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Abstract

Paracatadioptric sensors combine a parabolic shaped mir-
ror and a camera inducing an orthographic projection.
Such a configuration provides a wide field of view while
keeping a single effective viewpoint. Previous work in cen-
tral catadioptric sensors proved that a line projects into a
conic curve and that three line images are enough to cal-
ibrate the system. However the estimation of the conic
curves where lines are mapped is hard to accomplish. In
general only a small arc of the conic is visible in the image
and conventional conic fitting techniques are unable to cor-
rectly estimate the curve. The present work shows that a set
of conic curves corresponds to paracatadioptric line images
if, and only if, certain properties are verified. These prop-
erties are used to constraint the search space and correctly
estimate the curves. The accurate estimation of a minimum
of three line images allows the complete calibration of the
paracatadioptric camera. If the camera is skewless and the
aspect ratio is known then the conic fitting problem is solved
naturally by an eigensystem. For the general situation the
conic curves are estimated using non-linear optimization.

1 Introduction

Omnidirectional vision is becoming an increasingly impor-
tant sub-area in computer vision research. The approach of
combining mirrors with conventional cameras to enhance
sensor field of view is referred to as catadioptric image for-
mation. Catadioptric sensors with an unique effective view-
point are of primary interest. The entire class of catadiop-
tric configurations verifying the fixed viewpoint constraint
is derived in [1]. Panoramic central catadioptric systems can
be built by combining an hyperbolic mirror with a perspec-
tive camera and, a parabolic mirror with an orthographic
camera (paracatadioptric sensor). The construction of the
former requires a careful alignment between the mirror and
the imaging device. The camera projection center must be
positioned in the outer focus of the hyperbolic reflective sur-
face. The paracatadioptric camera is easier to construct be-
ing broadly used in vision applications.

In [2], Geyer and Daniilidis introduce for the first time an

unifying theory for general central catadioptric image for-
mation. A modified version of this mapping model is pro-
posed in [3]. It is shown that central catadioptric projection
is isomorphic to a projective mapping from a sphere, cen-
tered in the effective viewpoint, to a plane with a projection
center on the perpendicular to the plane. For the particular
case of paracatadioptric sensors the projection center lies
on the sphere and the projective mapping is a stereographic
projection. The plane and the final catadioptric image are
related by a collineation depending on the mirror and cam-
era intrinsic parameters. The system is calibrated when this
collineation is known. It has already been proved that any
central panoramic system can be fully calibrated from the
image of three lines in general position [3]. However, since
lines are mapped into conic curves which are only partially
visible, the accurate estimation of catadioptric line images
is far from being a trivial task [7].

The present paper focuses on paracatadioptric camera
calibration using lines in general position. If it is true that
any line maps into a conic in the catadioptric image plane,
it is not true that any conic is the image of a line. We derive
for the first time the necessary and sufficient conditions that
must be verified by a set of conic curves to be the paracata-
dioptric projection of lines. We also show that the derived
conditions can be used to accurately estimate the line im-
ages by non-linear optimization. Moreover if the system is
skewless and the aspect ratio is known then the lines can
be computed by solving an eigensystem. Given the image
of at least three lines the paracatadioptric camera is easily
calibrated using the results presented in [3].

2 Previous Work

The image formation model for paracatadioptric systems
and the calibration algorithm using three or more lines are
introduced. For further details please consult [3].

Consider a paracatadioptric system combining a
parabolic mirror with latus rectum h, and an orthographic
camera. The principal axis of the camera must be aligned
with the symmetry axis of the paraboloid. The paracata-
dioptric projection can be modeled by a stereographic
projection from an unitary sphere, centered in the effective

1

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



Z c

OcYc

cX

n

Ο^

��
��
��
��

��
��
��
��

��

����

H c

X

Z

Y

Ω
O

O

Π

x

x

Ω

x̂

world
point

Ξ

Paracatadioptric 
Image Plane

Ω
^

P

Figure 1: Model for paracatadioptric image formation

viewpoint, into a plane Ξ as shown in Fig. 1.
The world point shown in Fig. 1 is imaged at point x̂

in the paracatadioptric image plane. To each visible scene
point corresponds an oriented projective ray x = (x, y, z)t,
joining the 3D point with the projection center O. The pro-
jective ray intersects the unit sphere in a single point P.
Consider a point Oc, with coordinates (0, 0,−1)t, which
lies in the unitary sphere. To each x corresponds an ori-
ented projective ray x̄ joining Oc with the intersection point
P. The non-linear mapping F (equation 1) corresponds to
projecting the scene in the unity sphere surface and then
re-projecting the points on the sphere into a plane Ξ from
a novel projection center Oc. Points in catadioptric image
plane x̂ are obtained after a collineation Hc of 2D projec-
tive points x̄. Equation 2 shows that Hc depends on the
intrinsic parameters Kc of the orthographic camera, and on
the latus rectum of the parabolic mirror.

F(x) = (x, y, z +
√

x2 + y2 + z2)t (1)

x̂ = Kc


 h

2 0 0
0 h

2 0
0 0 1




︸ ︷︷ ︸
Hc

x̄ (2)

Consider the plane Π = (n, 0)t going through the effec-
tive viewpoint O as depicted in Fig. 1 (n = (nx, ny, nz)t).
The paracatadioptric image of any line lying on Π is the
conic curve Ω̂. The line in the scene is projected into a
great circle in the sphere surface. This great circle is the
curve of intersection of plane Π, containing both the line
and the projection center O, and the unit sphere. The pro-
jective rays x̄, joining Oc to points in the great circle, form
a central cone surface. The central cone, with vertex in Oc,

Step 1 Determine the catadioptric line images Ω̂i for
i = 1, 2, 3 . . . K

Step 2 For each pair of conics Ω̂i, Ω̂j, compute the in-
tersection points F̂ij, B̂ij and determine the cor-
responding line µ̂ij = F̂ij ∧ B̂ij

Step 3 Estimate the image center Ô which is the inter-
section point of lines µ̂ij.

Step 4 For each conic Ω̂i compute the polar line π̂i of
the image center Ô (i = 1, 2, 3 . . . K).

Step 5 For each conic curve obtain the points Îi and Ĵi

where line π̂i intersects Ω̂i (i = 1, 2, 3 . . . K)
Step 6 Estimate the conic Ω̂∞ going through points Îi,

Ĵi (i = 1, 2, 3 . . . K)
Step 7 Compute the Cholesky decomposition of Ω̂∞ to

derive matrix Hc

Table 1: Calibrating a paracatadioptric system using K lines

projects into the conic Ω̄ in plane Ξ (equation 3). Since
the image plane and Ξ are related by collineation Hc, the
result of equation 4 comes in a straightforward manner. No-
tice that conic Ω̄ degenerate to a line whenever nz = 0.

Ω̄ =


 −n2

z 0 nxnz

0 −n2
z nynz

nxnz nynz n2
z


 (3)

Ω̂ =


 a b d

b c e
d e f


 = Hc

−tΩHc
−1 (4)

The catadioptric system is calibrated whenever the
collineation Hc is known. Assume that the image center
is C = (cx, cy)t, and that α2, fo and sk are the aspect ratio,
the focal length and the skew of the orthographic imaging
device. The projective transformation Hc is given in equa-
tion 5 where fc = foh/2 is a measurement in pixels of the
combined focal length of the camera and the mirror.

Hc =


 αfc sk cx

0 α−1fc cy

0 0 1


 (5)

Any central catadioptric system can be calibrated from
the image of K lines with K � 3. Table 1 summarizes the
steps of the calibration method proposed in [3]. The first
step is to estimate the conic curves Ω̂i corresponding to the
paracatadioptric projection of K lines in the scene. Any two
line images Ω̂i, Ω̂j intersect in two real points B̂ij, F̂ij. It
can be shown that the image center Ô must lie in the line
µ̂ij going through the two intersection points. Consider the
original line in the scene and the plane Πi going through the
effective viewpoint and containing the imaged line (see Fig.
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1). If the line is projected in the conic Ω̂i, then the polar
line π̂i of the center Ô is the image of the vanishing line of
Πi. The polar line π̂i intersects the conic curve Ω̂i in two
points Îi, Ĵi. It can be proved that these two points lie on
the conic Ω̂∞, which is the locus where the absolute conic
is mapped by collineation Hc. Conic Ω̂∞ can be estimated
using the K pairs of points Îi, Ĵi. Since Hc is an upper
triangular matrix and Ω̂∞ = Hc

−tHc
−1, then Hc can be

determined from the Cholesky decomposition of Ω̂∞.
The calibration of the paracatadioptric system is straight-

forward whenever the conic curves corresponding to the
line images are known. However the estimation of the these
conics using image points is hard to accomplish. There are
several algorithms to fit a conic curve to data points [7]. A
robust conic fitting algorithm has to cope with noisy data
points, biasing due to curvature and partial occlusions. The
occlusion problem is of particular importance for our pur-
poses. By occlusion we mean that the available data points
lie on a small arc of the curve. It is intuitive that in this
circumstances, even for small amounts of noise, it is very
hard to obtain the correct conic curve. The present work
aims to to cope with this problem using the properties of
paracatadioptric line projection .

3 The Line Image ω̂

In general a conic curve has 5 DOF and it can be represented
by a symmetric 3 × 3 matrix Ω̂ in P 2 (equation 4), or by
a point ω̂ = (a, b, c, d, e, f)t in P 5. From equation 4, re-
placing Ω̄, Hc by the result of equations 3, 5 and assuming
Υ = αskcy − fccx, yields




a
b
c
d
e
f


 =




− n2
z

α2f2
c

n2
zsk

αf3
c

−n2
z

f2
c
( s2

k

f2
c

+ α2)
nxnz

αfc
− n2

zΥ
α2f3

c

αnynz

fc
+ α2n2

zcy−sknxnz

f2
c

+ skn2
zΥ

αf4
c

n2
z−αcynynz

fc
− α3c2

yn2
z−nxnzΥ

αf2
c

− n2
zΥ2

α2f4
c




The paracatadioptric image of a line depends on the in-
trinsic parameters of the system and on the orientation of the
3D plane Π (Fig. 1). After some algebraic manipulation the
previous result can be rewritten in the form of equation 6.
If the calibration is known then the conic curve ω̂ is only
described by parameters a, d and e. These three parameters
encode the scale information and the orientation of plane Π
containing the imaged line. Considering that conic ω̂ has 5
DOF, we may conclude that 3 DOF depend on the parabolic
system parameters, and the remaining 2 DOF are related
with the line that is projected.

ω̂ =




a
b
c
d
e
f


 =




a
−αsk

fc
a

(α2s2
k

f2
c

+ α4)a
d
e

−α2f2
c a − cxd − cye




(6)

4 Paracatadioptric Line Estimation

Assume that we have a paracatadioptric image of K lines in
space. Each line is projected in a conic curve ω̂i parameter-
ized has a point in P 5 (equation 7). The goal is to correctly
estimate the set of conic curves knowing neither the system
calibration nor the position of the lines in the scene.

ω̂i = (ai, bi, ci, di, ei, fi)t, i=1,2,3 . . . K (7)

4.1 Estimation of ω̂i from Image Points

Consider the image points x̂i
j = (x̂j , ŷj)t with j =

1, 2 . . . Mi and Mi � 5, lying on conic ω̂i. Neglecting the
effects of noise it is straightforward that Aiω̂i must be null
(equation 8).




x̂2
1 2x̂1ŷ1 ŷ2

1 2x̂1 2ŷ1 1
x̂2

2 2x̂2ŷ2 ŷ2
2 2x̂2 2ŷ2 1

...
...

...
...

...
...

x̂2
Mi

2x̂Mi
ŷMi

ŷ2
Mi

2x̂Mi
2ŷMi

1




︸ ︷︷ ︸
Ai

ω̂i = 0

(8)
Equation 9 provides the design matrix A for the entire

set of conic curves p = (ω̂1, ω̂2 . . . ω̂K)t.




A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · AK




︸ ︷︷ ︸
A




ω̂1

ω̂2

ω̂3

...
ω̂K




︸ ︷︷ ︸
p

= 0 (9)

The equality of equation 9 is only verified in ideal cir-
cumstances. In general the data points are corrupted with
noise and Ap �= 0. One way to estimate the set of conic
curves is to find the solution p that minimizes the alge-
braic distance φ (equation 10) under the constraint ptp = 1.
The minimizer is the normalized eigenvector of AtA cor-
responding to the smallest eigenvalue.

φ(p) = ptAtAp (10)
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As referred above the problem is that in general the conic
curves corresponding to the paracatadioptric projection of
lines are strongly occluded in the image. We are only able
to obtain points lying on a small arc of the curve. There
are several other conic fitting algorithms which minimizes
other distances than the algebraic one [7]. However none
of them works properly under these circumstances since the
data points do not provide enough information to correctly
estimate the conics. This paper proposes to solve the esti-
mation problem by constraining the search space using the
properties of paracatadioptric line projection.

4.2 Constraints Verified by a Set of Paracata-
dioptric Line Images

Assume K lines in the scene that are projected into K conic
curves in the paracatadioptric image plane (K � 3). These
conic curves can be represented by points of P 5 as shown
in equation 7. From the result of equation 6 yields

b1

a1
=

b2

a2
=

b3

a3
= . . . =

bK

aK
= −αsk

fc

c1

a1
=

c2

a2
=

c3

a3
= . . . =

cK

aK
=

α2s2
k

f2
c

+ α4

From the first expression arises that ηi = 0 for i =
2, 3 . . . K with ηi provided by equation 11. Moreover, us-
ing the second expression in a similar manner, comes that
χi = 0 for i = 2, 3 . . . K where χi is given by equation 12.

ηi = a1bi − aib1, i=2,3 . . . K (11)

χi = a1ci − aic1, i=2,3 . . . K (12)

From equation 6 arises that each line image ω̂i must ver-
ify α2f2

c ai + cxdi + cyei + fi = 0. Consider the conic
curves ω̂1, ω̂2 and ω̂3, which are the first three elements of
the set of line images. α2f2

c , cx and cy can be determined
as follows


 α2f2

c

cx

cy


 = −


 a1 d1 e1

a2 d2 e2

a3 d3 e3




︸ ︷︷ ︸
Φ

−1 
 f1

f2

f3




︸ ︷︷ ︸
Γ

If K > 3 then each conic curve ω̂i with i = 4 . . . K must
verify the constraint νi = 0 (equation 13).

νi =
[

ai di ei fi

]
.

[ −Φ−1Γ
1

]
, i=4 . . . K (13)

It is clear that if a set of K conic curves corresponds
to the paracatadioptric projection of K lines, then ηi, χi

and νi, provided in equations 11, 12 and 13, must be equal
to zero. We have derived 3K − 5 independent conditions
which are necessary for the conic curves to be paracatadiop-
tric line images. However it has not been proved that these
conditions are also sufficient. By sufficient we mean that, if
a certain set of conic curves verify these conditions then it
can be the paracatadioptric projection of a set of lines.

Consider the uncalibrated image of K lines that are
mapped in the same number of conics. Since each conic has
5 DOF then a set of K conics has a total of 5K DOF. Each
line introduces 2 unknowns (DOF), which correspond to the
orientation of the associated plane Π (see Fig. 1). Moreover
the 5 parameters of matrix Hc are also unknown (equation
5). Thus there are a total of 2K +5 unknowns (DOF). Since
5K > 2K + 5 then it is obvious that there are sets of conic
curves that can never be the paracatadioptric projection of
lines. The conics that can correspond to the image of the
lines lie in a subspace of dimension 2K + 5. This means
that there are 3K−5 independent constraints, which proves
the sufficiency of the conditions derived above.

4.3 Estimation of Line Images for Calibra-
tion Purposes

Section 4.1 shows how to estimate the set of K paracata-
dioptric line images using image points. The method con-
sists in finding a solution p for the conic curves which mini-
mizes the algebraic distance to the data (equation 10). Since
the curves appear strongly occluded in the image plane, the
estimation results are in general very inaccurate. Section
4.2 shows that a set of K conic curves corresponds to the
paracatadioptric projection of K lines, if and only if, it ver-
ifies the constraints provided by equations 11, 12 and 13.
Our approach consists in using the necessary and sufficient
conditions derived above to constraint as much as possible
the search space.

4.3.1 General Case

Assume the image of K lines acquired by an uncalibrated
paracatadioptric camera. Nothing is known about the pa-
rameters of matrix Hc. The skew can be non null and the
aspect ratio different from one. Function φ provides the al-
gebraic distance between the set of conic curves p and the
data points (equation 10). We aim to minimize of the al-
gebraic distance under the constraints ηi = 0, χi = 0 and
νi = 0 (equations 11, 12 and 13). One way to achieve this
goal is to find the solution p which minimizes the function
ε provided in equation 14.

ε(p) = φ(p) + λ(
K∑

i=2

η2
i +

K∑
i=2

χ2
i +

K∑
i=4

ν2
i ) (14)
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The constraints are introduced as penalty terms weighted
by a parameter λ. The minimization of the function ε can
be stated as a nonlinear least squares problem. The solution
can be found using Gauss-Newton or Levenberg-Marquardt
algorithms. Notice that the Jacobian matrix can be explic-
itly derived.

4.3.2 Skewless Images with Known Aspect Ratio

Assume that the orthographic camera is skewless and that
the aspect ratio α2 is known. Replacing sk by 0 in equation
6 yields b = 0 and c = α4a. The constraints ηi = 0 and
χi = 0 for i = 2 . . . K, become bi = 0 and ci − α4ai = 0
for i = 1 . . . K. Notice that there are two additional con-
straints because now two of the calibration parameters are
known. The new function ε is given by equation 15.

ε(p) = φ(p)+λ(
K∑

i=1

b2
i +

K∑
i=1

(ci − α4ai)2+
K∑

i=4

ν2
i ) (15)

Making bi = 0 and ci = α4ai in equation 8 yields




x̂2
1 + α4ŷ2

1 2x̂1 2ŷ1 1
x̂2

2 + α4ŷ2
2 2x̂2 2ŷ2 1

...
...

...
...

x̂2
Mi

+ α4ŷ2
Mi

2x̂Mi
2ŷMi

1




︸ ︷︷ ︸
Ãi




ai

di

ei

fi




︸ ︷︷ ︸
ω̃i

= 0

A novel design matrix Ã can be obtained by replac-
ing Ai by Ãi for i = 1 . . . K in equation 9. Consider
φ̃(p̃) = p̃tÃtÃp̃ with p̃ = (ω̃t

1 . . . ω̃t
K)t. The minimum

of function φ̃(p̃) is the set of conic curves which minimizes
the algebraic distance to the data points and verifies the con-
straints bi = 0 and ci − α4ai = 0. Thus we can use the
objective function ε̃ instead of the one of equation 15

ε̃(p̃) = p̃tÃtÃp̃︸ ︷︷ ︸
φ̃(p̃)

+

[
λ

K∑
i=4

ν2
i

]
(16)

In general the minimization of function ε̃ is still a non-
linear least squares problem. However if K = 3 then the
second term of equation 16 disappears and the problem be-
comes closed from. The solution is given by the eigenvec-
tor corresponding to the smallest eigenvalue of ÃtÃ. Even
when K > 3 the eigenvector solution is in general quite
accurate. In this case the conditions of equation 13 are ne-
glected and the search space is not fully constrained. Nev-
ertheless it is constrained enough to provide good results.

5 Performance Evaluation

Other authors have already proposed algorithms to cali-
brate a paracatadioptric camera [4, 6, 5]. The approach
presented in [6] requires a sequence of paracatadioptric im-
ages. The system is calibrated using the consistency of pair-
wise tracked point features across the sequence, based on
the characteristics of catadioptric imaging. In [5], the cen-
ter and focal length are determined by fitting a circle to the
image of the mirror boundary. The method is simple and
can be easily automated, however it is not very accurate
and requires the visibility of the mirror boundary. Its ma-
jor drawback is that it is only applicable for the situation
of a skewless camera with unitary aspect ratio. Geyer and
Daniilidis propose a calibration algorithm using line images
[4]. They present a closed-form solution for focal length,
image center, and aspect ratio for skewless cameras, and a
polynomial root solution in the presence of skew. The line
images are estimated taking into account the properties of
parabolic projections. Nevertheless the conic curves verify-
ing those properties are not necessarily the paracatadioptric
projection of lines. In this section we use simulated images
to evaluate the performance of our algorithm and compare
it with the one proposed by Geyer and Daniilidis.

5.1 Simulation Scheme

Assume a paracatadioptric camera with a field of view
(FOV) of 180◦ and pre-defined intrinsic parameters. The
image of a set of K lines is generated as follows. To each
line in the scene corresponds a plane Π with normal n (Fig.
1). The K normals are unitary and randomly chosen from
an uniform distribution in the sphere. Each normal defines
a plane that intersects the unit sphere in a great circle. No-
tice that half of the great circle is within the camera field
of view. An angle θ, less or equal to the FOV, is chosen
to be the amplitude of the arc that is actually visible in the
paracatadioptric image. The arc is randomly and uniformly
positioned along the part of the great circle which is within
the FOV. The visible arc is uniformly sampled by a fixed
number N of sample points. The each sample point corre-
sponds a projective ray x. The sample rays are projected
using formula 1 and transformed using 2 with the chosen
intrinsic parameters. Two dimensional gaussian noise with
zero mean and standard deviation σ is added to each image
point x̂. As a final remark notice that the amplitude of the
visible arc is measured in the great circle where plane Π
intersects the sphere, and not in the conic curve where the
line is projected. In general the visible angle of the para-
catadioptric line image is much less than θ.

5
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Figure 2: Calibration of skewless system with known aspect
ratio using three line images

5.2 Calibration of Skewless Camera with
Known Aspect Ratio

Consider a parabolic camera such that the skew is 0 (sk =
0), the aspect ratio is 1.21 (α = 1), and both are as-
sumed to be known. We wish to determine the focal length
(fc = 245) and the image center ((cx, cy) = (330, 238))
using the image of three lines (K = 3). The line images
are estimated using the closed-form solution proposed at
the end of section 4.3.2 and the system is calibrated using
the algorithm presented in Tab. 1. The data points are ar-
tificially generated using the simulation scheme explained
above. The estimated calibration parameters are compared
with the ground truth and the RMS error is computed over
100 runs of each experiment.

Fig. 2 shows the results for different choices of θ (am-
plitude of the visible arc) and N (number of sample points).
For each situation the standard deviation of the additive
gaussian noise varies between 0.5 and 6 pixels by incre-
ments of 0.5 pixels. For θ = 170◦ the algorithms presents
an excellent performance. The decrease on the number of
sample points from 300 to 80 only slightly affects the ro-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

35

40

45

Noise Standard Deviation (pixel)

S
ke

w
 M

E
D

IA
N

 E
rr

or
 (

pi
xe

l)

3 Lines
5 Lines
7 Lines
9 Lines

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

Noise Standard Deviation (pixel)

F
oc

al
 L

en
gt

h 
M

E
D

IA
N

 E
rr

or
 (

pi
xe

l)

3 Lines
5 Lines
7 Lines
9 Lines

Figure 3: Calibration results for skew and focal length using
3, 5, 7 and 9 lines

bustness to noise. Since we are only using three lines, the
decrease on the amplitude of the visible arc θ and on the
number of points N has a strong impact on the performance.
Even so the calibration using arcs of 90◦ is still practicable.
The situation of θ = 70◦ and N = 20 is very extreme lead-
ing to a bad estimation of the intrinsic parameters.

The performance of method proposed in [4] is evaluated
using similar simulation conditions. A direct comparison
can be made between the results presented in here and the
ones presented on their paper. In general terms they esti-
mate the conic curves by exploiting the fact that the image
center must lie in the line going through the intersection
points of any two line images. As discussed in section 4.2,
this condition is necessary, but not sufficient, for a set of
conic curves to be the paracatadioptric projection of lines.
Since the search space is not fully constrained, they need
much more than three line images to calibrate the sensor.
The results presented in Fig. 2 are obtained using the min-
imum theoretical number of lines for calibration [3]. Even
so, and as far as we are able to judge from the results pre-
sented in [4], the performance of our approach seems to be
significantly better.
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Figure 4: Line images estimation for calibration

5.3 General Calibration

Consider that nothing is known about the calibration pa-
rameters. We wish to determine the aspect ratio, skew, fo-
cal length and image center using line images. The ampli-
tude of the visible arc and the number of sample points are
respectively θ = 140◦ and N = 140 (section 5.1). The
present experiment compares the performance of the cali-
bration algorithm for 3, 5, 7 and 9 line images. The set
of line images is estimated by minimizing the function ε
provided by equation 14. The solution is found using an
iterative gradient descent method. The starting point is the
minimizer of the algebraic distance to the data points (equa-
tion 10). The calibration parameters are computed (Tab. 1),
the results are compared with the ground truth and the me-
dian error is computed over 100 runs. The performance of
the calibration algorithm can be observed in Fig. 3. As
expected the increase in the number of lines improves the
robustness of the calibration.

6 Experiments with Real Images

Five images are taken using a paracatadioptric camera with
resolution 1704 × 2272 and the FOV 180◦. Fig. 4 depicts
one of the calibration images. For each frame a set of points
lying on 6 different line images is selected. The points are
used to estimate the conic loci where the lines are imaged.
Since nothing is known about the sensor calibration, the es-
timation of the set of line images must be performed by
minimizing function ε (equation 14). The sensor is cali-
brated using 3, 4, 5 and 6 lines. Tab. 2 presents the mean
and the standard deviation of the calibration results obtained
with each image. Notice that the estimated values for the
calibration parameters are more or less the same for the dif-
ferent K (number of lines). The standard deviation acts as a
measure of confidence. If the results obtained for each im-
age are very different, the variance is high and the achieved

3 Lines 4 Lines 5 Lines 6 Lines

α mean 1.0001 0.9998 0.9996
std 0.0012 0.0019 0.0015

fc mean 699.36 699.37 701.03 701.81
std 17.24 16.00 13.57 10.65

sk mean 1.46 0.57 -1.95
std 2.35 1.41 1.39

cx mean 1137.0 1137.6 1143.6 1147.7
std 21.4 22.6 11.0 5.8

cy mean 870.90 870.66 874.36 876.64
std 11.84 13.42 8.29 5.66

Table 2: Calibrating a paracatadioptric system using K lines

calibration is not trustable. As expected the standard devia-
tion decreases when the number of lines increases.

To evaluate the correctness of the calibration we per-
formed the perspective rectification of a paracatadioptric
image of six pairs of parallel lines. The lines were estimated
in the rectified image using normal least squares. The angle
between each two directions was determined using the cor-
responding vanishing points and the image of the absolute
conic (which is known since the perspective is artificially
generated). The angles between each two directions were
computed and the results were compared with the angles
measured in the scene. The mean of the error was 0.51◦

and the standard deviation was 0.35◦.
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