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Abstract

Existing autocalibration techniques use numerical opti-
mization algorithms that are prone to the problem of lo-
cal minima. To address this problem, we have developed
a method where an interval branch-and-bound method is
employed for numerical minimization. Thanks to the prop-
erties of Interval Analysis this method is guaranteed to con-
verge to the global solution with mathematical certainty and
arbitrary accuracy, and the only input information it re-
quires from the user is a set of point correspondences and
a search box. The cost function is based on the Huang-
Faugeras constraint of the fundamental matrix. A recently
proposed interval extension based on Bernstein polynomial
forms has been investigated to speed up the search for the
solution. Finally, some experimental results on synthetic
images are presented.

1 Introduction

The goal of Computer Vision is to compute properties
(mainly geometric) of the three-dimensional world from im-
ages. One of the challenging problems of Computer Vision
is to reconstruct a three-dimensional model of the scene
from a moving camera. Most of the earlier studies in the
field assume that the intrinsic parameters of the camera (fo-
cal length, image center and aspect ratio) are known. Com-
puting camera motion in this case is a well known problem
for which several methods are available (see [12] for a re-
view). Given all the parameters of the camera, reconstruc-
tion is straightforward.
However, there are situations wherein the intrinsic param-
eters are unknown and the camera is not accessible (e.g.
when using stock footage). In these cases the only infor-
mation one can exploit is contained in the video sequence
itself.
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The classical approach to autocalibration (or self-
calibration), in the case of a single moving camera with
constant but unknown intrinsic parameters, is based on the
Kruppa equations [19], which have been found to be very
sensitive to noise [16], possibly due to the instability in
the computation of the epipole [15]. Indeed, formulations
which avoid the epipole seems to be more stable [7, 15].

Other methods [25, 8, 30], based on the stratification ap-
proach, upgrade a projective reconstruction to an Euclidean
one without solving explicitly for the intrinsic parameters
(see [1] for a review). The constant intrinsic parameters
constraint has been released in [9, 24], by assuming that
some other parameters are known.

Recently, Mendonça and Cipolla [20] presented an algo-
rithm which directly recovers the intrinsic parameters from
fundamental matrices, like the Kruppa equations, but it is
simpler and copes with varying parameters.

Under the assumption that only the (varying) focal length
is unknown, closed form and linear solutions can be ob-
tained [5, 29]. In all the other cases the parameters comes
from the solution of a system of polynomial equations or
from the minimization of a non-linear function. In princi-
ple continuation (homotopy) techniques could be applied in
the former case, though—in practice—iterative minimiza-
tion techniques must be used [16], as homotopy algorithms
are applicable only in the case of few displacements, and
can give rise to bifurcation phenomena. When minimizing
a non-linear function by gradient descent methods, conver-
gence to the global minimum is not guaranteed: it depends
on the initialization—for deterministic algorithms,—or it is
guaranteed only in probability—for stochastic algorithms
[28]. Quasi-linear approaches reduce the sensitivity to the
initial guess [26, 30], but they do not solve the problem.
The solutions of a simpler problem (only focal is unknown)
have been used to initialize the minimization in [24, 10]. In
[4] a stratified approach have been proposed, based on the
direct evaluation of a dense sampling of the search space.
Albeit some of these techniques are effective, none of the
existing methods is provably convergent.
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In this paper we introduce a method for autocalibration that
is guaranteed to converge to the global minimum, regard-
less of the starting point. In the same spirit of [20, 15, 28],
we compute directly the intrinsic parameters from funda-
mental matrices. We assume constant intrinsic parameters,
but the technique is flexible and can be adapted to varying
parameters as well.
The minimization algorithm is based on Interval Analysis
(IA) [22], a branch of numerical analysis that has received
increasing attention during the last decade and has been
strangely overlooked by the computer vision community.
Classical numerical optimization methods for the multidi-
mensional case start from some approximate trial points
and sample the objective function at only a finite number of
points. There is no way to guarantee that the function does
not have some unexpectedly small values between these
trial points, without making specific assumptions. On the
contrary, IA optimization algorithms [3] evaluate the objec-
tive function over a continuum of points, including those
points that are not finitely representable on the computer.
They solve the optimization problem with the global au-
tomatic result verification, i.e. with the guarantee that the
global minimizers have been found.

2 Background and problem formulation

Throughout this paper we will use the general projective
camera model. Let � � ��� �� �� ��

� be the homogeneous
coordinates of a 3D point in the world reference frame. The
homogeneous coordinates of the projected image point are
given by1 � � � ������� where the ��� rotation matrix �
and the translation vector � represent the camera’s position
and orientation (extrinsic parameters). The matrix � con-
tains the intrinsic parameters, and has the following form:

� �

�
� 	� 
 ��

� 	� ��
� � �

�
� � (1)

where 	�, 	� are the focal lengths in horizontal and verti-
cal pixels, respectively, ���� ��� are the coordinates of the
principal point, given by the intersection of the optical axis
with the retinal plane, and 
 is the skew factor, that models
non-rectangular pixels.
Two conjugate points � and �� are related by the funda-
mental matrix  :

���� � � (2)

The rank of  is in general two and, being defined up to a
scale factor, it depends upon seven parameters. Its computa-
tion requires a minimum of eight conjugate points to obtain

1
� denotes equality up to a scale factor.

a unique solution.  depends on the intrinsic and extrinsic
parameters in the following way 2:

 � ��������������� (3)

When conjugate points are in normalized coordinates
(����), i.e., intrinsic parameters are known, one obtains
the essential matrix �:

� � ������ (4)

The essential matrix encodes the rigid transformation be-
tween the two cameras, and it depends upon five indepen-
dent parameters: three for the rotation and two for the trans-
lation up to a scale factor.

2.1 Autocalibration

In many practical cases, the intrinsic parameters are un-
known and point correspondences are the only information
that can be extracted from a sequence of images. Autocali-
bration consists in computing the intrinsic parameters, or—
in general—recovering the Euclidean stratum, starting from
point correspondences. In this section we will see which
constraints are available for the autocalibration.
As we saw in Sec. 2, the epipolar geometry of two views
is described by the fundamental matrix, which depends on
seven parameters. Since the five parameters of the essential
matrix are needed to describe the rigid displacement, two
independent constraints are available for the computation
of the intrinsic parameters from the fundamental matrix. In-
deed, the essential matrix is characterized by the following
Theorem [11, 5]:

Theorem 1 A real � � � matrix � can be factored as the
product of a nonzero skew-symmetric matrix and a rotation
matrix if and only if� has two identical singular values and
one zero singular value.

It can be shown (see Sec. 3) that the conditions on the sin-
gular values are equivalent to:

�	
��� � � � � 
������� � 
������� � �� (5)

which in turn is equivalent to the Kruppa equations [16].
The second clause of (5) can be decomposed in two inde-
pendent polynomial constraints.
These equivalent constraints are algebraic interpretations of
the so-called rigidity constraint, namely the fact that for any
fundamental matrix  there exist two intrinsic parameters
matrix � and �� and a rigid motion represented by � and �
such that Eq. (3) is satisfied.
The autocalibration method by Mendonça and Cipolla is
based on Theorem 1. Let �� the fundamental matrix relat-
ing views � and � (computed from point correspondences),

2���� is the skew-symmetric matrix associated with the cross-product.
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and let �� and �� be the respective (unknown) intrinsic pa-
rameter matrices. The cost function is

����� � � � � � � �� �

��
���

��
���

���

���� �
����

����  ����
� (6)

where ���� �
���� are the non zero singular values of

��� � ��� ���� � (7)

and ��� are normalized weight factors. In the general case
of � views, the �������� fundamental matrices are not in-
dependent, neither are the ��� � �� constraints that can be
derived from them. It can be shown [24] that, if �� parame-
ters are known and �� parameters are constant, the unknown
intrinsic parameters can be computed provided that

����  ��� � �  ��� (8)

For example, if the intrinsic parameters are constant, three
views are sufficient to recover them. If the skew is zero and
the other parameters are varying, at least eight views are
needed.

3 The cost function

The use of Eq. (6) as an optimization criterion has been
considered, however it has posed several problems. First,
its Hessian matrix is singular at the solution (���� � ���� ),
which can lead to higher run times of the optimization pro-
cedure [3]. Secondly, bounding the ranges of ���� of an in-
terval essential matrix with wide entries is not trivial, since
it requires the solution of a min-max optimization problem.
For these reasons we seek to minimize a cost function based
on the equivalent constraint given by Eq. (5).
In the same spirit of the Mendonça-Cipolla algorithm, we
minimize

������
��
���

��
�����

���

� 
��������
���� 
���������

��


���������
��

� (9)

By using the property that the trace of a square matrix � is
equal to the sum of its eigenvalues and the property that the
eigenvalues of ��� are equal to the squares of the singular
values of � , we can write:


������� �

��
���

������� (10)

Hence, the left hand side of Eq. (5) can be rewritten as

� 
������� � 
������� �

�����  ���  ����� ����  ���  ����
� �

���� � ����
�  �����

�
� � �����  ������ (11)

Therefore, provided that �� � �, the cost function ex-
pressed by Eq. (9) is the square of the Mendonça-Cipolla
function (Eq. (6)). The essential matrix � is derived from
the fundamental matrix via Eq. (7); if  is computed with
an algorithm that enforces its rank to be two, then �� � �.
As the left hand side of Eq. (5) is always positive, we do not
need to take its square, as it would be required in a generic
least squares problem. This is a very desirable property,
since it reduces the order of the numerator and the denomi-
nator of the cost function from sixteen to eight.
In the following we assume that the intrinsic parameters of
the camera are constant for the � views, i.e.

�����������

��
���

��
�����

���

�
� 
��������

���


���������
��

� �

�
� (12)

4 Global optimization using Interval Analysis

Interval Arithmetic [21] is an arithmetic defined on inter-
vals, rather than on real numbers. In the beginning, Inter-
val Arithmetic was mainly employed for bounding the mea-
surement errors of physical quantities for which no statisti-
cal distribution was known. Later on it was leveraged to a
broad new field of applied mathematics, aptly named Inter-
val Analysis, where rigorous proofs are the consequence of
numerical computations.

4.1 Notation and useful results

In the sequel of this section we shall follow the notation
used in [14], where intervals are denoted by boldface, scalar
quantities are denoted by lower case letters and vectors and
matrices are denoted by upper case. Brackets “���” will de-
limit intervals, while parentheses “���” will delimit vectors
and matrices. Underscores and overscores will represent re-
spectively lower and upper bounds of intervals. An interval
� is called degenerate when � � � � �. ��and ��� stand
respectively for the set of real intervals and the set of inter-
val vectors of dimension �. The midpoint of an interval �
is denoted by ����, and the vector whose entries are mid-
points of the entries of � � ��

� is denoted by ����. The
width of � is defined as ���� � � � �. If � � ��

� then
���� � ��� ������� � � �� � � � � ��. If ���� is a function
defined over an interval � then ����� denotes the range of
���� over �. Similarly, the range of  � �� 	 � over �
is denoted by �����.
Interval arithmetic is an arithmetic defined on sets of inter-
vals. If � � ����� and � �

�
���

�
, a binary operation in

the ideal interval arithmetic between � and � is defined as:

� ��� � �� �� � � � � � ��� � � �� �

��� �� � ������
� �
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Thus, the ranges of the four elementary interval operations
are exactly the ranges of the corresponding real operations.
The operational definitions for the four elementary interval
arithmetic operations are

� � �
�
� ��� �

�
�

�� � �
�
�� ���� �

�
�

�� � �
�
���

	
� ��� ��� ��� �



�

���
	
� ��� ��� ��� �


�
�

�

�
�

�
����� ���� �� � � �
����� ���� �� � � �

�� �� �������

�
 � � �� ����

The above definitions imply the ability to perform the four
elementary operations with arbitrary precision. When im-
plemented in a digital computer, however, truncation errors
occur, that may cause the result not to contain the result
that would be obtained with ideal interval arithmetic. In
order to avoid this effect, the result corresponding to the
lower endpoint of the interval must be rounded down to
the nearest machine number less than the mathematically
correct result, and the upper endpoint must be rounded up
to the nearest machine number greater than the mathemat-
ically correct result. This mode of operation, called direct
rounding, is available on any machine supporting the IEEE
floating point standard.
Our use of IA is motivated by the need to obtain bounds on
the range of mathematical functions.

Definition 1 (Interval extension) A function � � ��� 	
�� is said to be an interval extension of  � �� 	 � pro-
vided

�
���� � ����

for all intervals�  ��
� within the domain of � [14].

The natural interval extension of a function is obtained by
replacing variables with intervals and executing all opera-
tions according to the rule above. However these bounds are
usually too wide or pessimistic to be of value. The follow-
ing definition characterizes how sharply interval extensions
enclose the range of a function.

Definition 2 (Order 	 inclusion function) Let � ��) be
an interval extension of  � �� 	 � evaluated over a
box �. We say that � is an order 	 inclusion function for
 if there is a constant �, independent of the box �, such
that

w�� ����� w������� � �w���� (13)

for all boxes� with ���� sufficiently small.

It can be shown [14] that natural interval extensions are first
order. Higher-order inclusion functions are key to the de-
sign of efficient global optimization algorithms, as we shall
see in the next section.

Definition 3 (Interval Newton method) Let � � �  � 	
� be a function with continuous first derivative on � and let
� � �. If � ���� is any interval extension of the derivative
of � over �, then the operator

� �� ��� �� � �� ������ ���� (14)

is called the univariate interval Newton method.

It can be shown that if ��� ��� ��  �, then there exist
a unique solution of ���� � � in �. The interval Newton
method provides a quadratically convergent iteration

����� ��� �� � �� (15)

Any solution within�must also be within� �� ��� ��. This
fact underlies the use of the interval Newton method to
sharpen bounds of the solutions to nonlinear equations and
global optimizers. If � � � ���� the quotient in Eq. (14) is
computed using the rules for extended interval division de-
fined in [3]. Multivariate interval Newton methods can be
defined as well [14].

4.2 Global optimization

The ability of Interval Analysis to compute bounds of the
range of functions has been most successful in global opti-
mization. IA algorithms are usually based on branch-and-
bound schemes [3]. They start from an initial box � in
which the global minimum is sought, subdivide� and store
the sub-boxes in a list �. Sub-boxes which are guaran-
teed not to contain a global minimizer are discarded, and
the process is repeated recursively until the desired accu-
racy, defined by the width of the sub-boxes in the list, is
achieved. The criteria used to delete boxes are based on
rigorous bounds, therefore the global minimizer is never
deleted even in the presence of rounding errors.
We employed an algorithm inspired by a recently proposed
global optimization method [27], based on the Moore-
Skelboe branch-and-bound algorithm and Bernstein poly-
nomials for bounding the range of the objective function.
A combination of several test have been used in our imple-
mentation. The cut-off test determines or improves an upper
bound � of the global minimum of the objective function 
(any value taken by  is an upper bound for the global min-
imum), and discards an interval � from � if � ��� � � �
The monotonicity test determines whether the function 
is strictly monotone in an entire sub-box �. Denote the
interval extension of the ��th component of the gradient
evaluated in � by �����. If � �� ����� then � can be
deleted.
The concavity test examines the concavity of  , using its
Hessian matrix �� Let ��	���� denotes the interval exten-
sion of the ��th diagonal entry of Hessian evaluated in �.
A box can be deleted if ��	���� � � for some �.
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The Interval Newton step applies one step of the inter-
val Newton method (Eq. (15)) to the non-linear system
� ��� � �, � � �. As a consequence we may val-
idate that � contains no stationary points, in which case
we discard �, otherwise we may contract or subdivide � .
A problem of global optimization algorithms based on IA
is the so called cluster effect: as observed in [13], sub-
boxes containing no solutions cannot be easily eliminated if
there is a local minimum nearby. As a consequence of over-
estimation in range bounding, many small boxes are created
by repeated splitting, whose processing may dominate the
total work spent on global search. This phenomenon occurs
when the order of the inclusion function is less than three
[13], hence we shall look for sharper inclusion functions.

4.2.1 Taylor-Bernstein forms

An interesting extension of IA that reduces the over-
estimation is based on Taylor polynomials.

Definition 4 (Taylor Model) Let  � �  �
� 	 � be a

function that is �� �� times continuously partially differ-
entiable. Let �� be a point in � and �
	� the the �-th
order Taylor polynomial of  around ��. Let �
	� be an
interval such that

 ��� � �
	� �� ����  �
	� �� ��� (16)

We call the pair ��
	� � �
	� � an �-th order Taylor model
of  [18] .

Taylor models of any computable function can be obtained
recursively using the Taylor Model Arithmetic described in
[18]. In order to bound the range of a function  over a
domain �, it is sufficient to compute an interval extension
	
	� ��� for the polynomial �
	� , since from Definition
4 it follows that

�
���� � 	
	� ���  �
	� �

The sharpness of the bounds depends on the method used
to obtain the inclusion function for �
	� . More precisely,
if 	 �


	� ��� is the exact range of �
	� , then 	 �

	� ��� 

�
	� is an �  � order inclusion function for  over � ,
where � is the degree of the Taylor polynomial [27].
A Taylor-Bernstein form is a Taylor model where the poly-
nomial is expressed in the Bernstein basis rather than in the
canonical power basis. The advantage is that the Taylor-
Bernstein form allows to compute the exact range of the
polynomial part. Hence, with � � �, the cluster effect is
avoided. A Bernstein polynomial has the form (in one di-
mension):

���� �

��
���

��

�
�
�


����� ������ (17)

An important property of these polynomials is that ���� on
� is a convex combination of ��’s, so that the coefficients of
the Bernstein form provide lower and upper bounds to the
range:


���� � ������������������

If the polynomial is monotone over a domain � then the
Bernstein form gives the exact range since the minimum and
maximum occurs respectively at �� and ��, �� � ���� and
�� � ����. This suggests that the exact range of a polyno-
mial � on� can be obtained by transforming the polynomial
into Bernstein form and then repeatedly subdividing it the
until the bounds of all sub-boxes are exact. The subdivision
can be easily done with De Casteljau algorithm, well known
in Computer Graphics. Bernstein polynomials can be easily
extended to the multivariate case, where analogous proper-
ties hold.
The knowledge of the exact range of �
	� helps to make
the cut-off test more effective. Indeed, if 	 �


	� ��� is the
exact range, then 	 �


	� ��� = �����
	� � and the mini-
mum of  over� is contained in 	 �


	� ����
	� . Then
	 �

	� ���  �
	� is an upper bound of the minimum of 

over �. The cut-off value � is the smallest upper bound
for all the boxes in the list.
The advantages and limits of Taylor models are widely dis-
cussed in [23], where the author also points out that the
Taylor-Bernstein method is well suited to low dimension
problems.

5 Derivatives of the cost function

As seen above, the minimization algorithm makes use of the
Jacobian and Hessian matrix of the cost function. Instead
of reverting to subscript notation for computing the deriva-
tives of the cost function, we perform the entire operation
by using the elegant matrix differential calculus introduced
by Magnus and Neudecker [17]. Space constraints do not
allow us to report the results, which can be found in [2].

6 Experimental results

The algorithm was tested on synthetic data, which consisted
of 50 points randomly scattered in a sphere of unit radius,
centered at the origin. Views were generated by placing
cameras at random positions, at a mean distance from the
center of 2.5 units with a standard deviation of 0.25. The
orientations of the cameras were chosen randomly with the
constraint that the optical axis should point toward the cen-
ter. The intrinsic parameters were given a known value:
	� � 	� � ���� �� � �� � ���. As customary it was
assumed 
 � �. Image points were (roughly) contained in
a ���� ��� image. Fundamental matrices were computed
using the linear 8-point algorithm with data normalization
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as described by Hartley in [6]. The weight ��� has been de-
fined as the residual of the estimation of �� [20]. We used
Taylor models of degree four. The required accuracy was
�����; using this value we typically get a box width of 2.5
pixels.
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Figure 1. Relative RMS error on intrinsic pa-
rameters versus image noise standard devia-
tion (left) and number of views (right).

In order to assess the accuracy of the method, Gaussian
noise with variable standard deviation was added to image
points and the number of views was varied as well (the min-
imum number of views required to achieve autocalibration
is three, according to Eq. (8)). The algorithm was started
with the box ��� ���� centered on the true solution. Since the
fundamental matrices are affected by image noise, the min-
imizer of the cost function does not coincide with the actual
intrinsic parameters. The relative RMS error is reported in
Figure 1. Each point is the average of 50 independent trials.
Computation times were recorded for varying number of
views, initial box width and number of unknowns. Table
1 reports computation times versus number of views. Ta-
ble 2 reports computation times versus box width (5 views)

Number of views 3 5 7 10
Time [min] 1.2 6.6 8.0 17.1

Table 1. Computation times versus number of
views. The initial box was ��� ����.

starting from a reference box of ����� ������ ����� ������
����� ����� ����� ����. In the first column all the four pa-
rameters were considered unknown, in the second one only
focal lengths were unknown, whereas the principal point
was set at (256, 256). These figures refers to our imple-
mentation in MATLAB and C, on a Pentium III 900 MHz
processor.

Box Time [min] Time [min]
Width (4 unknowns) (2 unknowns)
Ref. 23.2 9.1
-10% 16.6 8.8
-20% 15.3 7.2
+10% 28.3 11.9
+20% 32.0 14.8

Table 2. Computation times versus initial box
width. In the rightmost column the principal
point was known.

In order to compare our minimization with a standard gra-
dient method, we used the quasi-Newton method imple-
mented by the fminunc function in the MATLAB Op-
timization Toolbox. The algorithm was initialized by
randomly choosing a point in the domain ����� ����� �
����� ������ ����� ��� �� ����� �����After performing 100
trials we recorded how many times the algorithm converged
to the correct solution, which was assumed to be the one to
which it converged when initialized with the true intrinsic
parameters (within a 10% tollerance). The quasi-Newton
method converged in the 86% of cases, with 5 views and
1.0 pixel noise. Average running time was 0.9 sec.

7 Conclusions and future work

Global optimization based on Interval Analysis has been ap-
plied to the autocalibration problem, obtaining a technique
that is guaranteed to converge to the global solution with
mathematical certainty and arbitrary accuracy. The results,
albeit preliminary, shows that our implementation is correct
and achieves the global minimum in a reasonable time. The
choice of the initial box is not critical for the successful
termination of the algorithm – provided that it contains the
global minimizer – because it only influences the computa-
tion time.
The accuracy of the method is in agreement with the fig-
ures reported in [20, 28], as we use basically the same cost
function. As customary, results can be refined by bundle ad-
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justment, in order to obtain a maximum likelihood solution
with respect to the underlying measures.
Future work will aim at reducing computation time by test-
ing several variations to the present model.
We also plan to explore the use IA tools to automatically
detect degenerate configurations, which are known to afflict
autocalibration (see [26] for a summary).
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