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Abstract

A novel procedure is presented to construct image-
domain filters (receptive fields) that directly recover local
motion and shape parameters. These receptive fields are
derived from training on image deformations that best dis-
criminate between different shape and motion parameters.

Beginning with the construction of 1-D receptive fields
that detect local surface shape and motion parameters
within cross sections, we show how the recovered shape and
motion model parameters are sufficient to produce local es-
timates of time to collision.

In general, filter pairs (receptive fields) can be synthe-
sized to perform or detect specific image deformations. At
the heart of the method is the use of a matrix to represent
image deformation correspondence between individual pix-
els of two views of a surface. The image correspondence
matrix can be decomposed using Singular Value Decompo-
sition to yield a pair of corresponding receptive fields that
detect image changes due to the deformation of interest.

1. Introduction

Recovery of structure from motion has been examined
from a variety of approaches, mainly feature point extrac-
tion and correspondence[9, 13] or computing dense optical
flow[14, 1]. Typically, the Fundamental Matrix framework
or a global motion model is used to solve for global motion
after which the relative 3-D positions of points of interest in
the scene can be computed[16, 21].

Direct recovery of parameters by recognising char-
acteristic motions in a scene has been examined using
point correspondences[15] and local optical flow field
deformations[4, 8, 18]. However, both methods require the
extraction of motion information from the image sequence

before parameter recovery. Many of these techniques re-
quire local regularization; insufficient information is avail-
able in each sample to reconstruct the surface shape[20].

Appearance-based methods have been mostly discarded
for structure from motion because much of the shape and
motion information are so confounded that they cannot be
recovered separately or locally[3]. Soatto proved that per-
spective is non-linear, therefore no coordinate system will
linearize perspective effects[17].

Part of the difficulty involves how regional image
changes can be represented in an appearance-based frame-
work. Most approaches involve solving a local flow field as
a weighted sum of basis flow fields with some perceptual
significance[5, 6] or tracking specific image features[12]
with wavelets[7], typically training on image sequences of
motions of interest[22]. Converting these representations
into image domain operations[11, 19] could allow direct re-
covery of significant model parameters without solving a
local optimization problem by gradient descent.

Two causes prevent the effective direct recovery of lo-
cal structure from motion with appearance-based methods.
First is representation: how to encode image deformation
independently of image texture and without the need of fea-
ture points. Second is how to map the image deformations
into some optimal image operators.

This paper addresses both issues by describing a repre-
sentation and a methodology for designing and using these
optimal image domain operators for appearance-based local
recovery of some shape and motion parameters. This feed-
forward system is used to compute a dense map of time to
collision in image sequences. The optimal operator syn-
thesis will discover what spatial scales most appropriately
describe the different deformations for the camera model.

Instead of attempting to recover the shape and motion
parameters of a scene over all the possible parameter space,
only those shapes and motions that cause distinctly different
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image deformations are considered. Even with aliasing of
some parameters into similar appearances, enough informa-
tion can be extracted from the image deformations to recog-
nise specific shapes or motions which are useful for specific
tasks such as computing time to collision.

By understanding the image formation process, the map-
ping from the shape and motion model parameters to image
deformations (image correspondences) can be expressed in
a matrix form that precisely encodes the image plane corre-
spondences of a given model instance. In this paper, we will
apply the theory to 1-D cases without loss of generality.

A point-correspondence mapping� from a point � in a
first space to a second space at point � is expressed as:

� � �� � � � � � (1)

� � � � ��� � � � � (2)

The function � may be continuous, discontinuous,
piecewise linear or non-linear, multi-valued, and in short,
arbitrarily complex. But if the spaces � and � can be
discretized, the function � can be expressed as a corre-
spondence matrix mapping the index of a discrete ��� to the
index of a discrete ��� and back.

The correspondence matrix� is a representation of such
an image deformation or a coordinate remapping. Element
��� is a non-negative real number indicating the amount
(probability) of correspondence between coordinate � in the
first space, ���� and coordinate � in the second space, ���� .
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where � �� � is a measure of area or volume in the neigh-
borhood� , a measure of the size of the Voronoi cell of � .

The correspondence matrix thus described is not to be
confused with the fuzzy correspondence matrix of Ben-Ezra
et al.[10] which described the correspondences at each point
� with a matrix���� where each cell ��� �� corresponds to
a probability that point � has a displacement ��� ��.

Note that� is a discretized representation of a possibly
continuous mapping �. Both � and � can represent
single-axis (i.e. 1-D) positions, but could also represent
an arbitrary indexing into a multi-dimensional space. To
construct a correspondence matrix�,

1. Discretize the first image space� into � elements.

2. Discretize the second image space� into � elements.

3. Initialize �
���

���� ������ � �.

4. For each � 	 
�� � � � ���:

� using a uniform distribution of points in ����,

� compute the distribution of points ���� at or near
�������,

� assign ��� �� � �
�
������� � ����

�
.

5. For each � 	 
�� � � � � ��:

� using a uniform distribution of points in ���� ,

� compute the distribution of points ���� at or near
���������,

� assign ��� ���� � �
�
���� ����������

�
.

6. Assign��� �
���������� ������������� ����

�������������
��

.

By choosing a model that may alias the appearance
changes due to some parameters together but generates dis-
tinct appearance changes for the most important parameters,
the model parameter space can be discretized over the range
of interesting scene events. Only a finite number of these
correspondence matrices are required to encode the appear-
ance changes for changes of those most important parame-
ters over all variations for the aliased parameters.

The scenario presented in Section 2 is the recovery of
shape and motion using a simple surface model that cap-
tures image translation and scale change. By sampling the
model space and generating the correspondence matrices
for key shapes and motions, the recoverable parameters are
enough to deduce the time to collision from an image se-
quence. The operators are tested with synthetic and real
data in Section 4 and demonstrate the successful recovery
of time to collision for synthetic and real image sequences.

With image formation models in mind, Section 3 will de-
rive the unified solution of converting the image formation
models into image domain operators, and how they are used
to detect image events of interest.

2. Image Formation Model for Local Shape
and Motion

This section details a model that encodes planar image
translation, like optical flow, as well as depth (or scale)
change. By building detectors for this more evolved model,
a local operator can detect both translation and scale change
to recover depth cues. Using these detectors in the earliest
vision layer should yield superior optical flow.

While recovering depth information from an image se-
quence can only be found up to a scale factor, the absolute
time to collision can be recovered from the same cues. To
this end, we define the following image formation model.
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A single oriented slit aperture for a perspective image
formation model can be parametrized with an aperture an-
gle, � and the number of pixels � that are visible on the
image plane within that aperture.
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Figure 1. 1-D local aperture imaging model.

As shown in Figure 1, the fixation point � is the point on
the surface in the center of the aperture’s field of view, i.e.
view angle 	 � �. 	 ranges in value from 
�
	 to �
	,
with positive 	 to the right (positive � direction).

For any view angle 	 formed between the � 
 
 � and
� 
 

 lines within
�
	 and �
	, there is a correspond-
ing value for the image plane coordinate � that can be pro-
jected into one of the pixel coordinates between 0 and�
�,
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�
� 
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�
�
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And, conversely, the image coordinate � can be mapped
back to the view angle 	,

	 � 
����


	�
� � �

�

��

��
	

��
� (6)

This camera model will be used to map surface points
to image coordinates to build the correspondence matrix�
with a scene structure model, described next.

Two views of a 1-D cross section of a surface can be lo-
cally modeled using 5 parameters. The surface shape along
one direction can be characterized by a curvature �, a nor-
mal vector �� and distance from the viewpoint, �, shown in
Figure 2. Distance � scales all lengths of the diagram, so it
is factored out to a canonical representation with unit dis-
tance between first viewpoint � 
 and the fixation point on
the surface �. The surface normal vector �� at � is encoded
by the angle � with respect to the first view axis � 
 
 �.
The curvature of the canonical surface becomes � � ��.

The motion model is chosen to minimize image defor-
mation due to translation, defining the second viewpoint
� 
 � at a given distance Æ at an angle � from the first view
axis � 
 
 �. � 
 � is fixated on point � on the surface, a
view rotation 
 away from the first fixation point �.
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Figure 2. 1-D local aperture section model.

This 1-D cross section shape and motion model can be
aligned with multiple orientations � at each position in the
image plane to reconstruct 3-D surface shape and motion.

Some experimental observations[2], beyond the scope of
this paper, revealed that the motion parameters 
 and Æ are
not separable, but can be found jointly; together they pro-
duce distinct motion fields. These can be considered first
order structure from motion parameters. In contrast, the
view angle change � and the shape parameters � and � were
observed to be confounded. Even in apertures of � � �	
pixels, there is very little difference in the motion field to
distinguish different shapes from a single aperture. These 3
parameters require either neighborhoods of support of cur-
vature consistency between neighbors or a global solution.
This extra work would qualify the parameters �� �� � as sec-
ond order structure from motion parameters, and will not be
recovered for the purposes of this paper.

For image pairs of interest, the views will overlap in the
camera aperture of angle � (shown in Figure 1), restricting
the useful range of 
 to about �
�
	���
	�, and typically,
� � ��Æ. With these angles so small, 
 will be linearly
proportional to the translation along the image slit axis. The
parameter Æ is the reciprocal of image scale change,

Æ �
�� 
 � 
��
�� 
 
�� � (7)

Recovering 
 and Æ locally in forward time can be aug-
mented by recovering 
� and Æ� by reversing the sequence
of the images. A direct method of computing the time to
collision between two images separated by a delay of �� is:

� �
��

	

�
Æ

�
 Æ
�

�

Æ� 
 �

�
� (8)

Calculating the time to collision requires recovering the
Æ and 
 parameters. Figure 3 illustrates some of the unique
� for specific instances of model parameters �
� Æ� �� �� ��.
The rows are the index into the first image �, and the
columns are the index into the second image � �. 
 shifts the
white curve horizontally, and Æ affects its slope. This paper
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aims to recover � given image pair ��� � ��. Section 3 de-
tails the general theory for constructing image domain op-
erators to detect their characteristic image deformations.

� = ����Æ

Æ = ������

� = ����Æ

Æ = ������

� = ���
Æ

Æ = ���

� = ����
Æ

Æ = ������

Figure 3. Correspondence matrices ���Æ.

3. Theory

The image structure from two images separated by time
can be encoded by a correspondence matrix�. This section
will show that the Singular Value Decomposition of� leads
to a unique set of image domain operators that can code for
specific scene events as encoded by�.

The correspondence matrix � relates the elements of a
first image � and a second image � �. The images are first
normalized as ��� �� � for a zero mean intensity and a contrast
of 1 by finding the image’s brightness �� and contrast �� .
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 ��
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� (9)

3.1. Image Mapping�

Image correspondence between normalized images
���� �� �� is determined by �, but not necessarily all infor-
mation contained in �� is present in �� � nor vice versa. This
means, for example, that some elements or pixels of �� do
not come from �� � but come instead from some other source.

The image correspondence constraints are in the form of
a weighted sum of elements in the complementary image:�
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The image correspondence equations can be re-written:

��� ���� � � ���� � ��� �� � (11)
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Equation Set 11 deals automatically with non-shared in-
formation: note that elements in one space that have no cor-
respondent in the other space will have a zero row sum of
� (element of �) or zero column sum of� (element of ��).

3.2. Operator Synthesis

Given an image pair ��� � �� ��, the goal is to find the� that
best describes their deformation and identify that�’s model
parameters. In order to recognise the image events for a
given correspondence matrix, there needs to be a transport
function to map between the two views. The image pair
���� �� �� can be represented as two different transforms of
a common texture vector ��. In order for the elements of
texture vector �� to be independent and linear, the image
synthesis functions must be:

��
���

� �
���

��
���

� ��
���

� � 	
���

��
���

� (13)

where� is orthonormal and 	 is also orthonormal. � and
	 are not expected to be exact solutions, because the image
formation process does not lend itself to a direct linear map-
ping between the image pair. Image domain deformation
caused by perspective projections of 3-D objects, for exam-
ple, confounds the surface texture signal and the geometric
deformation into one image signal, and the two components
are generally not separable. � and	 are, however, the best
linear approximation to the geometric deformation image
correspondence in the sense of minimizing some error.

The texture information shared by the two images via
� must exist in the space spanned by �, and thus can be
expressed compactly in � independent coefficients, where
� � �������. The first � coefficients of �� encode the sta-
tionary signal shared between �� and �� � that are expressed
through �. The remaining � 
 � coefficients encode the
non-shared image signals mapped into the null space of�.

Because � and 	 are chosen to be orthonormal and
square, they are invertible (by transposition). This means
that the texture vector �� can be recovered from images
���� �� �� knowing the correspondence matrix�.

��� �� � �� �� � �� � �� �� (14)

	�	 ��� � 	� �� � � ��� � 	� �� � (15)
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3.3. Solution via Singular Value Decomposition

Substituting Equation set 13 into Equation set 11,

���� � �	�� � ���
��	�� � ����� � ��� � (16)

The optimization problem to solve for� and	 is thus:

������
���

����� 
�	��� � ������
���

���	�� 
������ �
(17)

Because the matrices � and 	 are expected to work in-
dependently of the surface texture encoded in ��, the opti-
mization problem can be expressed as

������
���

���
�	� � ������
���

���	
���� � (18)

The minimization terms can be recombined as

������
���

���	� 
�� � ������
���

���	�� 
�� � � (19)

This can be visualized more clearly by substituting� with
its Singular Value Decomposition,

�
���

� 

���

�
���

��

���
� (20)

where 
 is the matrix whose columns are the left-hand
eigenvectors of� and the columns of� are the right-hand
eigenvectors. That is, the columns of 
 are the eigenvec-
tors of��� , and the columns of� are the eigenvectors of
���, both sorted in decreasing order of eigenvalues. The
singular values of� are the elements of the diagonal matrix
�, which are the square root of the eigenvalues from���

or���. Substituting the SVD, one must solve for:

������
���

���	�

��� � � ������
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��	���

��� � �
(21)

The remainder of this proof builds� and 	 one column
at a time, using successively better approximations of �.
The ��� order approximation,�	 uses the first � columns
of
 and� and the first � diagonal elements of �.

To solve for unknown orthogonal matrices � and 	,
consider the �
� order approximation of�,�� � �������

�
� .

���	
�
� � �������

�
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�
� �

� � �������
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� (22)

The only choice for�� and	� that spans the same space
as ��� and ���, satisfying both constraining equations is

�� �
�
������� � � � ���

�
� 	� �

�
������� � � � ���

�
� (23)

An inductive proof introduces higher ��� order approxi-
mations�	 to solve for the corresponding�	 and 		.
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Similarly,
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�
	����

� � �	��	��
�
	 � (27)

This implies that �	 is �	�� plus an orthogonal compo-
nent in the direction of ��	 and that 		 is 		�� plus an
orthogonal component in the direction of ��	. Therefore, the
��� column of� is the ��� column of
 and the ��� column
of 	 is the ��� column of �. Therefore, the least squares
error solution for Equation Set 16, satisfying full rank and
orthonormality of� and	 is to substitute

� � 
 � 	 � �� (28)

Informally, the SVD expresses the correspondence ma-
trix � as a linear remapping
� from �� to the same space
as a linear remapping �� from �� �. The SVD of � opti-
mizes the spectral representation of the transform between
a pair of data sets (images), maximizing the independence
between channels (elements of ��), ranked according to sig-
nificance in the sense of minimizing least squares error.

3.4. Distance to Data Metric

The maximum likelihood hypothesis� for an image pair
���� �� �� minimizes the residual error ��between the input im-
ages and their reconstructions predicted by �. Determine
the feature vector �� that uses ��� order approximations
�
and�� to represent the image vectors �� and �� �.

�� �
�

�

� 

�
	

... ��
� 

�
	

��� ��
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�� �

�
� (29)

The feature vector �� is now the best parameterization for
the image pair assuming deformation�.

The residual error can be computed by projecting the fea-
ture vector back into the image space. If the assumed defor-
mation � is sufficiently close to the scene geometry, then
residual signal error ��, the difference between the original
image signal and the reconstructed image signal will be low.

���

�
�
�
� ��

� � �
�� �

�
�


�
� 
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��

�
� ��

�
��

������
�
� ��
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�
�
������ (30)
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The likelihood of correspondence � given evidence

���� �� �� can be expressed as a function �
�
���� � �� �

�
.

�
�
����� �� �

�
� ������ � ��� �� (31)

The uncertainty of the maximum likelihood choice can
be expressed as the entropy  of the likelihoods for all the
different hypotheses.

 �

�


��� �
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������ �� �
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�
�
������ �� �

��
����!�

� ��� ��

(32)
To summarize the procedure for parametric recovery,

Preparation (off-line)

1. Discretize parameter space� into ! representa-
tive parameter vectors �
�, � 	 
�� � � � � !�.

2. Synthesize a correspondence matrix�� to repre-
sent the coordinate mapping�� �
��.

3. Synthesize detectors for��, using SVD.

Usage (on-line)

1. Using the detectors for ��, given the observa-

tions �� and �� �, compute �
�
����� � �� �

�
.

2. Find the maximum likelihood ������ �� �, and set
the maximum likelihood �
� � �
�.

3. Use the distribution of �
�
����� � �� �

�
to find the

entropy  of the maximum likelihood choice.

4. Experiments on Time to Collision

4.1. Synthesis of Operators

The model space of �
� Æ� �� �� �� was discretized into
19 levels for each of 
 and Æ, and 5 levels each for �, �, �
and �, binning the correspondence matrices into mean cor-
respondence matrices indexed by �
� Æ� for a total of 361
distinct correspondence matrices. Applying the procedures
of Section 2, 361 new receptive field banks are synthesized
by retaining the first 16 filter pairs of each, illustrated in
Figure 4. Each row � of the upper grayscale images at time
�� is a deformed sinusoid which corresponds to another de-
formed sinusoid at time �� � �� ���, in the corresponding
row � in the lower grayscale images. The first 8 detectors
are shown.

Note that the most significant optimal detectors
for this motion model are windowed sinusoids con-
centrated in the lower spatial frequencies. The SVD

��

�
� = ����Æ

Æ = ������

� = ����Æ

Æ = ������

� = ���Æ

Æ = ���

� = ����Æ

Æ = ������

��

+
��

Figure 4. 
, � of correspondence matrices.

automatically discovered the appropriate spatial scales
for detecting each deformation. The parameters used are:

Number of pixels: � ��
View translation � : 
��� 	��Æ

�
���
�

	
, � 	 
�� ��� ���

Distance to surface: Æ��� ��	�����
���
� �, � 	 
�� ��� ���

Surface normal � : ���� 

��Æ�
		��Æ� � � � � ��Æ�
View change � : ���� 

��Æ�
�Æ� �Æ� �Æ� ��Æ�
Surface curvature: ���� 

��
	� �� 	� ��
View aperture � : ���� 
�Æ� ���Æ� �Æ� ���Æ� ��Æ�

These experiments were performed using slits of length
� � �� with widths of 32 pixels. The filter banks are
applied to a �	��	 gridding of the image pair at 6 different
orientations � ��Æ� ��Æ� ��Æ� ��Æ� �	�Æ� ���Æ�. The same
procedure is applied by swapping the two images to recover
the maximum likelihood for the time reversal, �
�� Æ�� ���.


 and 
� are useful for optical flow, but the local depth
(or time to collision) cues are only available through the Æ
and Æ� measures. 
 and Æ are found jointly, and the useful-
ness of Æ is sensitive to the correct compensation of 
.

Some neighborhood filtering is required, since Æ is noisy.
The maximum likelihood values for 
� Æ�
�� Æ� in the grid
of �	��	 elements are median filtered in a ��� neighbor-
hood for 
�
�, and a  � neighborhood for Æ� Æ�.

4.2. Synthetic Images, 4 Boxes

To test the Time to Collision detectors, a random dot tex-
ture was combined with synthetic range data shown in Fig-
ure 5 to generate the synthetic image pair shown in Figure 6.
The surface consisted of 4 quadrants of varying distance
(450, 500, 550 and 600mm from the camera focal point),
and the camera moves by 50mm towards the center of the
scene. The ground truth time to collision for the four quad-
rants are thus 8, 9, 10 and 11 units of time in the future.

The camera geometry is modeled as a pinhole perspec-
tive camera with �	��	�� square pixels where 320 pixels
are mapped onto a viewing angle of �����Æ. This means that
the image samples of 64 pixels will cover aperture angles �
varying from ��Æ at the center to �Æ at the periphery.
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The recovered 
�
� data is almost perfectly planar for
each orientation, as shown in Figure 7. This is expected, as
the scene motion generates a radial flow field. 
 is propor-
tional to the image plane velocity, with linearly increasing
magnitude as it moves further from the focus of expansion.
Note that the 
 parameter is signed and directional.

Figure 5. Synthetic texture and range. Black
is 450mm from focal point, white is 600 mm.

Figure 6. Synthetic image pair. The camera
moves 50mm toward the center of the scene.
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Figure 7. Recovered 
 and 
� for 6 orienta-
tions at �	��	 image locations (black: 
	��Æ,
gray: �Æ, white: �	��Æ).
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Figure 8. Recovered Æ and Æ� for 6 orienta-
tions at �	��	 image locations (black: ������,
gray: ���, white: ��	���.
Since 
�
� have been cleanly recovered, it is not surpris-

ing that the more sensitive Æ� Æ� have formed blobs roughly
in the four quadrants of the scene, shown in Figure 8.

The local structure from motion problem is at its worst
in image sequences with a forward-moving camera. Opti-
cal flow methods have no information at or near the focus of
expansion, and small errors in the flow field even toward the
periphery render depth recovery impractical without fitting
a global model to the optical flow field. With this exper-
iment, the time to collision detectors are designed specifi-
cally to work best at or near the focus of expansion.
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Figure 9. Time to Collision, ground truth ver-
sus recovered.

After observing the images of Figure 6 separated by
50mm and one unit of time, the receptive fields are able
to detect the separate, yet tightly clustered, collision events
that are 8, 9, 10 and 11 units of time in the future. With this
in mind, the resulting time to collision results are reasonably
close to the ground truth, shown side by side in Figure 9.

4.3. Natural images, Calibration Grid

The experiment was repeated using grayscale images
captured by a camera mounted on a gantry robot looking
at a flat planar calibration grid. The camera field of view
is the same as the earlier synthetic example, but it is not an
idealized pinhole camera. The camera lens starts at 500mm
from the plane, and moves 50mm closer, for a time to col-
lision of 9 units of time, show in Figure 10. The camera
optics slightly bend the grid lines; the small squares toward
the periphery are a bit smaller than the squares near the cen-
ter. This spherical aberration makes the grid appear as a tex-
tured sphere shown close up, directly in front of the camera.

The camera’s focal length is 7mm, placing the focal
point about 15mm behind the lens from which camera dis-
tance was measured.

The detector response in Figure 11 is so sensitive that the
recovered time to collision captures the spherical aberration
effect. The time to collision varies from 11 units of time at
the center to 8 units of time at the periphery. The aberration
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Figure 10. Planar calibration grid scene.
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Figure 11. Time to collision, planar grid.

makes the periphery appear further than it actually is, mov-
ing faster than the center, hence a lower time to collision.

In this case, optical flow in the periphery is uninforma-
tive; there appears to be no translation, but there is texture
expansion. This experimental result confirms that the local
feed-forward operators can extract precise estimates of the
real time to collision without a global scene motion model.

5. Conclusion

The direct recovery of some shape and motion param-
eters from image sequences is now possible with image-
domain appearance, without a need for a global motion so-
lution. By populating a synthetic retina with specialized
receptive fields, the vision system can estimate time to col-
lision with the obstacles in the scene.

A new framework for operator synthesis was introduced
that constructed scene shape and motion detectors from
scene motion models in a principled way, automatically
discovering appropriate spatial scales. This technique can
be applied to many domains, automatically finding opti-
mal image-domain transfer functions between two images
or two spaces.

Image events characterized by � lead directly to syn-
thetic local feed-forward operators, and naturally produce
uncertainty measures or confidence intervals on the recov-
ered model parameters.

Preliminary results indicate that these purely local feed-
forward operators perform reasonably accurate recovery of
scene structure without the need to regularize.
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