-increased Mouth
AU27 DB > T2, CC′ non-increased Mouth
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Fig. 8. BN causal model of six basic emotional expressions Note: HAP - Happiness; SAD - Sadness; ANG - Anger; SUP - Surprise; DIS - Disgust; FEA -
Fear. Node HP means primary AUs for Happiness; while HA means auxiliary AUs for happiness, and so forth
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Fig. 4. The geometrical relationships of facial feature points, where rect-
angles represent the regions of furrows and wrinkles.

(a) (b)

Fig. 5. The vertex of the upper eyelid usually shifts to eye inner corner as
a subject performs anger; (a) neutral state; (b) anger

4. Modeling Facial Expressions
4.1. BN Model of Facial Expression
According to the causal relations between AUs and the six
expression categories as linguistically described in Table I,
we build the BN model as shown in Fig. 8. Our BN model
of facial expression consists of three primary layers: clas-
sification layer, facial AU layer and sensory information
layer. The classification layer consists of a class (hypoth-

(a) (b)

Fig. 6. Transient feature detection; (a) horizontal wrinkles between eyes;
(b) horizontal wrinkles on the forehead

esis) variable C including six states c1, c2, · · · , c6, which
are in the correspondence of happiness, sadness, disgust,
surprise, anger and fear, and a set of attribute variables
denoted as HAP , ANG, SAD, DIS, SUP and FEA.
The goal of this level of abstraction is to find the probability
of class state ci, which represents the chance of class state
ci given facial observations. The AU layer is analogous to
linguistic description of the relation between AUs and facial
expressions as described in Table I. Each expression cate-
gory consists of primary AUs and auxiliary AUs. A primary
AU contributes stronger visual cue to the understanding of
the facial expression than an auxiliary AU does. Hence, the
likelihood of primary AUs to the facial expression is higher
than that of auxiliary AUs. The lowest level of layer in the
model is the sensory information layer containing visual in-
formation variables, such as Brows, Lips, Lip Corners, Eye-
lids, Cheeks, Chin, Mouth, Nasolabial Furrow, and Wrin-
kles. All variables in this layer are observable.

4.2. Dynamic Modeling
Facial expressions can be said to express emotions and they
vary according to subject-environment interaction. As il-
lustrated in Fig. 9, an expression sequence, in many cases,
sequentially contains multiple expressions with a different
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Fig. 7. (a) The possible shapes of a nasolabial fold due to facial activities;
(b) the example results of nasolabial fold detection

intensity of facial action due to the change of object in envi-
ronment or in thought, and evolves over time until the visual
information about the underlying the emotional expression
can be classified. Modeling such temporal behaviors of fa-
cial expressions can lead to better understand the human
emotion at each stage of its development.

Transition

Apex

Apex

Releasing

Neutral

Neutral

Starting

Surprising

Smiling

Image frame

Amplitude

Fig. 9. An illustration that an expression sequence contains two emotional
expressions, a surprise followed by a smile

Static BN modeling of facial expression works with vi-
sual evidences and beliefs from a single instant in time,
and it lacks the ability to express temporal dependencies
between the consecutive occurrences in image sequences.
To overcome this limitation, we use DBNs for modeling the
dynamic aspect of a facial expression. Our DBN for fa-
cial expressions is made up of interconnected time slices
of SBNs exactly described above, and the relationships be-
tween two neighboring time slices are modeled by the first
order Hidden Markov model. The relative timing of facial
actions during the emotional evolution is described by mov-
ing a time frame in accordance with the frame motion of a
video sequence, so that the visual information at the pre-
vious time provides diagnostic support for current visual
evidences. Eventually, the belief of the current hypothesis

of expression is inferred relying on the combined informa-
tion of current visual cues through causal dependencies in
the current time slice, as well as the preceding evidences
through temporal dependencies. Fig. 10 shows the tempo-
ral dependencies by linking the top level of SBN in Fig. 8.
Consequently, the visual evidences from the preceding time

t−1

t

t+1

HAP SAD ANG SUP DIS

FEADISSUPANGSADHAP

FEA

Expressions

Expressions

Fig. 10. The temporal links of DBN for modeling facial expression (two
time slices are shown). Node notations are given in Fig. 8

slice serves as new prior information, and the prior infor-
mation is integrated with current data to produce a posterior
estimate of current facial expression.

4.3. Active Fusion of Visual Cues
A facial expression involves simultaneous changes of fa-
cial features on multiple feature regions. Some of such fa-
cial deformations extracted from face images possibly re-
sult from the errors in facial feature detection and tracking
due to the limitation of tracking accuracy. For facial activ-
ities at a given time, there is a subset of visual information
that is the most informative for the current goal to reduce
the ambiguity of classification the most. If we can actively
and purposively choose such visual cues for fusion, we can
achieve a desirable result in a timely manner while reducing
the ambiguity of classification to a minimum.

From the multisensory information fusion point of
view, we have n hypothesis of emotional states,
H = {h1, · · · , hn}. The visual observations, E =
{E1, · · · , Em}, which is obtained from m diverse visual
sources, forms an information vector. The information fu-
sion is to estimate a posterior probability that H = hi is
true given E, i.e., P (H = hi|E). By the most informative
sources, we mean the sensory data from a subset, E ⊂ E,
that after integrating with the existing data, can maximize
the certainty of H , given E, i.e., it can lead the probability
of hypothesis, P (H = hi|E ⊂ E), closest to either 1 or
0, and the ambiguity of the hypothesis can be reduced to
a minimum. In our approach, a fusion system is cast in a
DBN framework as shown in Fig. 11. The DBNs provide
a dynamic knowledge representation and control structure
that allows sensory information to be combined according
to the rules of probability theory. The active sensor con-
troller (see Fig. 11) serves as sensor cueing that allows the
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recognition system to actively select a subset of facial fea-
tures to produce the visual information that is the most rel-
evant to the current emotional state. Which subset of facial
feature regions needs to be sensed is determined by evalu-
ating the uncertainty reducing potential of possible conse-
quences resulted by sensing various facial feature regions
(visual channels).

E1 E1 En E1 EnE2E2

H(t)

S(t−1) S(t) S(t+1)
Hidden

Active

States

Controller

Hypothesis
(Goal)

E2 En

H(t−1) H(t+1)

Sensory Data

Fig. 11. A conceptual framework of DBN based active information fusion.
The system consists of a Goal, Hidden States, an Active Sensor Controller,
and Sensory Data

The uncertainty reducing potential is formulated in the
framework of mutual information theory. Extending Shan-
non’s measure of entropy, we can obtain the uncertainty re-
ducing potential I(H|E1, E2) if two sensors, E1 and E2,
are fused, i.e.,

I(H|E1, E2) = ENT (H) − ENT (H|E1, E2)

= −
∑
h∈H

p(h) log(p(h)) +
∑
h∈H

∑
e1∈E1

∑
e2∈E2

{

p(e1, e2)p(h|e1, e2) log p(h|e1, e2)
}

, (1)

where h and ei are the possible outcomes of H and Ei;
p(h|e1, e2) is estimated by applying Bayes’ theorem under
the assumption that sensor {E1, · · · , En} are conditionally
independent each other:

p(h|e1, e2) =
p(h|e1)p(h|e2)

p(h)
∑

h∈H

p(h|e1)p(h|e2)
p(h)

, (2)

In the above equations, p(h|e1) and p(h|e2) are directly ob-
tained by using BN probability inference. The prior proba-
bility of hypothesis p(h) is revised based on evidential ob-
servations from the preceding time slice through the state
evolution probability. Eq. (1), (2) can be extended for ap-
plying on fusing any number of sensors. In the interest of
space, we will describe this in the publications elsewhere.

5. Experimental Results
In the first experiment, we create a short image sequence
in which a subject performs a smile followed by a surprise,
as shown in Fig. 12(a). We can see visually that, the tem-
porally resolution of the expression varies over time as it
seems to be in spontaneous interaction. Fig. 12(b) provides

the analysis result by using our facial expression model.
This plot naturally profiles the momentary emotional inten-
sity and the dynamic behavior of facial expression that the
magnitude of the facial expression gradually evolves over
time. Such a dynamic aspect of facial expression model-
ing can more realistically reflect the evolution of a sponta-
neous expression starting from a neutral state to the apex,
and then gradually releasing. Since there are inter-personal
variations with respect to the amplitudes of facial actions, it
is often difficult to determine the absolute emotional inten-
sity of a given subject through machine extraction. In this
approach, as we can observe from the result, the relative
change of the emotional magnitude can be well modeled at
each stage of the emotional development.
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Fig. 12. (a) An image sequence shows a subject performing smiling fol-
lowed by surprising; (b) the probability distributions of facial expressions,
where only the distributions of “happiness” and “surprise” are shown

The benefits of our approach can be best shown when
an image sequence presents the facial features which are in
missed-detection or missed-tracking due to occlusions and
image noises. Fig. 13(a) gives such an image sequence in
which the facial features in some frames are assumed to be
in fully missed-tracking. Fig. 13(b) depicts the result by
our facial expression modeling, in which we can readily ob-
serve that, though the image sequence has facial features
fully mis-tracked in some of frames, the facial expression
can still be assessed correctly by reasoning over time. The
inability of current facial expression recognition systems to
correlate and reason about facial temporal information over
time is an impediment to provide a coherent overview of
the dynamic behavior of facial expressions in an image se-
quence since it is often the temporal changes that provide
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critical information about what we try to infer and under-
stand the human emotional expressions. By integrating the
current multiple visual cues and the preceding evidences,
our approach tends to be more robust in handling partial oc-
cluded facial expressions. An example is given in Fig. 14.
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Fig. 13. (a) An image sequence with some image frames in fully missed-
tracking; (b) result from our facial expression model

As we have previously remarked, the facial deformations
extracted from images may involve the feature tracking er-
rors. If we fuse all current available visual cues at a time, the
feature changes caused by tracking errors are also taken into
account, and consequently, cause more ambiguities in clas-
sification. Additionally, if we go over all visual channels
for the information of facial feature changes each time, this
will cost unnecessary computations. We therefore choose
actively and purposively the visual cues for fusion. In this
example as given in Fig. 15(a), we let the maximum of two
visual channels plus the visual evidence at the preceding
time to be integrated at a time. The comparative result given
in Fig. 15(b) shows that, in terms of uncertainty reduction,
the active fusion is better than the passive fusion (fusing all
available visual cues at a time for this case).

Finally, we present an example of facial expression un-
derstanding in a live image sequence. The original image
sequence of facial expressions has 600 frames containing
the six emotional expressions plus the neutral state among
them. We provide selected images that will, hopefully, con-
vey our results. Fig. 16 provides such a facial expression se-
quence of only 60 images resulted from sampling the origi-
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Fig. 14. (a) A posed image sequence performing occluded facial expres-
sion; (b) result from our facial expression model
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Fig. 15. (a) A segment of an image sequence; (b) comparative result
between active and purposive fusion of visual cues and passive fusion of
visual cues (fusing all available visual cues)

nal sequence in every 10 frames. Fig. 17 visually plots the
probability distributions over six facial expressions for the
image sequence as given in Fig. 16. The results consistently
confirm that the dynamic aspect of our approach can lead to
be more robust for facial expression analysis particularly in
image sequences.

6. Conclusion
Compared with the existing works on facial expression
analysis, our approach enjoys several favorable properties:
First, our approach has expressive power to capture the de-
pendencies, uncertainties and temporal behaviors exhibited
by facial expressions, so that dynamic behaviors of facial
expressions can be well modeled. Second, our approach al-
lows the recognition system to actively select a subset of
the most relevant facial visual cues at a current time to cor-
relate previous visual evidences, so that the uncertainty of
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Fig. 16. An image sequence sampled from IR camera (from the left to the right and the top to the bottom)
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Fig. 17. Classification results by our facial expression model. The image sequence is given in Fig. 16

classification can be reduced to a minimum at each time.
Third, taking advantages of DBNs and multisensory infor-
mation fusion, our approach is more robust in facial expres-
sion analysis and facilities for handling occluded facial ex-
pressions. Fourth, our approach allows an image sequence
have multiple expressions, and two consecutive expressions
do not require to be temporally segmented by a neutral state,
so that the facial expression analysis becomes more flexible
in image sequences.
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