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Abstract
We derive a new class of photometric invariants that can be
used for a variety of vision tasks including lighting invari-
ant material segmentation, change detection and tracking, as
well as material invariant shape recognition. The key idea
is the formulation of a scene radiance model for the class of
“separable” BRDFs, that can be decomposed into material
related terms and object shape and lighting related terms.
All the proposed invariants are simple rational functions of
the appearance parameters (say, material or shape and light-
ing). The invariants in this class differ from one another in the
number and type of image measurements they require. Most
of the invariants in this class need changes in illumination or
object position between image acquisitions. The invariants
can handle large changes in lighting which pose problems for
most existing vision algorithms. We demonstrate the power of
these invariants using scenes with complex shapes, materials,
textures, shadows and specularities.

1 Invariants in Vision
Appearances of scenes depend on a variety of factors such as
lighting geometry and spectrum, scene structure and material
properties, medium in which light travels, viewing geometry
and sensor properties. Most often, these parameters combine
non-linearly to yield an image. Recovering these factors from
images is an important problem in vision. Direct estimation
of these parameters from a set of images of a scene, however,
is generally hard. Photometric invariants provide an interme-
diate solution to this problem.

Invariants usually transform images into a simpler feature
space where more accurate algorithms can be developed for
the task at hand. To be effective, invariants must satisfy two
properties - (a) they must be invariant to certain appearance
parameters (say, lighting) and (b) they must have good dis-
criminability with respect to other parameters (say, material
properties). Good invariants can be effective for common vi-
sion tasks such as illumination invariant recognition, material
segmentation and lighting insensitive tracking.

There has been a lot of previous work in developing invari-
ants and we will reference a few here. In several instances,
the invariants are effective only in special situations. For ex-
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ample, they may work only for Lambertian or matte surfaces
(normalized RGB, [3, 27, 11, 1, 8], reflectance ratios [16], in-
trinsic images [26], color invariants [7, 6, 24]), or for specific
surface geometry [22, 16], or may be only quasi-invariant
[28, 2]. The dichromatic model [23, 10] has been used to
separate diffuse and specular reflections (the diffuse compo-
nent is invariant to specularities) [12, 19, 20, 21, 4]. However,
most of the dichromatic model based works assume either (a)
objects with homogeneous reflectance, or (b) specific models
for diffuse and specular reflections, or (c) prior knowledge
about the diffuse or specular colors, or (d) require at least
six light sources [13]. In this work, we do not separate reflec-
tion components but are interested in separating material from
lighting and shape. Compact representations of objects using
images under a large number of lighting conditions have been
proposed for lighting invariant recognition [1] and shadow
removal [14, 5]. However, they often do not have a physical
meaning (in terms of object material properties) and therefore
hard to use for a problem like material segmentation.

In this paper, we present a class of photometric invariants
that have the same computational framework for a large set
of BRDFs, sensor types as well as the number of image mea-
surements. We begin by deriving a simple image formation
model that is valid for the class of “separable” BRDFs. We
make no assumption on the exact models of BRDF (Lamber-
tian, Torrence-Sparrow, etc.) in our image formation model.
Then, we show how to decompose the observed image mea-
surements into material properties of scene points and the
lighting and scene geometry. This is the key idea for creating
lighting and shape invariants as well as material invariants.
Most of the invariants in this class need changes in illumi-
nation or object position between image acquisitions. The
stabilities of the invariants increase when the changes in the
scene lighting are large. Thus, our method proves effective
in challenging illumination conditions that pose problems for
most existing vision algorithms.

The invariants and their discrimination strengths are exper-
imentally demonstrated using several representative scenes
with complex shapes, textures, shadings, shadows and specu-
larities. We show that the class of photometric invariants can
have implications for vision; for instance, it can be used for
lighting insensitive material segmentation, change detection
and tracking under complex lighting conditions.
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Model K1 G1 K2 G2

Lambertian ρd
I
π cos θi - -

Oren-Nayar ρd

(
1 − 0.5 σ2

σ2+0.33

)
I
π cos θi ρd

(
0.15 σ2

σ2+0.09

)
I
π cos θi cos(φi − φr) sin α tan β

Table 1: Examples of commonly used separable BRDF models for diffuse surfaces. Table shows material K, and geometry G, terms for
diffuse reflectance. K1 and G1 terms represent material and geometry properties of smooth diffuse surfaces. The K2 and G2 terms represent
material and geometry properties of rough surfaces. The subscripts i and r denote the incident and the reflected directions measured with
respect to surface normal. Here, I is the source intensity, ρd is the diffuse albedo, σ is the surface roughness, α = Max[θi, θr] and
β = Min[θi, θr] . The cosine terms (cos x) should be replaced by Max[0, cos x] to prevent them from being negative (attached shadows).
Multiple sources can be represented by just summing up (or integrating) the G terms for each source.

Model K3 G3

NIR (Spike/Delta) ρs F(η) δ(θi − θr)δ(φr)
K4 G4

Torrence-Sparrow ρs F(η) GAF(θi,φi,θr,φr)
cos θr

e
−θa

2

2σ2

Surfaces Smooth Rough
Diffuse 1 2

Specular 1 1
Hybrid 2 3

Number of KG terms
Table 2: [Left] Examples of commonly used separable BRDF models for specular surfaces. Table shows material K, and geometry G,
terms for specular reflection. The spike/delta model holds for smooth specular surfaces. The Torrence-Sparrow model well approximates
the specular reflection from rough surfaces. Multiple sources can be represented by just summing up (or integrating) the G terms for each
source. Here, GAF is called the Geometric Attenuation Factor, and θa is the inclination of a micro-facet from the surface normal. The
Fresnel coefficient F(η) is assumed to be constant with respect to incident angle. This assumption is valid for several materials when
illuminated and viewed from non-grazing angles [17]. [Right] Typical number of KG terms needed for various real world surfaces.

2 Separable BRDFs
The radiance L from a scene point can be written as the sum
of diffuse and specular radiances : L = Ld + Ls . In many
cases, the individual radiances Ld and Ls can be further writ-
ten as products of (a) material related terms and (b) light-
ing/viewing geometry and object shape related terms as:

L =
n∑

j=1

Kj(material)Gj(shape, lighting, viewpoint)

(1)
where, the K terms depend only on intrinsic material proper-
ties such as diffuse and specular albedos, refractive index and
surface roughness. On the other hand, the G terms depend
only on the viewing/illumination geometry and object shape
but not on the intrinsic material properties. We refer to the K
terms simply as “material” terms and the G terms loosely as
“geometry” terms. We now show that the above “separable
BRDF model” is valid for a variety of real world surfaces.
Tables 1 and 2 illustrate the separable forms for several com-
monly used BRDFs. This formulation is key to computing
the class of photometric invariants presented in this paper.

Diffuse Surfaces : For matte surfaces, the Lambertian model
is widely used. In terms of the separable model, we can write:

L = Ld = K1G1 , (2)

where, K1 denotes the diffuse albedo and G1 is the dot prod-
uct of source direction and intensity, with surface normal.

The Oren-Nayar model [18] is used for rough diffuse surfaces
and we can write a two term separable formulation as:

L = Ld = K1G1 + K2G2 , (3)

where, the subscripts 1 and 2 denote the first and second terms
of the Oren-Nayar diffuse reflection model. See table 1 for
exact equations. Note that the normalized RGB or reflectance
ratio [16] invariants used for Lambertian surfaces do not hold
for rough surfaces.

Specular Surfaces : For smooth surfaces such as mirrors, the
specular reflection is described using a delta function which
can be rewritten using our notation as :

L = Ls = K3G3 , (4)

where, K3 denotes the specular albedo and Fresnel coeffi-
cient and G3 is a double-delta function. For rough specular
surfaces, we write the Torrence-Sparrow model [25, 17] in
separable form as:

L = Ls = K4G4 . (5)

See table 2 for exact equations1. Note that most existing pho-
tometric invariants do not hold for specular surfaces.

1A caveat for the G4 term in the Torrence-Sparrow model is that it con-
tains the surface roughness term σ. Surface roughness at a microscopic level
can be considered as a geometry term (standard deviation of the Gaussian
distributed orientations of the surface normals of the micro-facets) and hence
is somewhat ambiguous.
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Hybrid Surfaces : Hybrid surfaces can have both diffuse and
specular reflectance properties. For smooth hybrid surfaces,
we can write the radiance model as

L = Ld + Ls = K1G1 + K3G3 , (6)

where, the subscript 1 denotes the diffuse product term and
subscript 3 denotes the specular product term. Once again,
refer to tables 1 and 2 for exact expressions. On the other
hand, for rough surfaces that exhibit both diffuse and specular
reflectances, 4 KG product terms are needed :

L = Ld + Ls =
4∑

j=1

KjGj . (7)

At any instant only one of G3 or G4 is significant [17]. So, 3
KG products can approximate radiance. Table 2 summarizes
the number of product terms needed for different surfaces.

We have shown through several examples that scene radiance
can be expressed as an inner product of material terms K and
geometry terms G. Note that the model (1) by itself does
not explicitly take into account the exact expressions for the
K or the G terms. The model is valid for any BRDF that is
separable into material and geometry terms (not just for the
examples shown in tables 1 and 2). In other words, the sepa-
rable form masks the complexity of the material or geometric
properties of the scene and the illumination. As a result, the
invariants presented in this paper do not depend on the ex-
plicit expressions for BRDF.

3 The Class of Photometric Invariants
The invariants we present can be broadly classified into two
categories: (a) G-Invariants that depend solely on the K
terms and are invariant to illumination, viewing and scene
geometry, and (b) K-Invariants that depend solely on the G
terms and are invariant to material properties of the scene.
Any invariant in each category depends on the number of KG
products used as well as the number and type (say, RGB, gray
scale) of image measurements.

For example, we consider a radiance model with only 2 KG
product terms. Since image irradiance E is proportional to
scene radiance L, we write

E = gL = g(KdGd + KsGs) , (8)

where g accounts for camera gain. In the remainder of the
paper, we will combine g with source intensity (as a scale
factor of the G terms) and drop g when we write the image
formation model. The subscripts d and s do not have any
particular significance. In one instance, the subscript d may
denote the diffuse term and the subscript s may denote the
specular term, or both the subscripts may denote only diffuse
terms of rough diffuse objects2.

2Note the model in the form of eq. 8, when the subscripts denote diffuse
and specular terms, has been considered by several researchers [20, 21, 10].
However, this is just a special case of the general model (1).

Consider the following set of image measurements made us-
ing different values of the material terms Kd and Ks and the
geometry terms Gd and Gs:
 E

(1)
1 E

(2)
1 E

(3)
1

E
(1)
2 E

(2)
2 E

(3)
2

E
(1)
3 E

(2)
3 E

(3)
3


 =


 K

(1)
d K

(1)
s

K
(2)
d K

(2)
s

K
(3)
d K

(3)
s


 ×

(
G

(1)
d G

(2)
d G

(3)
d

G
(1)
s G

(2)
s G

(3)
s

)
. (9)

The superscripts are written within brackets to avoid confu-
sion with powers. For brevity, we write :

E = K G . (10)

The variation in the K terms could be due to measurements
through different color filters C = {r, g, b} in a camera. In
this case, the superscripts (1), (2), (3) denote the red, green
and blue material properties of a single scene point. In an-
other case, the superscripts of the K terms could correspond
to multiple scene points P = {p1, p2, p3} with different ma-
terial properties. Similarly, the variation in the G terms could
be due to changes in lighting L = {l, m, n} and/or object po-
sitions O = {x, y, z}, between multiple image acquisitions,
or could correspond to the G terms of different scene points.

3.1 Geometry (G) Invariants

To compute a function of the measurements E
(i)
j that is in-

variant to all G terms, we consider the following sub-matrices
from the first two columns of the matrix E:(

E
(1)
1 E

(2)
1

E
(1)
2 E

(2)
2

)
=

(
K

(1)
d K

(1)
s

K
(2)
d K

(2)
s

) (
G

(1)
d G

(2)
d

G
(1)
s G

(2)
s

)
(

E
(1)
1 E

(2)
1

E
(1)
3 E

(2)
3

)
=

(
K

(1)
d K

(1)
s

K
(3)
d K

(3)
s

) (
G

(1)
d G

(2)
d

G
(1)
s G

(2)
s

)

Taking the ratio of determinants of the above sub-matrices,
we eliminate all the G terms to get a G-invariant:

E
(1)
1 E

(2)
2 − E

(1)
2 E

(2)
1

E
(1)
1 E

(2)
3 − E

(1)
3 E

(2)
1

=
K

(1)
d K

(2)
s − K

(2)
d K

(1)
s

K
(1)
d K

(3)
s − K

(3)
d K

(1)
s

. (11)

The above expression depends only on the material terms K
and not the geometry (lighting, shape, viewpoint) terms G.
Note that 3 different G-invariants can be obtained by cycli-
cally changing the superscripts of the K terms in eq. 11.

3.2 Material (K) Invariants

Using a method similar to the derivation of the G-invariant,
it is simple to show that one of 3 different selections of sub-
matrix pairs in eq. 9 also yields a K-invariant. Computing the
determinants of 2×2 sub-matrices selected from the first two
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rows of the matrix E and taking their ratios, we get:

E
(1)
1 E

(2)
2 − E

(1)
2 E

(2)
1

E
(1)
1 E

(3)
2 − E

(1)
2 E

(3)
1

=
G

(1)
d G

(2)
s − G

(2)
d G

(1)
s

G
(1)
d G

(3)
s − G

(3)
d G

(1)
s

. (12)

The above expression depends only on the geometry terms G
and not the material terms K .

3.3 Discussion on the Invariants

Depending on the application at hand and the sensor used,
only some of the matrix elements E may be measurable. So,
not all K-invariants or G-invariants can be computed from
the measurements. However, we shall show that in several
instances, these invariants can be measured and applied ef-
fectively to common vision tasks.

Handling Color : Observe a colored scene point under 2 dif-
ferent illumination conditions (as in figure 3). Both the cam-
era and the scene remain stationary. The elements of the K
matrix in eq. 10 correspond to intrinsic colors C = {r, g, b}
of the observed scene point. Also, the elements in the G
matrix correspond to the changes in lighting L = {l, m}.
Then the required G-invariant computed at every pixel inde-
pendently is written from eq. (11):

E
(l)
r E

(m)
g − E

(l)
g E

(m)
r

E
(l)
r E

(m)
b − E

(l)
b E

(m)
r

=
K

(r)
d K

(g)
s − K

(g)
d K

(r)
s

K
(r)
d K

(b)
s − K

(b)
d K

(r)
s

. (13)

Note here that we require only one change in scene illumina-
tion (i.e., the third column in eq. (9) is not necessary). How-
ever, we need three color images under three different lighting
conditions L = {l, m, n} to compute a material invariant or
K-invariant according to eq. 12:

E
(l)
r E

(m)
g − E

(l)
g E

(m)
r

E
(l)
r E

(n)
g − E

(l)
g E

(n)
r

=
G

(l)
d G

(m)
s − G

(m)
d G

(l)
s

G
(l)
d G

(n)
s − G

(n)
d G

(l)
s

. (14)

If lighting in fixed in the environment, but the objects are
moving, then the lighting superscripts L = {l, m, n} need
to be just replaced by the object superscripts O = {x, y, z}.

Handling Gray-Scale : Using color makes it possible to
compute invariants locally at every scene point. To com-
pute invariants in gray-scale images we need multiple scene
points. In other words, the superscripts 1, 2, 3 will correspond
to different scene points P = {p1, p2, p3}. In this case, in-
variants computed will be sparse. However, they will be valid
for, say, scene points with same geometry terms (similar sur-
face normals and source directions), and thus can be used in
interesting grouping algorithms.

Handling more than 2 KG terms : All the invariants we
show in this paper will be based on two KG terms (see 8).
However, they can be easily generalized to include more KG
terms. The key idea in computing the K-/G-invariants is that
the image measurements are arranged in the form of square

0 0.5 1 1.5 2
−1

−0.6

−0.2

0.2

0.6

1

2.5

G-Invariant

Trials (x 10  )
4

Material Parameter Combinations

Figure 1: G-Invariant simulations (using Oren-Nayar model) illus-
trating the discriminability to about 25000 sets of values for material
parameters (diffuse color albedos and roughness) of a scene point
with fixed surface normal and viewing direction. Two lighting di-
rections are used to compute the G-invariant. The absence of long
flat regions in the plot shows good discriminability.

matrices and ratios of their determinants eliminate either the
K terms or the G terms. As an example, consider 3 KG prod-
uct terms in the radiance model. The measurement matrix is
larger when compared to eq. 9 and is written as :

E(4 × 4) = K(4× 3) .G(3 × 4) . (15)

Then, the determinant ratio of two 3 × 3 sub-matrices of E
will yield the necessary K-/G-Invariants.

4 Invariant Discriminability and Sensitivity
In theory, the value of the invariant expression may not be
unique to a particular material. So, two or more materials
could have the same determinant ratio. However, this am-
biguity decreases by using invariants computed using cyclic
combinations of superscripts in eq. 11. To empirically show
that they indeed have good discriminative power, we simu-
lated a fixed scene point and illumination/viewing geometry
with about 25000 different combinations of material parame-
ters (color diffuse albedos and surface roughness) using the
Oren-Nayar model. The plot of the G-invariants vs. trial
number is shown in figure 1. The absence of long flat regions
in the curve shows that the invariant is discriminative. The
numerical stability of the invariants depend on the amount of
change in lighting/viewing geometry between image acqui-
sitions. To study how the stability of G-invariant to lighting
changes, we simulated several degrees of lighting changes (by
changing the directions of 2 sources) on a scene point whose
material and geometric properties are fixed. The plot of the
computed invariant in the presence of noise for a range of
lighting changes, shows that the invariants stability increases
with increased change in lighting (see figure 2). We will leave
the detailed statistical analysis for both the discriminability
and the sensitivity issues for future work.
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Figure 2: Lighting change sensitivity plot: Noise (STD = 1 in a
scale of 0-256 gray levels) was add to the simulated radiances with
gradual change in light source positions. The G-invariant then com-
puted is plotted against the angular separation in degrees of the
light sources between image acquisitions. For very small lighting
changes, the invariants are unstable in the presence of noise and the
stability increases with increased change in lighting.

5 Experimental Results : Finding Materials
We now describe various experiments that demonstrate the
invariance to object shape, illumination intensity and direc-
tion and viewing geometry using eq. 13. The G-invariants
are computed from multiple images of the scene under differ-
ent lighting conditions. We have chosen the scenes so as to
bring out the power of invariants in the presence of shadows,
specularities and other complex shadings.

All our experiments are done using a 12-bits per pixel Ko-
dak DCS 760 digital camera. Multiple images with different
exposures are acquired, radiometrically calibrated and com-
bined to obtain high dynamic range radiance maps of the
scenes. Since our goal is to showcase the physics behind the
invariants, we have chosen to use high quality data in our
experiments. For low quality data, probabilistic analyses pro-
posed by earlier works (eg., [15]) can be used to decide where
in the image the computed invariants are unreliable.

5.1 Scene 1: Complex Shape and Self-Shadowing

The object of interest in the first experiment is a ceramic bust
of David shown in figure 3. The bust has complex shape and
creates specular effects as well as self shadows. The object
was imaged under different lighting conditions using fluores-
cent (a) and halogen (b,c,d,e) light sources. The fluorescent
source was ambient room illumination whereas the halogen
sources were nearby area sources. The bust is made up of
the same material irrespective of the complex shading. The
G-invariant we compute should therefore produce a constant
(or flat) image that does not have any shading or specularity.

The result of applying eq. 13 to image pairs is shown by G-
invariant images (figs. 3(f)-(i)). Each invariant image is com-
puted using a different pair of images ([(a),(b)], [(a),(c)], etc).
The accuracy of the invariant shown using the histograms of
the invariant images, are narrow and at the same bin posi-
tions. The standard deviation of the G-invariant images were
between 2.3 and 2.6 gray levels (out of 256).

Figure 4 shows the same bust against a more complex red vel-
vet background. The cloth has creases and folds producing
shadows and the bust itself casts shadows on the cloth. The
G-invariant in this case should produce not only a flat image
for the bust but also a flat image (of a different brightness) for
the crumpled cloth. The G-invariant in fig. 4(c) is computed
from 2 images (figs. 4(a) and (b)). The intensity histograms
of the in (a, b) do not have distinctive peaks for different ma-
terials. However, the histogram in (c) has two separate peaks
corresponding to the bust and the cloth. It is clear that a sim-
ple thresholding of the invariant image yields a near perfect
segmentation in spite of the complex shadowing.

5.2 Scene 2: Textured Objects

The previous subsection described experiments with an ob-
ject made of homogeneous material. We now describe an
experiment performed with a textured doll made of cotton
shown in figure 6. The G-invariant computed should be a
flat 2D texture of the doll without any shadowing or other
complex shading due to the 3D shape of the doll.

As before, several images under different illumination con-
ditions are captured (figures 6(a,b,d,f)). Three different pairs
of images are used to compute the three G-invariant images
shown in figs. 6(c,e,g). The G-invariants were computed us-
ing the same expression (eq. 13) used before. Notice that the
shading on the object as well as shadows present in the origi-
nal images are completely eliminated yielding a flat textured
appearance of the doll. This facilitates simple 2D template
matching type of algorithms for recognition.

5.3 Scene 3: Complex Specularities

In this example, we will demonstrate the G-invariant in the
presence of strong specularities due to nearby sources. Note
that this is a hard case for most existing techniques. The ob-
ject is a green plastic pear shown in figure 7. Three images of
the pear are acquired under different lighting conditions and
are shown in figures 7(a,b,d). Notice the strong specularities
on the images present at different positions. The G-invariant
images computed using two pairs of images are shown in fig-
ures 7(c) and (e). Figure 7(f) shows a K-invariant computed
using all the three original images. The expression used to
compute the K-invariant is the same as eq. 12 with the su-
perscripts of the K and E terms denoting the different color
channels r, g, and b. Note that all the specularities are visi-
ble in the K-invariant image. This K-invariant is a function
of lighting and shape but not material properties (diffuse and
specular albedos) of the pear.

6 Implications for Vision
In this section, we discuss the various applications for the
invariant class we developed in this paper. The invariants,
especially the G-invariants, are very useful in transforming
images taken under complex lighting conditions into simpler
material maps. Existing vision algorithms for segmentation,
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Input Images (Two images are used to compute a G-Invariant)

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

G-Invariant Images (each image computed from a pair of input images)

(f) From 1 and 2 (g) From 1 and 3 (h) From 1 and 4 (i) From 1 and 5

Histograms of G-Invariant Images

Figure 3: Separating Material from Illumination, Shape and Viewing direction using the G-invariant. [(a) - (e)] Scene 1: A ceramic bust
of David is imaged under different lighting conditions. [(f) - (i)] Computed G-invariant Images. Each image is computed (eq. 13) using a
different pair of images. Histograms of the invariant images are narrow (the invariant images are indeed flat) showing that robustness of the
G-invariant to complex shape and shadows.

recognition and tracking can then be more accurately applied
to the invariant images.

We presented two examples of material segmentation in fig-
ures 4 and 5. Note that lighting insensitive recognition of
objects can be made more robust if applied to G-invariant
images rather than the raw input images. For instance, the
recognition of the textured doll in figure 6 could be done by
applying 2D template matching to the G-invariant image that
is devoid of shadows or shading. Recall that most existing in-
variants for lighting insensitive change detection and tracking
rely on the lambertian reflectance model. With the invariants
developed in this paper, we believe that more efficient change
detection and tracking can be performed since our invariants
can handle both complex material and lighting.

7 Summary
We presented a class of photometric invariants that can be
used for a variety of vision tasks such as recognition, mate-
rial classification and tracking. The invariants are valid for the
class of separable BRDFs which can be written as dot prod-
ucts of material and geometry terms. All the invariants in this
class are determinant ratios of measurement sub-matrices.
They are effective for complex shapes in complex lighting
environments. The geometry invariants are invariant to spec-
ularities and to even cast, attached and self shadows. The
code required for our algorithm is about 5 lines in Matlab (to
compute two matrix determinants and their ratios). Our goal
in this paper is to show the capability of the invariant func-
tions on complex materials and lighting conditions. For this,
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(a) Input image 1 and its intensity histogram

(b) Input image 2 and its intensity histogram

(c) G-Invariant image using (a) and (b) and its histogram.

(d) Material Segmentation
Figure 4: Finding materials in a scene with complex shapes and
shadows. The scene consists of the bust of David with a crumpled
red velvet cloth in the background. The crumpled cloth produces
self shadows and the bust casts shadow onto the cloth. [(a),(b)] Two
input images under different lighting conditions and their intensity
histograms. [(c)] The G-invariant image computed (eq. 13) from the
input images. The image is brightened for display. The histogram
of the invariant image in (c) clearly has two peaks - one correspond-
ing to the red velvet cloth and the other to the bust. [(d)] A simple
thresholding of the image in (c) produces correct material segmen-
tation (Black: Cloth, White: Statue of David).
all our algorithms need are changes in illumination and accu-
rate (high dynamic range) irradiance values. In future work,
we wish to do a detailed statistical analysis of the discrim-
inability and sensitivity of the invariant class for low quality
images (say, a 8-bit noisy surveillance camera).

References
[1] P. Belhumeur and D. Kriegman. What is the set of images of an object

under all possible lighting conditions? In Proc. CVPR, 96.

[2] J. Burns, R. Weiss, and E. Riseman. The non-existence of general-case
view-invariants, geometric invariance in computer vision, edited by j.
mundy, a. zisserman. MIT Press Cambridge, 1992.

[3] H. F. Chen, P. N. Belhumeur, and D. W. Jacobs. In search of illumina-
tion invariants. In Proc. IEEE CVPR, 2000.

(a) Input image 1 (contrast stretched) and its intensity histogram

(b) Input image 2 (contrast stretched) and its intensity histogram

(c) G-Invariant image using (a) and (b) and its histogram.

(d) Material Segmentation
Figure 5: Second example of finding materials in a scene with sim-
ilar colors. The scene consists of two whitish cubes made of sand-
blasted aluminum and marble. Notice the good segmentation despite
cubes being of similar colors.

[4] H. Farid and E. H. Adelson. Separating reflections and lighting using
independent components analysis. In Proc. of CVPR, 1999.

[5] S. D. Hordley G. D. Finlayson and M. S. Drew. Removing shadows
from images. In Proc. ECCV, 2002.

[6] J.M. Geusebroek and A.W.M. Smeulders. Measurement of color in-
variants. In CVPR00, pages I: 50–57, 2000.

[7] T. Gevers and A.W.M. Smeulders. Color constant ratio gradients for
image segmentation and similarity of textured objects. In CVPR01,
pages I:18–25, 2001.

[8] P. Hallinan. A low-dimensional representation of human faces for ar-
bitrary lighting conditions. In Proc. CVPR, 1994.

[9] R.M. Haralick. Propogating covariance in computer vision. PRAI,
10:561–572, 1996.

[10] G.J. Klinker, S.A. Shafer, and T. Kanade. A physical approach to color
image understanding. IJCV, 4(1):7–38, January 1990.

[11] J. J. Koenderink and A. J. van Doorn. Photometric invariants related to
solid shape. Optica Acta, 27(7):981–996, 1980.

[12] Stephen Lin and Sang W. Lee. Estimation of diffuse and specular ap-
pearance. In Proc. IEEE CVPR, 1999.

[13] Stephen Lin and Sang W. Lee. An appearance representation for mul-
tiple reflection components. In Proc. CVPR, 2000.

[14] Y. Matsushita, K. Ikeuchi, M. Sakauchi, and K. Nishino. Shadow elim-
ination for robust video surveillance. IEEE Workshop on Motion and
Video Computing, 2002.

[15] S.J. Maybank. Probabilistic analysis of the application of the cross
ratio to model-based vision. IJCV, 16(1):5–33, September 1995.

[16] S.K. Nayar and R.M. Bolle. Reflectance based object recognition.
IJCV, 17(3):219–240, March 1996.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



(a) Input image 1

(b) Input image 2 (c) G-Invariant : from 1 and 2

(d) Input image 3 (e) G-Invariant : from 1 and 3

(f) Input image 4 (g) G-Invariant : from 1 and 4 (h) Variance
Figure 6: Separating Material from Geometry using the G-invariant
in the presence of texture and soft shadows. [(a),(b),(d),(f)] Scene
2: A textured doll made of cotton is imaged under different lighting
conditions. Notice the subtle changes in positions of soft shadows on
the doll. [(c),(e),(g)] Computed G-invariant images. Notice the flat
texture appearance of the invariant images without any shading or
shadows due to 3D shape. [(h)] Variance in the invariant for the head
region computed using a standard covariance propagation method
[9]. The hair and eye region on the doll are dark and the variance is
high. So the G-invariants computed in this region are not reliable.

[17] S.K. Nayar, K. Ikeuchi, and T. Kanade. Surface reflection: Physical
and geometrical perspectives. PAMI, 13(7):611–634, July 1991.

[18] M. Oren and S.K. Nayar. Generalization of the lambertian model and
implications for machine vision. IJCV, 14(3):227–251, April 1995.

[19] Y. Sato and K. Ikeuchi. Temporal-color space analysis of reflection.
JOSA A, 11, 1994.

[20] Y. Sato and K. Ikeuchi. Reflectance analysis under solar illumination.
In PBMCV95, page SESSION 6, 1995.

(a) Input image 1

(b) Input image 2 (c) G-Invariant from images 1 and 2.

(d) Input image 3 (e) G-Invariant from images 1 and 3.

(f) Material or K-Invariant using images 1, 2, 3.
Figure 7: Separating Material from Geometry using the G-invariant
in the presence of strong specularities. [(a), (b), (d)] Scene 3: A
green plastic pear is imaged under different lighting conditions. No-
tice the strong changes in positions of specularities on the doll. [(c),
(e)] G-invariant images, each computed (eq. 13) using a different
pair of input images. Notice the flat or constant appearance of the
invariant images without any specularities. [(f)] K-invariant com-
puted using eq. 14 from the 3 images in (a), (b), and (d). Notice the
positions of specularities seen in the K-invariant image.

[21] Y. Sato, M.D. Wheeler, and K. Ikeuchi. Object shape and reflectance
modeling from observation. In MfR01, pages Chapter II–4, 2001.

[22] C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval.
IEEE Transactions on PAMI, 19(5):530–535, 1997.

[23] S. Shafer. Using color to separate reflection components. Color Re-
search and Applications, pages 210–218, 1985.

[24] D.A. Slater and G. Healey. The illumination-invariant recognition of
3d objects using local color invariants. PAMI, 18(2), Feb 1996.

[25] K.E. Torrance and E.M. Sparrow. Theory for off-specular reflection
from roughened surfaces. JOSA, 57:1105–1114, 1967.

[26] Y. Weiss. Deriving intrinsic images from image sequences. In Proc.
ICCV, 2001.

[27] L. Wolff and J. Fan. Segmentation of surface curvature with a photo-
metric invariant. JOSA A, 11(11):3090–3100, 1994.

[28] M. Zerroug and R. Nevatia. Three-dimensional descriptions based
on the analysis of the invariant and quasi-invariant properties of some
curved-axis generalized cylinders. IEEE Trans. PAMI, 18(3), 1996.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 


