Large-Scale Event Detection Using Semi-Hidden Marko v Models *

Somboon Hongeng and Ramakant Ne atia
Institute for Robotics and Intelligent Systems
Unwversity of Southern California
L osAngeles, California 90089-0273
{hongeng, nevatia} @iris.usc.edu

Abstract

We present a new approach to r ecognizing events in
videos. We first detect and track moving objects in the
scene. Based on the shap eand motion prop erties of
these objects, we infer prob abilities of primitive events
frame-by-frame by using Bayesian networks. Compos-
ite events, consisting of multiple primitive events, over
extended perio ds of time ae analyzed by using a hidden,
semi-Markov finite state model. This results in more
reliable event segmentation compared to the use of stan-
dar d HMMs in noisy vide sequences at the ¢ ost of some
incr ease in ¢ omputationaloanplexity. We describe our
approach to reducing this omplexity. We demonstrate
the effectiveness of our algorithm using both real-world
and perturb d data.

1 Introduction

Recognizing even tstaking place in a video stream
is of key importance in many applications such as
video surv eillance, video indexing, video annotation
and video summarization. Event recognition is diffi-
cult as ther is a huge gap betw eenvideo signal data
and thev ent concepts and the mapping between the
tw o is not one-to-one.T o bridge this gap, it is common
to first detect moving objects and make event interpre-
tations based on their trajectories (and shapes).

Some even ts, such as an object meing tow ards an-
other, can be inferred directly from the motion tra-
jectory at each frame; we term these primitive ev erts.
More complex even ts consist of a sequence of primitivwe
events;we call such events as being composite ev erts.
Composite events defined by a single agent can be or-
dered in time; w ecall these as being single threaded
where as events involving multiple agents may be mul-
tiple thr eade.d

Many systems ha vebeen proposed to infer prim-
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itive systems. Static Bayesian networks (BNs) are
suitable tools for mapping from a variety of numeri-
cal visual properties to event concepts and have been
used in previous work[2, 1, 6, 3]. How ever,BNs
are not suitable for segmenting temporal sequences of
unknown component durations needed for composite
eventrecognition. Hidden Markov models (HMMs)
have become a method of choice to model and seg-
ment continuous movements into a predefined number
of states [11, 10, 4, 8]. These systems also attempt
to recognize an entire sequence as being one event
rather than segmenting the sequence into in terwals cor-
responding to different composite events.

One of the potential weaknesses of HMM models is
that, the first-order Markov assumption that the prob-
abilities of the transition to the next states at time
t + 1 depend only on the state at time ¢ implies that
the probability of an evert state being observed for a
certain interval of time declines exponentially with the
length of the interval. This may be a good model for
speech recognition but is not realistic for visual events
where the duration of a sub-events in the same event
may vary from being very short to very long (for ex-
ample, the time that a person takes to w alktow ards
an object before picking it up).

In this paper, w epresent an augmentation of the
HMM model where the a priori duration of the event
states are explicitly modeled and incorporated into the
finite-state automaton (FSA) to better approximate
the reality of visual everts. Such models are kno wn
as semi-HMMs (semi Markov, not semi Hidden). In-
ferences in semi-HMMs are more expensive: complex-
ity is O(NT?), where N is the number of states and
T is the length of the video in frames, compared to
O(NT) for a standard HMM [7]. In this paper, we de-
velop an algorithm that reduces the complexity back to
O(NT) by taking advantage of simplifications result-
ing from assuming that the duration distributions are
either uniform or normal. We demonstrate advan tages
of the new model on some real video examples.
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Figure 1: QOuerview of the system

Our approach is shown schematically in Figure 1.
Context consists of associated information that is use-
ful for object tracking and activity recognition such as
a spatial map (spatial con text)and prior activity ex-
pectation (task context). First, moving objects are de-
tected and tracked and then some properties of the tra-
jectories and shapes of moving objects are computed.
These properties are used to infer the probability of po-
ten tial primitiwe even ts defined in a library of scenario
event models ly a Bayesian netw ork as vell as classi-
fication of moving objects (for example, into humans
or vehicles). The conditional probability distributions
(CPDs) assigned to the links in the net w orksare as-
sumed to be Gaussian, whose parameters (i, o) can be
estimated from a training set of video samples directly
due to the transparent nature of the models.

The primitive even t probabilities are then used to
infer probabilities of composite single thread events
which are represented as FSA with semi-HMM prop-
erties. T emporal interval logic logical relations are
used to compute probabilities of multiple agent, multi-
thread events. In this paper, w efocus on the model-
ing and recognition of single-thread even ts. Multiple-
thread eventscan be computed from these as in our
previously described approach [5].

The output of the system can be the actions per-
formed by each actor or the global events that the ac-
tors participate in, with the most likely segmentation
(i.e. the start and end times) of these even ts. A textual
description of the video contents may be produced for
various applications sud as Video Annotation.

Figure 2 shows a representation of the composite
event“e c ar avoidsthe checkpoint”, which is analyzed
in results shown later. It is modeled by an FSA, con-
sisting of an initial state Sy, and three primitive even t
states: “approach checkpoint, “stop short before arriv-
ing”, and “leave”. The arrows of the FSA indicate
probabilistic transitions among even t states. Primitive
events are modeled ly a BN of sub-even ts and mobile
object properties defined at a low er leel. Using Bayes’
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Figure 2: Fvent representation of “avoid checkpoint”.

rule, the probabilities of primitive even ts are computed,
which are then used for inferring the composite even t.

3 Composite Event Recognition
3.1 Probabilities of Composite Events

Let a multi-state composite event k, *AM S, be com-
posed of the initial state ¥S, and N event states
kS.,kSy, ..., kSn. Let O<'*> be the set of observa-
tions during time frames 1 to ¢, *S;* bethe fact that
kS; occurs at frame ¢, and *MS! be the fact that the
sequence of states ¥.S1, ..., ¥ S; has occurred with *S; be-
ing the current state of at frame ¢. *M S is recognized
at frame T by computing P(* M SL|O<HT>). We drop
the superscript k in the following for clarity. Now,

P(MSTI0<MT>) = ao P(MSTYP(O<VT> |MST)- - - (a)
=y Z
V(t1,t2,..tN)
ar0P(dy = ta — 1)P(01|S1)az,; ..
ann 1P(dy =T —ty)P(ON SR T>) oo (b),
(1)

where ag = W is a normalizing constant, ¢; is

P(MSS V) PO<bt 1> sgY)

the time at which the transition to S; occurs, and 5‘1 =
Sfti’ti“_b, which means that S; occurs during ¢; and
tiv1 - 1. We write O; as shorthand for O<titi+1-1>
Eq. 1 (a) is derived by Bayes’ rule and can be com-
puted as the summation of all possible even t segmen-
tation fy,...,tnN- Under semi-HMM assumption that
(St’ Si_ 151',2..) (St’ S 1), P(MSYL) can be
written as a product of P(MSOtl_l)) and a1 ,;P(d; =
tiv1 —t;),¥i = 1,..., N, where P(d;) is the duration
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probability of S; and a;y1,; is the probability of the
path from S; to S;11 normalized by all possible paths

from S;. Also, under the observation that O; is in-
dependent of S given S,, P(O<VT>|MSL) can be
expanded into the product of P(O<t1=1>|ars5* 1)y
and P(0;]S;),Vi=1,...,N.

The terms under the over-brace in eq. 1 (b) can be
expanded similarly (as in eq. 2) into the product of
1) the probability that Sp starts at o and ends at ¢,
and 2) the probability that the state of FSN at time
to—1is not So. The terms under the over-brace in eq. 2
indicate the cases where the sequence of event states in
the FSA breaks down, which are shown by the arrows
back to Sp in figure 2.

P(MS V) POt 1> M5 )
> Pl =t~ 1)P(Ool5)

V(t0<t171)

2)

A

Z agﬂ»P(MSZ?ofl’ O<1,t071>)
V(i#£0)

-~

The deriv ationin equations 1 (b) and 2 requires the
computation of P(dj)P(é; |§;) Under the observation
that O’ is independent of S]t.” giv enS]t.’ (where t' # t"),
this can be derived from the Bayesian probabilities as:

p;) ] - (a)
t;<t'<tjt1—1

A

1

1<t <tjy1—1

= B(tj,tj+1—1)Bel(§;) T (C))

P(d;)P(0;]S)) = P(0"|8%)

= B, 1y, 1) P(d)) P(st|0Y) -+ (b)

(3)

il
where [T, <o i1 %u)) is factored outind writ-
= i

F or compactness, ve write the terms

joti+1— 1) ot 1
<tjtjsr—1>
under the over-brace as Bel(S; 777" 7).

We can now substitute equations 2 and 3 (c) into

ten as [

and get P(MSLIO<LT>). In the following, the
term P(MST|O<1T>) is used interchangeably with
P(MS%|O<1.T>). We note that the derivation of eq. 4
is similar to that of HMM, except that 1) w edo not
make the first-order Markov assumption, and 2) in
stead of the maximal likelihood, our derivation is based
on the maximum posteriori probability framework,
into which BNs can be integrated naturally.

Recursive Computation of P(MSJT\;|O<17T>)

The direct computation of P(MS%|O<L.T>) at time
t = T involves at least an operation of O(T") com-
plexit ysince there are TV combination of the values
of t1,t2,...,tn. In the case of un-segmented videos,
the computation becomes more intensive since we also
need to determine tg and all prior even ts. A more effi-
cient recursiv e algorithm similar to the computation of
the forward probabilities in the conventional HMMs [9]
can be derived as follows. First, the terms related to
state Sy are factored out to the left of v,
as in eq. 5 (a).

Jt2,.ntN)
The terms after ay n_1 are now

equivalen tto P(M S '|O<Ltx—1>) which is read-
ily availableat 7" as it has been computed earlier at
tn —1 < T. In eq. 5 (c), wewrite the terms after
>y < 88 P(MS{GN |O<LT>) which is the probability
of M Sy at time T, where the last state Sy starts from
tny. The complexity is now reduced to O(NT?), since,
at frame ¢, w eneed to explore only ¢ possible transi-
tions (t;) to S;,Vi = 1,..., N, which requires only a
simple update of Bel(S;)

3.2 Modeling P(d;)

One way to derive P(di) required for the computation
of Bel(S;) in eq. 3 (c) is

P(dz = d) = (1 P(Sfi+d+1|si<ti’ti+d>))
p(5§i+d|5<ti,ti+d_1>) o

(6)
P(SiST)

Learning the distribution functions modeled by eq. 6 is
difficult due to its high dimensionality. We can simplify
eq. 6 by makm% the first- order Markov assumption that

eq. 1 (b) and get eq. 4, where B, ¢+, 1), V], are com- P(S; |5<t“t - > ( k |Sz] ) and get:
bined and factored out as f = f«i,7~ under the as- ¢t 1 (d—1) ol 1
sumption that the a priori probabilities of all primitive P(d; =d) = P(S; |S; ) (L=P(S7 1S ) (7)

events are equal (i.e., P(S;) = P(S;),Vi # j). We let
P(MSHO<Lt>) be P(MS!, O<1t>) after the factor-
ization.

When we compare P(™MSJ|O<T>)  and
P(MMST|O<T>) of the event model ™MS,
or the probabilities of any tw o composite-even ts
P(MMSTO<VT>) and P(*MSL|IO<UT>),  ag
and f<i,7> will be canceled out. Therefore, we
can normalize P(MSLIO<VT>) with apf<ir>

Now, only one parameter needs to be learned. How-
ever, P(d;) is now modeled by an exponential function,
which is inappropriate for many large-scale ev erts.
For example, the probability that a person walks to-
w ards an object should not decrease exponemnially with
the number of frames in many real events. T oover-
come this difficulty, w eparameterize P(d;). For spe-
cific tasks that follow a specific pattern, the parame-
ters may be estimated directly from training data. In
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P(MS£|O<1’T>) = wpf<1,T>

>

V(t1,t2,..,tN)

>

V(to <ty 71)

Bel(So) D aoP(MSP Tt O<Lto=1>)
V(i0)

(4)

a; oBel g’;)amBel(g) . aN,N,lBel(SEtN’T>)

P(MSTIO<ET>) = 3 Bel 63" )ay n-1
tn<T

>

V(t1,t2,....tN=1)

.. ]a1.oBel(Sy) . ..an_1.n—2Bel(Sy_1)- - (a)

= Y Bel(Sy"™7)an,no1 P(M SO in=1>)

tn<T

Z p(MSIY\;tN |O<LT>)

tn<T

(C)

some situations the durations are relativ ely constait;
w e model these as Gaussian distributions and estimate
their meaandv  ariance. In other situations, the du-
rations may be highly variable depending on the scene
context and the execution styles of the actor. In such
cases, we assume that all possible execution styles are
equally likely and model P(d;) as auniform distribu-

tion o ver a certain frame range.We restrain short du-
rations (e.g., 1 to 10 frames) by a sigmoid function to
avoid unlikely even t segments that can be caused by
noise.

3.3 Segmenting Composite Events

By comparing P(MST|O<VT>) Vi, wecan make a
decision about the most likely state in the FSA at
time T'. However, to segment the event M S from a
continuous video stream, w eneed to kno wwhere the
start of the event sequence is and when the transi-
tions betw een eent states have taken places. To keep
track of the most likely start time of M.S, w ecom-
pute P(MS;T|0<%T>) which is defined as the proba-
bility of the most likely event sequence Si,...,S; oc-
curs at T given O = O<LT>. P(MST|O<LT>)
can be computed using a similar equation to that of
P(MST|O<1T>) (eq. 1 (b)), but replacing the summa-
tion with a max operator over t1,ts,...,t;- By follo w-
ing the same deriv ationas that for P(M ST|O<L.T>)
(i.e. equations 1(b) through 5 (c)), w ecan compute
P(MSF|O<1t>), VS, as:

P(Msz(t|0<1’t>)
= max Bel(S;7""7 a1 P(M ;|01 12)
(8)

The most likely transition to S; (or ¢;,,.,) can be com-
puted by replacing the max operator with argmaz As

-+ (b)

()

with the case of P(M S|O<"t>), eq. 8 are processed
at eac h frame, starting fromi = 1 to N.

The end of an even t segmert of M .S can be detected
in a video stream by setting a probability threshold
(re). Whenever P(MS%|0<1t>) falls below 7., we
mark that frame as the end of the current even tseg-
ment of M'S. There are several ways to define the start
of an event segmet. The most naive way is to back-
track the most likely path tn,_.,,tN—1,..,>--->t14..:
from the current frame. Another w ayis to find the
time frame ¢ = tpeax with the highest the probability
of P(M S%|O<"t>) during the ends of the current seg-
ment and the previous one, and backtrac king the best
path at tpeak-

3.4 Event Recognition Algorithm

The computation of P(M S{O<"t>) using eq. 5(c) (re-
placing N with i) can be illustrated as follo ws. The
structure of an FSA state S; is shown in figure 3, con-
sisting of the following three parts: 1) a list of sub-
states S; 4, 2) P(d;), and 3) a list of four-tuples shown
in the boxes at the bottom. S; 4 is generated to evalu-
ate P(MS! |O<™*>) (where t —t; = d) in eq. 5(c). So,
if there are k possible start time ¢; of event S;, a total
of k sub-states will be generated and maintained. The
structure of S; 4 contains four parameters which are
shown inside the box with the arrow. The summation
of P(MS], |0<!">) computed by all sub-states S;,q is
used as an update for P(M S{|O<!*>) in the four-tuple.
A tt =0, P(S§|0°) and P(M SP|0°) are initialized to
1. For all other S;, P(S?|0°) and P(M S?|0°) are ini-
tialized to 0. A ttime ¢, starting from S; to Sy, the
follo wing steps are performed to update the list of sub-
states S; 4 and compute P(MS!O<1>) in the four-
tuple.

4
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Figure 3: Pr ocessing steps prformed on state S;.

1. If the list of S; 4 is empty, go to step 2 directly .
Otherwise, for all S; 4, increment d by one frame,
ie. Sig = Sid+1. P arametersl)to 3) of S;q
are kept unchanged. The fourth parameter is
updated by multiplying it with P(S!O?) derived
from the BN of S;. For Sy 4, we multiply it with
1 — P(S%]0%) as Sy is not represented by a BN.

2. Create a new sub-state S;; and add it to the
list of S; 4. The structure of S;; is initialized as
follows. 1) Set t; to t. 2) Forthe second pa-
rameter, multiply P(MS!~|O<1=1>) obtained
from S;_; (upw ard dotted arrov) with a; ;1 and
P(St|O%). 3) The third parameter is updated
similarly but replacing P(MS!~O<M~1>) with
P(MS*{=1|O<Mt=1>), 4) Initialize the fourth pa-
rameter to 1.

3. Create (t,t;,..,, P(M S O<M>), P(M S*}|O<tt>)),
and add it to the list of four-tuples.
P(MSHO<"t>) is computed, using equa-
tions 5 (b) and (c), as the summation of
P(MS}, |O<"*>), deriv edat each sub-state S;q
by taking the product of parameters 2), 4) and
P(d; = t —t;). P(MS*|O<*>) and ¢ are
computed similarly based on equations 8.

Thest

Complexity Reduction and Normalization

The earlier 3-step computation is bound by O(NT?).
We can further reduce the complexity by eliminate the
unlikely sub-states S; 4 or discard the unlikely ¢; (e.g.,
when P(MS! |O<'>) is less than a threshold, Tass).
The issue here is to make certain that the discarded t;
will not become more likely again.

Suppose t} and t] are tw ocandidates of t;, where
t; < t/, with the corresponding S;y—; ¢ and

Sian=t—¢ (see figure 3). In the case that P(d;) is a
uniform distribution, S; 4 can be safely discarded when
P(MS}, |0<1t) < Tars as long as C.1) Sj g is still

in the list, C.2) P(MS!, |0<4>) < P(MS!, |0<4),

(i
and C.3) ¢t — t} is longer than the spread of the sig-
moid function applied to inhibit short event dura-
tions. This is because P(MSfjk|O<1’t+k>) will never

become more likely than P(MS!T¥|O<Lt45>) " where

Tyt
k > 0. For example, at time frame ¢ + 1, the up-
date of parameter 4) of S; ¢ and S; 4+ by step 2), ef-
fectiv ely results in the update of P(MS;THO<h+1>)

and P(MSf;1|O<1’t“>) by the multiplication of

P(S{HHOM):
P(MS;, [0<V2)P(SiTHOM) <

o< p(sor).

P(MS;,
In the case that the event duration distribution is Gaus-
sian, another condition that must be met to safely dis-
regard S; ¢ is that C.4) d' = ¢ — ¢} is longer than the
mean of the Gaussian PDF. The reason is that, if C.4
is met, P(d; =t —t}) < P(d; =t —t') (and effectively
the relation in eq. 9) will always hold (see figure 3).

In practice, by choosing an appropriate value of
Tms, the upper bound of complexity can be set such
that we need to maintain only a certain number, sa yk,
of t;. Alternatively, we can control the complexity by
choosing an appropriate k. Fromour experiments, in
the case of uniform P(d;), k should be longer than the
spread of the sigmoid function (which is approximately
10 frames). For a GaussianP(d;), we can choose k to
be an integer approximation of the variance. In either
case, k is significantly less than the length of the video,
even in the case of moderately noisy video sequences.
Therefore, the complexity of our event recognition al-
gorithm is reduced to O(NT).

Another practical issue is that the probabilities must
be normalized periodically to prevent the underflow of
the floating point variables. Our strategy is that when-
every ;o P(MSHO<!t>) < dus, we normalize the
fourth parameter of S; g (i-e. [1,, <<, P(SY|O")) of
all sub-states of S; by > qc;cn P(MSHO<H'>). That
is, P(MS!|O<Y*>) of all states should sum up to 1,
since the state of FSA must be one of Sy, ..., Sy

4 Results

We have constructed eigh teen BNs and thirteen
FSAs similar to the one shown in figure 2 to represent
primitive even ts and composite ewen ts respectively. P a-
rameters of each netw orkare assumed to be Gaus-
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Figure 4: Detection and tracking of moving regions for
“CheckPntA” (top) and “CheckPntB” (bottom,).

sian and are estimated directly from a training data
set composed of approximately 600 frames. A priori
probabilities of all even ts are assumed to be equal. We
tested our single-thread even t recognition algorithm on
videos collected in various domains (e.g. ground and
airborne surveillance).

4.1 Detecting Pre-segmented Events

First, w eshow an example of discriminating betw een
tw osimilar but different events in surv eillance video
acquired from an Unmanned Airborne Vehicle (UAV).
The images are stabilized (compensated for sensor mo-
tion) and objects are tracked. Figure 4 sho wstw o
stabilized image sequences (CheckPntA and CheckP-
ntB) and overlaid tracking results. First video con-
tains the event( “a car goes through checkpoint”; the
second contains the event “a car avoids che ckwint”).
The checkpoint is a known area, shown by the polygon
in the figure. Our system also processes other even ts
(e.g. “follo w another ehicle”) in these UAV sequences.
How ever, the t wevents we select are the ones within
the scope of the chec kpoirt context. The model of “go
through checkpoint” is similar to that of “avoid che ck-
point” (in figure 2) but consists of three different FSA
states: “approach the checkpoint zone”, “move inside”
and “leave”. Both videos have been pre-segmented to
include only the one composite event eac h.

Figure 5 (a) shows the probabilities of four primitive
eventmodels related to the checkpoi in “CheckP-
ntA”. The plots (b) and (c) show the plots of normal-
ized P(M St O<!t>),VS; (from the four-tuples) of the
semi-HMM models of “go through” and “avoid” respec-
tively. “Go through checkp oint”(the solid line in (b)) is
recognized at frame 99 (P(M Si=99]0<199>) is 0.96),
while the state of the semi-HMM of “avoid checkp oint”
remains in the initial state (in (c)). F or comparison, the
plots in figure 6 (a) and (b) show P(M S}O<Yt>) of a
standard HMM event model applied to “CheckPntA”.
We can see that the HMM event model also detects “go

through checkpoint” (shown by the solid line); how eer,
an oscillation betw eenSy and S; occurs temporarily in
the HMM result of “avoid checkp oint” This is because
the exponential ev en t duration model encourages quik
transitions to S; at around frame 35, even though the
direct probability of S; is very lo w.

For “CheckPntB” sequence, the probabilities of
primitive even tscon tain peak noise due to motion
stabilization errors (stopped cars appear to be mov-
ing). Nevertheless, “avoid checkp oint”is detected at
frame 285, where P(MS:=285|0<1:285>) is (.99, and
“go through checkpoint” is not recognized as the state
of semi-HMM model remains in either Sy or the “ap-
proach” state. Standard HMM model confuses noise
for real even ts (graphs not shown due to lack of space).

4.2 Segmenting Events

In general, we need to detect and segment even ts from
con timous video streams. Our methods allows for
this as described earlier. We show results on a syn-
thesized sequence, called “CheckPntC” constructed by
concatenating the tw oreal sequences “CheckPntB”
and “CheckPntA” shown earlier. The goal is to ex-
amine whether the even tsegmentation from different
event models coincides withone another. Ideally, the
start of one model should minimally overlaps with the
end of another, and the cross-over point should be close
to (i.e. minimal delay) the cross-over of Bay esian prob-
abilities of primitive even ts.

Results shown in figure 7(a) indicate the pattern of
“avoid checkp oint”being follow ed b y“go through”. In
figure 7(b), by backtracking from the last state of the
“go through che ckpint” semi-HMM at frame 173, w e
infer that this eventstarted at frame 72. Similarly,
“avoid the checkpoint” is detected to end at frame 71
and begin at frame 7. This segmentation agrees with
the construction of the video.

4.3 A More Challenging Example

Figure 8 shows the object tracking results of “theft at
phonebooth” sequence, where w eobserve that a per-
son (objl) drags a suitcase (obj2) to a phonebooth,
then another person (objhmes and  tak es thesuit-
case, while the owner is usinghe phone. Due to the
low camera angle, the ground trajectories of objects in
this video can be very noisy (figure 8 (b)). For exam-
ple, the track of obj4 is very noisy compared to that
of obj3 because obj4 is further aw & from the camera
than obj3. A few-pixel tracking error is projected to
over a meter on the ground. We model a few actions
common to such a scene (e.g. “bring in object’] “at-

tacking a person ] “use phone”). Figure 8 (c) sho ws
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Primitive event analysis of the car in sequence CheckPntA Analysis of "go through checkpoint" in CheckPntA Analysis of "avoid checkpoint" in CheckPntA
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(a) Analysis of primitive events. (b) “Go through checkpoint”. (c) “Avoid checkpoint”.

Figure 5: Event Analysis Results of “CheckPntA” sequence.
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Figure 7: Se gmenting two events in the simulated se-
quence “CheckPntC”. Plots of P(MS!O<Yt>) VS;,
for S-HMM models of “go through” and “avoid” are
shown in (b) and (c) respectively.

the detection of “obj4 take away 0bj2”. The probabil-
ities of primitive events are shown by dotted lines and
P(MS%|0<%t>) is shown by the solid line. We notice
the Bay esian probabilities of “approach” are v ery noisy
due to the ground trajectory projection errors. The
event “take away the object” is still detected correctly
at frame 826 where P(M S526|0<1826>) = 0.925097.
We also compare P(4MS4|0<!>) of other compet-
ing events(’MS) that obj4 did not perform such as
“bring in the object”, and find them to be much low er.
We also correctly detect and segment all other even ts
by other actors, and recognize the multi-agent global
scenario “theft at phonebooth” which relies on accurate
temporal segmentation of these events.

4.4 Performance Evaluation

We have processed other real videos con tainingcom-
plex events (e.g., “exzchange an obje ct’, “attack and
chase”) and achiev edthe detection rate of 96.7% on

7

Obj4: "take away" Obj2
‘ —MéN: "také away 6bj2"

Probability
o o o
—

o
o
T

=)
T

800
Frame Number

(c) Obj4 take aw & Obj2
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discriminating predefined competing composite events
involving 30 objects. How ever, &omplete evaluation
of the system performance requires very extensive data
collection. Complex everts, such as “theft at phone-
booth” are rare in natural observation and it is hard to
an ticipate and stage all the wariations that may occur
and affect the results. Instead, we have experimented
with simulated perturbations of trajectories extracted
from some real events. In one example, w e gener-
ated 40 simulated object trajectories for two compet-
ing composite human events: “pass by” (S; :approach
a person, So:move near and Ss:leave) and “make con-
tact” (S :approach, Sy:stop at and Ss:turn around and
leave). Object tracks were corrupted with Gaussian
noise with zero mean and the variance of the human
w alking speed(6.68 cm/frame). Such Gaussian noise
causes the probability of primitive events to be noisy
We have characterized the performance of our methods
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Table 1: Computation Time of Video Sequences.
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Figure 9: R OC curves of data with various noise levels.

by ROC curves: curv es sho wing the trade-off bet een
missing and false alarm rates at varying probability
threshold values, as shown in figure 9. We notice that
our system still maintains both the missing and the
false alarm rates below 5%, indicating that our com-
posite even t recognition algorithm avoids inferring er-
roneous short event durations that may be caused by
the noisy primitive even ts.

T able 1 summarizes the computation time (exclud-
ing motion detection and tracking) to process se-
quences using a PII-333MHz machine with 128 MB of
RAM (about 1/8 of toda y’sprocessing pow er). The
computation time depends on various free parameters
such as the number of moving objects (in the paren-
theses), scene contexts and the events in the library
that are of interest: pe ce, mt and ctz are short for the
number of primitive even ts, composite even ts, multi-
thread even ts and cortexts respectively. “CheckPntA”
and “CheckPntB” are relatively fast to process. This
is because a large number of even ts related to himan
actions do not apply. As for “obje ctexchange” (de-
fined similarly to “theft at phonebooth”, the number of
composite and multi-thread even ts increases to 11 and
3. Many of these everts are defined with regard to
other moving objects (as reference objects) which are
un bound parameters, causing an increase in the com-
putation time (frame rate has dropped to 0.71). For
example, if there are three objects in the video, there
will be six possible combinations of (actor, reference)
pairs for each event to be analyzed. In the cases where
the number of moving objects are high (a crowd of peo-
ple), some pruning of the (actor, referenc ejpairs may
be necessary.

5 Conclusion

We have presented a new event modeling and recog-
nition method using modified semi-HMMs in tegrated
with Bay esian netw orks.The transparent nature of the
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Sequence Frames| pe/ce/mt/ctx | fps. representation permits direct estimation of parameters
CheckPntA (2) | 109 38/3/0/1 43.6 from training data. We have described an efficient, algo-
CheckPntB (3) | 292 38/3/0/1 16.22 rithm to make inferences with these models and shown

ObjExchange (3) | 640 83/11/3/1 0.71 their effectiveness in presence of considerable noise in

some examples. We ha vealso experimented with a
large number of simulated, noisy trajectories but are
unable to include those results in the paper for lack of
space. While many problems of even trepresentation
and recognition, including those of the low er lev el ob-
ject detection and tracking, remain, we believe that the
tools we have introduced for higher level inferences are
generic and will apply to many complex tasks.
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