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Abstract

Hand gestures are examples of fast and complex motions.
Computers fail to track these in fast video, but sleight of
hand fools humans as well: what happens too quickly we
just cannot see. We show a 3D tracker for these types of
motions that relies on the recognition of familiar config-
urations in 2D images (classification), and fills the gaps
in-between (interpolation). We illustrate this idea with ex-
periments on hand motions similar to finger spelling. The
penalty for a recognition failure is often small: if two con-
figurations are confused, they are often similar to each
other, and the illusion works well enough, for instance, to
drive a graphics animation of the moving hand. We con-
tribute advances in both feature design and classifier train-
ing: our image features are invariant to image scale, trans-
lation, and rotation, and we propose a classification method
that combines VQPCA with discrimination trees.

1. Introduction

Tracking people and their hands is useful in user-computer
interfaces, communication over expensive channels, analy-
sis and capture of human motion for medical, artistic, or sci-
entific purposes, translation and interpretation of sign lan-
guages and gestures, and for many other tasks. All these ap-
plications would benefit from a vision system that without
excessive intrusion computes the three-dimensional (3D)
trajectories of limbs, heads, and fingers. While specialized
sensors may be used to advantage, it would be most conve-
nient if these trajectories could be computed from the data
recorded by a single video camera. The past few years have
seen important strides toward these goals (a mere sample is
[21, 12, 3, 17, 16]).

Most of this work, however, makes the fundamental as-
sumption that the motions of interest are slow relative to
the frame rate of the camera that records the video, so that
image features can be followed from frame to frame. Unfor-
tunately, this assumption is all too often violated. Figure 1
illustrates this point by showing three consecutive frames of
a hand closing at a natural speed, and recorded at 30 frames
per second: the entire motion occurs in less than 66 mil-
liseconds. Higher frame-rate cameras, a natural solution,

Figure 1: Three consecutive frames at 30 frames per second.

are more expensive and require more light because of the
shorter exposure times. Freeing tracking algorithms from
the slow-motion assumption seems a more desirable alter-
native, and this paper shows a way to do this.

The motions of a single hand are used as an example
running throughout this paper. We start with a database of
known hand poses and configurations, for which both sam-
ple images and 3D configuration parameters are known. In
doing this, we make the key conjecture that only a rela-
tively small subset of all possible configurations are of gen-
uine interest. For instance, only a few dozen configurations
play a fundamental role in finger spelling, and several re-
searchers have designed classification systems accordingly
(see [19, 18] for surveys). This paper posits that these same
configurations, or perhaps only a few more, are sufficient
for tracking a hand doing finger spelling in three dimen-
sions, that is, for inferring intermediate 3D configurations
as well.

At first, the proposal may seem trivial: recognize finger-
spelling configurations, and then somehow interpolate be-
tween them. However, several nontrivial problems remain,
and ample opportunities lie ahead:

• Associating 3D pose and configuration parameters to
2D images requires reasoning on data from different
sources, as shown in section 2.

• Interpolation in the 20-dimensional space of 3D finger
motions is a problem of configuration-space path plan-
ning with collision avoidance, which can fortunately
be simplified for hand tracking, as shown in section 3.

• The classification of hand configurations is hard, and
prior work on the interpretation of finger spelling
[7, 19] has been only partially successful. We propose
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invariant image features for this problem in section 4,
and explore classification methods in section 5.

• Even with large amounts of training data, classification
cannot expected to be perfect. In section 6, we dis-
cuss smoothing techniques that can reduce the effects
of misclassification.

Section 7 shows experiments that support the feasibility
of this approach to tracking. In the conclusion, we propose
a method that combines real images and computer render-
ings to populate a rich and realistic database for classifier
training.

2. The Tracking Paradigm
To illustrate our proposal, suppose that we wish to track
a hand so that we can create a rendering of the input se-
quence with a computer graphics program. This is useful,
for instance, when the rendered video is created at the out-
put of an expensive or narrow-band communication chan-
nel: sending the commands that describe hand motions is
less expensive than sending the video itself. Other appli-
cations include motion capture for animation, or the use of
gestures to interact with a computer or other electronic de-
vice. In many of these applications, we may want to render
the output from a different point of view, or with a different
lighting than the input. Then, a three-dimensional model of
the shapes and motions is necessary. Most graphics anima-
tion packages (we use [14]) have complete, detailed models
of the shape and articulations of a hand, and these models
can be animated by specifying pose parameters and joint
angles for each frame of video to be rendered.

In this context, by “tracking” we mean processing the
input video to determine the 3D parameters and angles that
are necessary to drive such an animation. More specifically,
the pose of a hand is described by the six Degrees of Free-
dom (DoF) of the wrist. A configuration is the set of finger
joint angles, for which twenty DoF turn out to be adequate.

When tracking, four of these DoF can be measured rather
directly in the image: two DoF for translations in the image
plane, one for the rotation in the image, and one for trans-
lation in depth. The latter can be approximately inferred
from image size through a weak-perspective [1] model. The
remaining twenty-two DoF describe out-of-plane rotations
(two DoF) and finger configuration, and are the main source
of complexity for the problem.

We propose to handle these twenty-two degrees of free-
dom by recognition. In a nutshell, we first build a database
that has several samples of each hand configuration for ev-
ery out-of-plane rotation of interest. With each configura-
tion (and therefore for a whole set of views and samples for
the same configuration), we store the set of joint angles and
pose parameters that describe that configuration, or at least
a similar one, obtained manually through the same graphics

package used for rendering. During tracking, we compare
video frames to these samples, and whenever we see a “fa-
miliar” view we retrieve its configuration. For this approach
to work, we need to (i) verify that it is indeed feasible to
build such a database, (ii) specify a method for handling the
“unfamiliar” frames in-between, and (iii) develop a classi-
fier that retrieves the appropriate configuration for familiar
frames.

Of course, it is hardly possible to enumerate all combi-
nations of twenty-two parameters, even when quantized to
a few values each. However, we make the key conjecture
that most of these combinations are either unlikely to oc-
cur, or they are uninteresting, in the sense that they can be
harmlessly replaced with other plausible configurations. Al-
though only exact motion capture, or the talent of an artist,
may provide the illusion of life [24], perhaps this illusion
can be approximated by ensuring plausible motions.

A database of sample views is adequate when all unfa-
miliar configurations are uninteresting. To keep databases
small, different application domains will usually have dif-
ferent databases. For instance, in this paper we illustrate
our idea of recognition-based tracking through the exam-
ple of finger spelling. Then, the configurations for each
of the letters of the alphabet are the most interesting ones,
and the database should contain sample views at least for
these. In the conclusion, we return to the question of ade-
quate databases for other applications.

It is important to notice that the interpretation of finger
spelling is not our goal, but merely a means to our end,
which is tracking a 3D model from 2D video. In fact, we
will show that a tracker can sometimes work even with oc-
casional interpretation failures.

In our experiments, we find hand-region candidates in
each frame of the input video as large connected compo-
nents [23] on the output of a skin-color detector [11]. This
will also find faces and other regions. Some non-hand re-
gions are filtered away by their size. The remaining regions
are compared to the sample views in the database, so that
regions that are not hands are unlikely to be consistently
recognized as hands. However, we keep our illustrative ex-
periments simple by placing a neutral background behind
our hands.

In the remainder of this section, we summarize the
sources of information for the computation of the various
aspects of hand pose and configuration. In section 3, we
discuss the treatment of unfamiliar configurations. The two
sections thereafter address feature design and classification
methods, respectively.

2.1. Four Easy Parameters

Four of the twenty-six hand pose and configuration param-
eters are computed as follows:
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In-plane position: Gärtner’s Miniball code [8] finds the
circum-circle for the hand region, and the displacements of
the bottom point of this circle from frame to frame provide
the two in-plane translation parameters of the hand pose.
This works for both familiar and unfamiliar views, because
no database image is involved. The computation of the
circum-circle would be overkill for this computation, but
we also use this circle for other purposes, described later
on.
Position in depth: For familiar views, the radius of the
circum-circle is divided by the radius of the circum-circle in
the corresponding database view to provide a scale param-
eter. The latter is used in a weak-perspective camera model
[1] to compute the approximate distance between camera
and hand.
In-plane rotation: For each familiar view, as well as every
database view, we compute the major and minor axes of an
ellipse that approximate the hand region. Rotation in the
plane of frame k is then computed as ωk = ωk−1 + ρ(α −
ωk−1) . In this expression, ρ is an increasing function of the
ratio between the lengths of the major and minor axis of the
database view, and α is the angular difference between the
major axis in the image and the major axis in the matching
database view. When the database view is close to circu-
lar, ρ goes to zero, and the rotation ωk−1 from the previous
frame is preserved. For more elongated ellipses, ρ saturates
to 1, and ωk = α.

2.2. The View/Configuration Database
The remaining twenty-two parameters describe out-of-
plane rotation (two parameters) and finger joint angles. For
finger spelling, the forearm is never moved to point towards
the viewer, so in our experiments we only account for out-
of-plane rotations around a vertical axis. A database of sam-
ple views handles the single DoF for out-of-plane rotation
and the twenty parameters for finger configuration.

Specifically, two of the twenty-six letters of the English
alphabet (j and z) are motions of hands in configurations
that, if the hand is kept stationary, would represent other
letters (i and x). Thus, there are twenty-four distinct config-
urations of interest. We will add a few to these in section
3. We then use a graphics animation package [14] to deter-
mine typical joint angles for each interesting configuration
(These parameters come in a convenient library that ships
with the product. It would be a matter of about an hour to
compute them from scratch.)

If we now discretize the out-of-plane rotations into fif-
teen values, approximately covering an 80-degree range, we
obtain 24 × 15 = 360 different combinations of configura-
tions and views. For each of these, we need sample images
for a real hand. In our experiments, we considered differ-
ent scenarios. In the simplest case, we asked someone to
sign the twenty-four main signs (all letters except j and z)

Figure 2: One view for each of the twenty-four configurations of finger

spelling. Our smaller database contains fifteen views per configuration.

in front of a video camera, and to rotate their wrist several
full swings. We observed that after two swings the rotation
velocity (as measured by the number of frames) becomes
consistently about the same across configurations (about 15
frames for the same subject), so we merely used fifteen
frames out of the third swing for each sign as our sample
views, and assigned each frame an angle obtained by split-
ting ±40 degrees into 14 equal intervals. This yields a small
database, with only one sample per view and configuration.
Of course, one cannot expect any classifier to achieve good
generalization with a training sample this small. Neverthe-
less, we achieved acceptable results in a limited number of
experiments by keeping lighting and the imaging setup con-
stant across video takes.

We also built a database of a more realistic size by cap-
turing about 7,000 images of a single person signing the
twenty-four signs several times with small variations in the
details of the hand configuration for each sign. More on this
database, and on the upgrade to user-independence, in the
conclusion. Other than these remarks, the experiments in
this paper are carried out with the small database. Figure 2
shows one view for each interesting configuration.

A video frame with a familiar configuration is then clas-
sified into one of these 360 categories as explained in sec-
tion 5. This yields an out-of-plane rotation angle and a set
of finger joint angles. Together, these parameters complete
the set of parameters for familiar frames. Frames that fail
classification are labelled as “unfamiliar,” and are handled
as discussed next.
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(a) (b) (c) (d)

Figure 3: Straight interpolation between ’t’ (a) and ’o’ (b) would cause

fingers to compenetrate (c) in the rendering. The disengagement position

(d) extricates the thumb first.

3. Interpolation of 3D Configurations
In contrast with “pure tracking” approaches [10, 12, 22] that
track hand configuration in each frame, we determine the
configurations in frames between familiar views by inter-
polation. This is because motions often occur too quickly
in video, and hand configurations are often too complex for
pure tracking to work. However, pure tracking still has a
useful role to play, discussed in the conclusion.

In this section, we discuss our methods for interpolating
configurations between familiar frames. We assume that a
moderate amount of latency is unimportant, so that the out-
put can be buffered in the intervals between familiar frames.
The method outlined in the previous section provides 3D
pose and configuration parameters for familiar frames. Two
such frames can be seen as the start and end frame of the
unfamiliar video segment between them, and the 3D param-
eters for the latter frames can be obtained by interpolation.

A few difficulties arise in this process. First, straightfor-
ward interpolation would lead to undesired finger collisions.
Figure 3 illustrates this for the transition from the letter ’t’
to the letter ’o’.

The general solution to this problem is to plan a
collision-free path [15] in the configuration space of the
hand. Fortunately, for hands the solution is simpler: Let
us call the order of the fingers in the open hand the natural
order. Some configurations violate this order. The ’t’ con-
figuration is one example, ’r’ is another (index and middle
finger are crossed). Fortunately, the list is short. For each
“unnatural” configuration, we define a disengagement con-
figuration, which essentially extricates the violating finger
from its unnatural position. For instance, figure 3 (d) shows
the disengagement position for ’t’.

The interpolator then merely inserts disengagement po-
sitions before and after unnatural configurations. If δ(t) is
the disengagement configuration of ’t’ and the letters ’t’
and ’o’ occur at frames f(t) and f(o), we set f(δ(t)) =
round((f(t) + f(o))/2), and interpolation occurs from ’t’
to ’δ(t)’ to ’o’. In our experiments, we found linear inter-
polation to be generally acceptable.

Another small problem occurs when the hand in the input
video transitions smoothly between letters, but the classifier

(a) (b) (c)

(d) (e) (f)

Figure 4: Steps for computing features.

transitions abruptly. For instance, a transition between a ’d’
and an ’a’ may occur over five frames, but the first two of
these are still classified as ’a’, and the last three as ’d’. This
would cause an awkward jump in the rendering. To prevent
this, the interpolator forces every transition to take at least
fmin frames (we set this to 4) by relabelling frames that
are within fmin/2 on either side of a sudden transition as
“unfamiliar,” so that a smooth interpolation takes place.

Of course, the tracking paradigm we have sketched in the
previous section hinges on our ability to develop a classifier
with satisfactory performance. In the next two sections, we
explain what features and classifier we use.

4. Features for Classification

Features for classification should be invariant to in-plane
translation, rotation, and scaling. While several authors
[19, 5] have used the hand’s silhouette, distinctions between
hand configurations in which fingers are essentially closed
into a fist require looking inside the hand as well. There
are at least four such configurations: ’e’, ’s’, ’t’, and ’a’,
and even an ’o’ viewed at an angle is essentially a closed
hand. Even when one or more fingers are extended, the dis-
tinctions between letters are often related to the position of
the fingers that are curved into the palm. These distinctions
cannot be inferred reliably from the hand’s silhouette.

To achieve invariance, and at the same time acquire in-
formation about the inside of the hand region as well, we
subject database and video images to the processing steps
illustrated in figure 4.

The image is smoothed with a 2D Gaussian kernel of
standard deviation 2 pixels in order to eliminate color
dithering artifacts. As mentioned above, the skin detector of
[11] produces the likelihood image in figure 4 (b). Thresh-
olding the likelihood image yields the silhouette of the hand
(c). Because of reflections from the sleeve and poor lighting
from below, the wrist has a blue tinge and is not classified
as skin. Morphological closing [9] solves this problem as it

4

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



connects outlying pixels to the rest of the hand, completing
the silhouette.

A gray level version of the input image is masked with
the silhouette, and the contour (d) of this is computed in or-
der to find the circum-circle [8]. Normalizing the radius of
this circle to one, and referring the image to the circle’s cen-
ter provides translation and scale invariance. The influence
of lighting is reduced by thresholding the image with its
median value, and smoothing with a six pixel-wide Gaus-
sian kernel in order to decrease the importance of the exact
location of the edges.

Rotation invariance is now achieved by a method in-
spired by the literature on the Mellin transform [4], although
we handle scale and translation separately as explained
above. Equidistant points on concentric circles are sampled
(so the circles closer to the center have very few samples).
This has the same effect (but is faster) than transforming
the image to polar coordinates (f), and then sampling the
resulting image along horizontal lines, with a linearly de-
creasing number of samples per row. The Fourier trans-
form of the values on each circle is calculated, and only the
magnitude is retained. Since the magnitude is translation-
invariant, this achieves rotation invariance on each of the
circles. The magnitudes from all the circles are collected
into a 1050 dimensional vector that we use as our feature
for classification.

These vectors are a rather detailed representation of each
hand. In fact, except for sampling, and for discarding the
phase of the Fourier transforms, all steps are reversible. Of
course, the large size of these features subjects them to the
curse of dimensionality [2]. Our classifier, described in the
next section, addresses this issue.

5. Classification

Classifying hands is hard because of the vast differences in
hand shapes and colors, articulation habits, details of ges-
ture configurations, lighting conditions, backgrounds, view-
point, and imaging parameters. Because of all these factors,
a classifier can work reliably only if a very large database
of samples is available for learning, or if features somehow
capture what is relevant to class membership, and discard
what is not. Both these options are hard, the first logis-
tically, the second conceptually. In the previous section,
we have designed features that achieve a substantial degree
of invariance. In this section, we discuss a classification
method that allowed us to achieve reasonable classification
rates with a small number of training samples. This clas-
sifier works under restrictive assumptions: single-user, re-
stricted lighting, and a fairly disciplined way to sign. How-
ever, performance is surprisingly good given the small num-
ber of training samples. We consider directions for more
general scenarios in our conclusions.

Principal Component Analysis (PCA) has been proposed
by many (e.g. [26]; see also [25] for a good introduction)
as a way to reduce the dimensionality of feature space, so
as to retain as far as possible only the aspects of a feature
that are relevant to classification. In our experiments, we
have devised a variation on the theme of Vector Quantiza-
tion PCA (VQPCA) first proposed in [13]. VQPCA gener-
alizes PCA by computing a set of linear subspaces, each of
which accounts well for a portion of the feature space. In
[25], VQPCA is further improved into a mixture of PCAs
model. We retained the simpler features of VQPCA, but
adapted it to reflect the small number of training samples
we are working with in our experiments.

VQPCA applies the EM algorithm [6] to cluster data into
k groups. However, instead of minimizing distance from
a cluster center, VQPCA clusters so as to minimize dis-
tance from a subspace, as defined by the normalized pro-
jection residual. If f the initial feature and p is its pro-
jection, the normalized projection residual is defined as√

(fT f − pT p)/fT f . In using VQPCA, we found it hard to
assign reasonable values to the number and initial values of
the subspaces so as to obtain consistent results. Instead, we
constructed a binary tree of subspaces by recursively call-
ing VQPCA with k = 2, first on the entire database, and
then on the two groups generated by each call. We stopped
the split of a group whenever the projection residual for all
its members fell below a threshold. A softened version of
this scheme assigns a feature to both children when both
projection residuals for that feature are small.

Classification starts at the root of the tree, and at every
node the new feature is assigned to the child with the bet-
ter projection residual. At the leaf, the feature is classified
by nearest neighbor. In this way, the number of clusters
depends on the distribution of residuals, and need not be
predefined. Also, subspace initialization with k = 2 is less
critical than with higher values of k.

6. Handling Classification Errors

When two different features are confused with each other,
classification can fail to retrieve the correct sign, the correct
view, or both. Confusion can occur because two 3D config-
urations are similar to each other. In this case, misclassifi-
cation is not necessarily fatal: the rendered video will have
the wrong configuration, but because this looks similar to
the correct one the effect may not be important. We will
see an example of this in section 7, where the letter ’o’ was
confused with the letter ’c’. The only difference between
the two is that thumb and index touch each other in the ’o’,
but not in the ’c’.

A second type of misclassification occurs when the cor-
rect sign is recognized, but the wrong view of it is re-
trieved. This is likely to cause glitches in the rendered mo-
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Figure 5: The signs for ’v’, ’w’, ’m’, and ’n’ (left to right).

tion. To address this problem, we used a simple exponen-
tial smoother for the vector qk of geometric parameters to
produce the smooth version sk = (1− ρ)qk + ρsk−1 . This
smooths the viewing angles as well as translation, scale, and
in-plane rotation.

A third type of misclassification occurs when two dif-
ferent configurations look similar from different views. For
instance, the letter ’v’ has two outstretched fingers, and ’w’
has three (see figure 5). When viewed from the side, the dis-
tinction is unclear. We marked these ambiguous side views
in the database, and extrapolated interpretation from previ-
ous non-ambiguous frames into ambiguous ones. For in-
stance, if a hand in the ’w’ configuration rotates, frontal
views of it are likely to be unambiguous. As a side view is
reached, a possibly erroneous classification to a ’v’ is over-
ridden, because the side view is known to be ambiguous,
and the previous, unambiguous ’w’ interpretation prevails.

An even more serious misclassification confuses fea-
tures corresponding to entirely different hand configura-
tions: they are different, they look different, but they are
confused. This is obviously a failure of feature design.
These problems arise from the complexity of hand shapes
and configurations: the same person will arrange her hand
differently when signing the same letter twice. Letters like
’e’, ’s’, ’t’, and ’a’, in which the hand is closed into a fist are
particularly prone to this problem. Also, ’m’ and ’n’ (fig-
ure 5), in which fingers point directly at the camera, create
unpredictable 2D shapes, and are often confused with many
other letters.

To minimize the effects of these errors, we slide a win-
dow on the string of classification results, and output an in-
terpretation whenever a letter has the absolute majority in
the window. When this is not the case, the frame is left as
uninterpreted (i.e., “ unfamiliar”).

7. Experiments
To illustrate the tracking framework proposed in this paper,
we ran experiments on short videos with motions similar
to finger spelling. This section summarizes findings and
intermediate results for two of these sequences. The actual
videos, both input and rendered output, are made available
as supplements to this paper (and on a web site if this paper
is published).

Figure 6: The signs for ’today’. Images are cropped for clarity.

Frames 1-50
D: TTTTTTTTTTTTTTTTTTTTTTTT??????????OOOOOOOOOOOOOOOO
R: TTTTTTTTTTTTTTTTTTTTTTTTDDDDFFMMYYNNCCCCCCCCNNCCAA
F: TTTTTTTTTTTTTTTTTTTTTTTT????????????CCCCCCCCCC????

Frames 51-100
D: OOOO????DDDDDDDDDDDDDDDDDDDDDDDDDDDD??????AAAAAAAA
R: AAAANNNNNNUUDDDDDDDDDDDDDDDDDDDDDDBBDDAAAAAAAAAAAA
F: ????????????DDDDDDDDDDDDDDDDDDDDDDDD??AAAAAAAAAAAA

Frames 101-148
D: AAAAAAAAAAAA????YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
R: AAAAAAAAAAAANNNNYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
F: AAAAAAAAAAAA????YYYYYYYYYYYYYYYYYYYYYYYYY???????

Figure 7: Interpretation results for the 148 frames of the ’today’ se-

quence. Each group of three adjacent lines shows the Desired (D), Raw

(R), and majority-filtered (F) interpretation.

In our experiments we used a database with 15 views
for each of 24 signs. Sample views are shown in figure
2. The tree for the classifier uses 16-dimensional PCAs
and VQPCA is initialized with random subset assignments.
Node splitting is stopped when the maximum normalized
residual falls below 0.1. The final tree, which is fairly well
balanced, is seven levels deep, and there are approximately
20-30 elements at each leaf.

In one sequence, 148 frames long (5 seconds), the word
’today’ is spelled. Figure 6 shows details of one representa-
tive frame for each letter.

Figure 7 shows the frames as interpreted by hand, after
raw automatic classification, and after majority filtering of
the raw results with a window size of 15. Several misclas-
sifications occur during sign transitions. In addition ’o’ is
consistently misclassified as ’c’, and ’n’ replaces many let-
ters, as explained in section 6. Majority voting cleans all
the glitches but, of course, ’o’ remains misclassified as ’c’.

View angles are close to the correct viewing angle, and
exponential smoothing cleans the rendering, which can be
seen in the supplementary video Today.avi next to the input
sequence. In this rendering, only interpretation is at work,
and we have turned off the tracking of in-plane rotation,
translation, and scale.

The full tracking is shown at work in supplementary
video Countdown.avi, which shows a hand counting down
from three to one while rotating left to right, then waving
at the camera, and finally moving towards the camera un-
til it obstructs the entire view. This video, which is 333
frames long (11 seconds) also illustrates the point that fin-
ger spelling signs can be considered as a mere list of inter-
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esting hand configurations: the goal is tracking, not classi-
fication. These configurations can be replaced with others,
or perhaps augmented with others that are of interest in a
different domain. Figure 8 shows a few sample frames of
this sequence. Motions for frames at the very end of the
sequence are extrapolated rather than interpolated.

When viewing the rendered sequence for the first few
times, the illusion works well: tracking follows the hand in
all its motions, including depth; rotations are close to the
ones in the input sequence; and the rendered gestures are
also similar to the input ones. Upon closer inspection, how-
ever, an interesting difference can be noticed between input
and output in the waving part of the motion, illustrated in
particular in frame 221 (third from the bottom in figure 8).
The input hand has the thumb to the side of the other fin-
gers, while the thumb is bent into the palm in the rendered
sequence. This occurs because the configuration in the fin-
ger spelling database that is closest to an open hand is that
for the letter ’b’, which happens to have the thumb on the
palm. Reconstruction is not exact, and yet the difference
is noticeable only after careful analysis or repeated presen-
tation. This demonstrates two points: First, exact tracking
may often be unnecessary. Second, our paradigm of track-
ing by classification and interpolation may yield a plausible
analogy for why we ourselves are sometimes fooled by a
nimble-fingered magician.

8. Conclusions and Future Work

The main point of this paper was to show that complex mo-
tions can be tracked in three dimension by a combination of
2D image classification and 3D motion interpolation. By far
the hardest hurdle to overcome towards a fully reliable im-
plementation of our proposal is the construction of a good
classifier. This involves designing good features, possibly
improving the learning and classification techniques used,
and most importantly acquiring more data. In our work, we
have collected a database of about 7,000 hand images, but
we have not yet used this because of logistical difficulties in
sorting out viewing angles and more important difficulties
in controlling lighting conditions.

In this regard, we are working in two separate directions:
the first is a more systematic and more carefully controlled
series of image collection sessions, on which we hope to
report at a later date.

The second direction involves using for database cre-
ation the same graphics animation software we used for ren-
dering. In a nutshell, we ask a user to put her open hand
in front of the camera (figure 9, middle). An optimization
program then adjusts shape, position, and configuration pa-
rameters for a rendered hand to match the real one. For op-
timization, we are using the Nelder-Mead Simplex method
[20], and we use the fraction of hand pixels that overlap in

Figure 8: Frames 36, 59, 106, 146, 161, 221, 227, and 297 of the ’count-

down’ sequence.
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Figure 9: An optimizer transformed the shape of an initial rendered hand

(left) to a new one (right) that is more similar to the real hand (middle).

the two images as our distance measure between real and
rendered hand. Figure 9 shows the result of this optimiza-
tion.

The plan is then to map the texture from the real hand
onto the rendered one, and create a large database of images
for that user by random perturbations of the basic configura-
tions of interest. These perturbations must be designed with
care for realism. In particular, fingers that tend to move to-
gether for a particular configuration must be perturbed in
similar ways.

For each user, a database of any desired size could be
then constructed automatically. This is particularly im-
portant when two-DoF out-of-plane rotations are allowed.
Databases from different users can be merged towards a
user-independent system.

It will also be interesting to see how well our tracker can
cooperate with trackers based on differential methods [10,
12, 22]: our motions can be used as providing initialization
for these methods, which can refine model parameters to
match the input frames in greater detail.

Directions for further work include methods for find-
ing hands in complex scenes, and for tracking two or more
hands in the same video, or hands that manipulate objects.

Eventually we would like to understand how many ba-
sic configurations are needed for a generally useful hand
tracker, and perhaps whether some of these ideas can be ex-
tended to tracking people in their entirety.
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