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Abstract

We present a probabilistic approach to learning object
representations based on the “content and style” bilinear
generative model of Tenenbaum and Freeman. In contrast
to their earlier SVD-based approach, our approach models
images using particle filters. We maintain separate particle
filters to represent the content and style spaces, allowing us
to define arbitrary weighting functions over the particles to
help estimate the content/style densities. We combine this
approach with a new EM-based method for learning basis
vectors that describe content-style mixing. Using a particle-
based representation permits good reconstruction despite
reduced dimensionality, and increases storage capacity and
computational efficiency. We describe how learning the dis-
tributions using particle filters allows us to efficiently com-
pute a probabilistic “novelty” term. Our example appli-
cation considers a dataset of faces under different lighting
conditions. The system classifies faces of people it has seen
before, and can identify previously unseen faces as new con-
tent. Using a probabilistic definition of novelty in conjunc-
tion with learning content-style separability provides a cru-
cial building block for designing real-world, real-time ob-
ject recognition systems.

1. Introduction

Probabilistic methods for recognizing objects and the
contexts in which they appear have produced encouraging
results in recent years [13, 7, 8]. The bilinear generative
model [14] provides one such framework for separating the
features of an object (its “content”) from the context in
which it is presented (its “style”). The model describes an
image as a multiplicative combination of an m-dimensional
content vector x representative of a class of objects and an n-
dimensional style vector y representative of the conditions
under which the object is viewed (e.g. lighting or pose).
A set of basis vectors wi j describe how content and style

representations mix to generate the image z:

z � f �x�y� �
m

∑
i�1

n

∑
j�1

wi jxiy j� (1)

Previous results using the bilinear model [14] used a sum
squared error (SSE) criterion in developing learning and in-
ference procedures. However, no previous work attempts to
learn a probabilistic model of how x vectors are distributed
given a certain content class, or similarly how y vectors are
distributed given a certain style class. Modeling distribu-
tions rather than points is important if there is uncertainty in
our representations, e.g. if we receive noisy images or the
content in the image changes style over time. Many prob-
abilistic approaches (e.g. Gaussian mixture models) seek
to simplify probabilistic representations using analytically
tractable closed form distributions. However, not all distri-
butions of interest in the content and style spaces are nec-
essarily Gaussian. Especially in the case of dimensionality
reduction, where we want to maintain style-content separa-
bility using low-dimensional spaces, nonparametric meth-
ods may be needed to describe these distributions.

1.1. Particle filters

Particle filters (also called bootstrap filters [4] or Con-
densation [6]) have emerged in recent years as an efficient
method for approximating arbitrary probability densities us-
ing samples. The particle filter algorithm iteratively esti-
mates regions of high density by representing them as dis-
crete sample points. Each iteration of the algorithm assigns
a likelihood to each particle that it matches the observed
state of the system given the prior estimate (such likeli-
hoods are often called weights). The weights are assigned
by a weighting function that defines how well the particle
reflects observed data. Next the algorithm randomly sam-
ples from the weighted set of particles; the probability of
a particle being picked during sampling is proportional to
its weight. After picking a new set of particles, the algo-
rithm applies an update function to the new particles that
reflects the state dynamics of the system being estimated.
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If no dynamics are known, for example, we might assume
the update function is described by an identity function with
zero-mean Gaussian noise. Our algorithm uses particle fil-
ters to represent densities in the content and style spaces.

1.2. Advantages of our algorithm

Our probabilistic bilinear algorithm incorporates four
improvements over the previous approach [14]:

1. Representational capacity: Unlike the original
“asymmetric” model proposed by Tenenbaum and
Freeman, our model is able to perform dimensionality
reduction in both the content and style spaces.

2. Novelty: The probabilistic framework lends itself to a
definition of novelty for identifying new content and
style classes.

3. Computational complexity: Complexity of the previ-
ous SVD-based approach is proportional to k2, where
k is the number of pixels in the image. Complexity of
our algorithm is proportional to pk, where p is a fixed
number of particles (generally proportional to the di-
mensionality of the content/style spaces), so the algo-
rithm scales more favorably for large images. Impor-
tantly, p is a free parameter, enabling the algorithm
to run more easily on systems with limited computa-
tional resources. Tuning p provides a tradeoff between
reconstruction accuracy and computational parsimony.

4. Dynamics and priors: Using particle filters allows us
to define arbitrary weighting functions for the parti-
cles. This in turn permits use of priors on content and
style and the addition of dynamics, if prior informa-
tion about the representations is known or the content
and/or style change over time. Particle filters also al-
low the algorithm to represent non-parametric content
and style densities.

2. Previous work

In the original model by Freeman and Tenenbaum, an
iterative SVD-based procedure is used to estimate a content
and a style for each image in the training set according to a
least-squares error criterion. The original model is able to
reconstruct images provided as part of the training set. It is
also able to classify previously seen content and style using
a Gaussian mixture model in the image space.

However, the original model suffers from two limita-
tions: it lacks a framework for incorporating prior infor-
mation about the images, and it makes the related assump-
tion that content and style representations are distributed ac-
cording to a Gaussian distribution in their respective spaces.

Fig. 1(b) shows that dimensionality reduction (where con-
tent dimensionality m � nc and style dimensionality n � ns
for nc distinct content classes and ns style classes) can gen-
erate non-Gaussian distributions in the content space. Di-
mensionality reduction is important for any real-world sys-
tem to efficiently learn a large number of content and style
classes.

3. Modeling content and style using particle fil-
ters

To overcome the limitations of the original model, we as-
sume a probabilistic bilinear generative model (Fig. 1(a)).
The model assumes that two hidden variables (vectors) x
and y are respectively generated by some content class Ci

and style class S j. The hidden variables combine to form an
image z according to some linear mixture matrix W. Our
task is therefore to estimate the distributions for x and y,
and to reestimate W as we adjust those densities. Since we
wish to allow arbitrary content and style densities, we repre-
sent the densities using a nonparametric approach: particle
filters. This also circumvents the problem of incorporat-
ing prior information: we can include prior knowledge by
simply changing the weighting functions of the content and
style particle filters. The weighting functions can take on ar-
bitrary forms, not necessarily corresponding to any closed-
form distribution.

Fig. 1(b) plots reconstruction likelihood surfaces for im-
ages in an example content class. The first three columns
show surfaces for individual images from the same class;
because each image has a different style, each of the Gaus-
sian clouds representing that image’s content lies in a differ-
ent location. The final column shows the content represen-
tation for all images in the class taken together. This mul-
timodal shape is not easily captured by the linear learning
approaches used in the original model. While the “asym-
metric” model of Tenenbaum and Freeman, which learns a
separate linear model for each style, might seem applicable,
it is of limited utility in dimensionality reduction: the model
cannot simultaneously reduce the number of style and con-
tent dimensions used to represent an image set. The ability
to represent content and style densities using sample sets
(possibly without a reasonable parametric form) is key to
our system’s scalability.

Each image’s content and style are represented by a
cloud of discrete sample particles (Fig. 1(b)). By the con-
tent sample set we denote the union of all content particles
for the images that make up that class across all styles; we
denote the style sample set analogously for style classes.
Our EM algorithm begins by weighting samples that repre-
sent hypotheses over the structures of the content and style
spaces. After this E step, we perform an M step that con-
sists of resampling the particles and reestimating the matrix
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W that describes how content and style mix.

3.1. E step

We assign each particle a weight w proportional to its
likelihood of having generated the input image z, based on
the particle’s ability to reconstruct the image. For the ex-
periments shown in Figs. 2 and 3, we also enforce the con-
straint that particles from a particular content or style class
conform to a Gaussian prior; i.e., for a given content parti-
cle x, its likelihood drops as it moves away from the mean x̄
of all particles in its cluster. In this case our model becomes
similar to Tenenbaum and Freeman’s original model, ex-
cept that we can express how well a given particle fits the
Gaussian cluster (since we have a covariance matrix). For
particles x in the content space and y in the style space, we
define the reconstruction image ẑ as:

ẑ �
m

∑
i�1

n

∑
j�1

Wi jxiy j� (2)

For some reconstruction covariance matrix Σ and prior co-
variance Γ, the weight of x is:

wx ∝ αexp

�
�

1
2
�z� ẑ�TΣ�1�z� ẑ�

�
� (3)

�1�α�exp

�
�

1
2
�x� x̄�TΓ�1�x� x̄�

�
�

Here α is a factor that allows us to trade off the importance
of accurate reconstruction versus accuracy of the Gaussian
clustering. By making Gaussian clustering contribute more
significantly to the weights, we increase style-content sepa-
rability, but we may also make it more difficult for the sys-
tem to find accurate reconstructions. The reconstructions
shown in Fig. 1 uses a value of α � 1; the experiments
shown in Figs. 2 and 3 use a value of α � 0�05. Although
we use the reconstruction error with a Gaussian prior to
compute weights, we note that arbitrary weighting functions
(e.g. to represent prior information about the distributions
in the content and style spaces) are easily implemented us-
ing this technique by multiplying the likelihood with a prior
probability. As an example, we might specify that content
or style particles obey a sparseness constraint [1, 5, 9] to
learn local rather than global features.

To weight a content particle x by Eqns. 2 and 3, we need
to use a style particle y to perform image reconstruction.
Likewise, estimating the weight for a style particle requires
a content particle. Since computing likelihoods over all
possible pairs of content and style particles for an image
would be prohibitively expensive, we consider two canoni-
cal particles x̂� ŷ for each image, respectively denoting the
content and style particles with the highest likelihood val-
ues for the image. Each content particle on an iteration of

the algorithm is weighted using the reconstruction image
ẑ computed by mixing the content particle with the previ-
ous iteration’s canonical style particle according to the bi-
linear model, and each style particle’s weight is similarly
derived using the reconstruction derived from the previous
iteration’s canonical content particle.

3.2. M step

On the M step of our algorithm, we resample the par-
ticles. Particles are drawn using sampling-importance re-
sampling (SIR) [12]. To ensure that the particles explore
the space, we add zero-mean Gaussian noise to each par-
ticle (with covariance matrix λI, λ � 0�025) after resam-
pling. Additionally, a fixed fraction of the particles (20% in
the simulations shown here) are distributed uniformly over
the space, allowing the system to find solutions far outside
the original set of particles. Our use of zero-mean noise is
based on a lack of priors over the dynamics of the content
and style spaces. Because the images in our data set rep-
resent static snapshots, the current implementation of our
algorithm uses the identity function to represent particle dy-
namics (with additive Gaussian noise). The approach easily
generalizes to the case of time-varying image sequences by
applying equations for describing content-style dynamics.

Each M step of the learning algorithm also reestimates
W to maximize the posterior probability of generating the
training images. W is determined by solving a system of
linear equations in x̂� ŷ. We begin by defining ωk as the
vector version of the matrix Wk that describes content-style
mixing for the kth pixel, i.e. ωk is an mn�1 vector rather
than an m� n matrix. We refer to the ith element in ωk as
ωik. We further define the vector b as the mn� 1 vector
version of the outer product matrix x̂ŷT. Maximizing the
log likelihood Q of the data given the bilinear model gives
the equation:

∂Q
∂ωk

��
1
C

l

∑
i�1

�
zi

k �biTωk

�
bi � 0� (4)

The summation gives us a vector v of mn elements, corre-
sponding to the left-hand side of the system of linear equa-
tions. Rewriting the sum and expanding the dot product on
the right-hand side, we obtain the form:

v � ω1k �b
1
1 �b

1�ω2k �b
1
2 �b

1
� � � (5)

ω1k �b
l
1 �b

l �ω2k �b
l
1 �b

l
� � � �

This system is solvable given that the system is not under-
constrained (i.e. if enough training images are available).

4. Novelty detection

We define novelty of an image z with respect to a set of
disjoint learned content classes labeled C1 � � �Ci, given that
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Figure 1. Probabilistic bilinear models based on particle filters. (a) Graphical model for our probabilistic framework. Distributions C and S
generate content and style vectors x and y, which in turn generate image z. (b) Reduced dimensionalities in the content and style spaces produce
non-Gaussian likelihood surfaces. A particle filter (lower row) is able to capture the non-parametric shapes of the content likelihood surfaces shown
here (upper row). The first 3 columns show likelihood surfaces in the content space for 3 individual images composing a single content class. The
final column shows the likelihood surface for the entire class. (c) Image reconstructions under Freeman and Tenenbaum’s original asymmetric model
and our model. First row: original images; second row: images reconstructed by the asymmetric model; third row: images reconstructed by our
particle filter algorithm (after 50 iterations). Note our model’s lower mean squared error on image reconstruction.

the image has style S, as:

pnovel�z�S� �
nc

∏
i�1

�
1�P�Ci�z�S�

�
� (6)

That is, novelty is the probability that the image was not
generated using style S by any of the classes C1 � � �Ci. Note
this definition can also be extended to cover novelty with
respect to a style, a class, or some combination of styles
and classes.

Our sample-based representation for content and style
presents a problem when calculating novelty. Ideally, given
the maximum likelihood particles x and y that represent a
test image, we could determine the probability that the con-
tent (or style) sample for the test image was generated by
each content (style) class provided during training. Unfor-
tunately, with probability 1, no two samples are identical
between the particles from the test image’s sample set and
the particles from each training class’ sample set.

Density trees [10, 2] provide a convenient mechanism

for turning a sample-based representation into a continuous
representation over a space. Density trees are essentially
binary search trees that partition a space. Each leaf node i
is annotated with a density value di describing the density
(summed sample weights wx) of the samples x contained
within the leaf:

di �
∑x�i wx

�V �
� (7)

where �V � denotes the volume of leaf node i. We normal-
ize over the density values in the leaf nodes to produce a
probability measure. Given that a sample is drawn from the
sample set corresponding to a particular density tree, the
probability of the sample being generated by a particular
leaf node in the tree is thus proportional to the density at
that leaf. We define a density tree for each content sam-
ple set and style sample set, giving us a continuous novelty
measure over the content and style spaces. Fig. 3(a) shows
an example density tree, plotted with the underlying sam-
ples from which it is composed. The tree performs a binary
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search on the space to find regions of high sample density,
stopping recursion when a lower limit of square root of the
number of samples is reached [15] or when the recursion
depth exceeds 10. We compute novelty of an image by fit-
ting a group of samples to the image, then determining the
probability that the sample set was not generated by any of
the trees representing learned content classes. Each sam-
ple in the sample set has a probability that it is novel with
respect to all the learned content trees. The joint distribu-
tion p�x0�x1� � � �xn� over all the n samples in the set repre-
sents the probability that the entire sample set is novel. We
approximate the joint density by assuming each particle is
independent of the others in the set. Thus we add the log
likelihoods over all the particles to determine the probabil-
ity that the whole sample set lies outside the learned content
classes encoded by the trees.

5. Results

We have compared our algorithm to the original model of
Tenenbaum and Freeman [14] where appropriate. Fig. 1(c)
shows the relative performances of our model and the orig-
inal asymmetric model on a dataset of hands performing
ASL finger spelling gestures (27 � 37 greyscale images,
with 3 content classes and 3 style classes). Here α � 1.
Our algorithm produces lower sum-squared errors on the
training set than the original SVD-based approach, and the
resulting images appear qualitatively closer to the training
set. Face data shown in Figs. 2 and 3 come from the Harvard
face database1.

5.1. Dimensionality reduction

Reducing the number of dimensions used to represent
content and style is critical to implementing bilinear mod-
els on realistic input data. Storage capacity required for any
given image increases linearly in the number of dimensions,
and for particle filters in particular the time required to con-
verge will tend to increase exponentially in the number of
dimensions. Further, having too many unconstrained di-
mensions (e.g. when a real-time object recognition system
is initialized and hasn’t seen very many training images) re-
sults in singular or near-singular matrices when we recom-
pute the basis vectors W on the M step of our algorithm.

Dimensionality reduction in the original asymmetric
model is equivalent to maintaining several linear models
(one for each style), and performing PCA for each model
to learn global features for each content class [3, 11, 16].
The particle filter appears highly robust to reduced dimen-
sionality. Fig. 2(a) shows some sample images from our
training set of 450 images (10 different content classes un-
der 45 different styles, resolution 24�21). Fig. 2(b) shows

1http://cvc.yale.edu/people/faculty/belhumeur.html

reconstruction quality for the same images with dimension-
alities m � 8, n � 20 (reduced from m � 10�n � 45), while
Fig. 2(c) shows reconstruction of the same images with re-
duced dimensionalities m � 8�n� 4. Note the similar qual-
ity of reconstruction despite the difference in dimensionali-
ties. Fig. 2(d) plots a graph that shows how reduced dimen-
sionality affects reconstruction accuracy. Holding content
dimensionality fixed at m � 8, the graph shows how recon-
struction improves with increasing style dimensionality n.
Past n � 4, increased dimensionality does not significantly
lower the MSE of the reconstructions. Points on the graph
represent the mean MSE from 3 different runs of our algo-
rithm, each with a different initial random seed. Error bars
represent standard deviation.

5.2. Novelty detection and classification

The training algorithms developed in the original bilin-
ear model, and the extensions proposed here, assume that
all training images are provided with content and style la-
bels. Novelty detection is critical for an unsupervised sys-
tem to learn to differentiate categories of objects and con-
texts of presentation when such labels are not available. We
tested our system using a set of 6 content classes seen during
training and 2 novel content classes, with the goal of iden-
tifying the test images as displaying novel content. A sim-
ple threshold classifier is able to differentiate between the 6
faces that were part of the training set and the 2 novel faces
not in the training set. Fig. 3(c) demonstrates the ability of
our system to learn novelty. The algorithm marks each face
with a novelty value calculated using a density tree accord-
ing to Eqn. 6. Here we provide the algorithm with a style
label S to assist detection of novel content. Starting from
a uniform distribution, the content particles (shown in red)
coding for the non-novel image collapse into a Gaussian
cloud over approximately the same region as the particles
for that content that were learned during training (shown in
blue). For an image with novel content, the red particles
converge to a spot outside any of the sample sets learned
during training. This causes the algorithm to assign the im-
age’s content a high novelty value.

The algorithm is also able to recognize content classes it
has seen before. Unlike the method proposed by Tenen-
baum and Freeman [14], which reconstructs images and
then fits a mixture model to the results, our EM algorithm
classifies images within the content and style spaces them-
selves. We examine the density tree values for the content
(or style) samples after the algorithm has converged. If the
converged samples lie in regions of high density for one of
the trees (see Fig. 3(a)), they are likely to represent the con-
tent or style stored by that tree, and will therefore be marked
by the tree as having a high probability. The tree with the
highest joint density p�x0�x1� � � �xn� over all the n samples
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Figure 2. Particle filters allow substantial dimensionality reduction. (a) A subset of our training set of 450 images (10 contents, 45 styles).
(b) Reconstructions when content dimensionality is reduced from m � 10 to m � 8 and style dimensionality is reduced from n � 45 to n � 20. (c)
Reconstructions when m� 8 and n � 4. (d) MSE decreases as we increase the style dimensionality. The plot shows mean MSE over 3 different initial
random conditions; errorbars indicate standard deviation. The EM algorithm runs for 100 iterations, ensuring convergence. Past n � 4, increasing
the style dimensionality does not substantially increase reconstruction accuracy.

in the set is the most likely tree for the converged sample
set of particles. Again, we make the simplifying assump-
tion that we can simply multiply the samples together to get
an estimate of the likelihood that the sample set belongs to
each content class. Thus, we add the log likelihoods as-
signed by a given tree over all the samples to obtain the log
likelihood for the entire sample set. The tree with the high-
est log likelihood determines the class to which the sample
set is assigned.

Over a set of 32 faces drawn from the training set, aver-
aged over 3 different initial random conditions, the system
is able to classify 82% � 3% of the content correctly by
checking values in the density tree. Over a set of 8 out-
of-sample faces drawn from contents the system has seen
before, but in novel styles, and averaged over 3 different ini-
tial random conditions, the system classifies correctly 71%
� 11% of the time. We do not provide the system with any
hints as to the content or style.

It is possible to train the system as a classifier when
the particles are completely unconstrained (i.e., when α �
1). However, the resulting multimodal representation also
makes classification much more difficult since the algorithm

must now sample over a wider range of the style space to
find a good canonical style particle ŷ. Sample-based classi-
fication without a Gaussian prior does not currently perform
robustly: after training on a small subset of 12 faces, the
algorithm is able to classify 6 of them (again without pro-
viding any prior information about the content or style being
shown). We are continuing to investigate improved methods
for performing classification when content and style repre-
sentations are multimodal.

6. Summary and conclusions

We have presented a new method for learning bilinear
appearance-based models of objects based on particle fil-
ters. The system robustly reconstructs training images de-
spite appreciable dimensionality reduction, outperforming
the original asymmetric model in many cases. The sys-
tem is computationally efficient, able to tune the number of
particles to adapt to available computing resources. Using
particle filters also provides a principled method for includ-
ing prior information or dynamics in the content and style
spaces. We have used our probabilistic model to define nov-
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elty with respect to content and style classes. Novelty de-
tection provides a building block for future systems which
will need to determine when to form new representational
classes for objects.

Development of a novelty measure motivates the ability
to learn new content and style classes. However, the new
classes must not be learned at the expense of previously
formed class definitions. To perform relearning, we could
reconstruct a canonical image for each content-style com-
bination learned thus far by sampling from the appropriate
density trees and iterating the algorithm until it converges to
a good reconstruction. We would then combine the result-
ing images with images defining novel classes the system
may have acquired, and rerunning our EM algorithm. As-
suming that the algorithm learned a good representation for
the original training set, the relearned data should not dis-
turb the original set of canonical particles. Alternatively,
we could simply remember the canonical particles for each
image in the original training set (possibly requiring a large
amount of data storage). We are currently investigating how
parameterization of the system affects its ability to perform
stable relearning.

One future direction would be to extend our EM algo-
rithm to cover sparseness priors, allowing us to learn local
features rather than global ones. Another possible exten-
sion of our work would cover the case where dynamics in
the style space are important, e.g. if objects are moving
in a scene or if lighting conditions are changing relatively
quickly over time. Over the long term, we anticipate in-
corporating our algorithm into a larger vision system for
context-invariant appearance-based recognition of objects,
capable of identifying and representing new object types as
it encounters them.
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Figure 3. Using a probabilistic model allows novelty detection. (a) Example of a 2-D style sample set partitioned by a density tree. (b) Content
representations under a Gaussian prior. Each Gaussian represents a separate content class; ellipses denote principal eigenvectors of the covariance
matrices. Individual images (shown as different colored clouds of particles) can cluster into non-parametric shapes, but weights for the particles
include a term to pull images with similar content toward one another, maintaining style-content invariance. (c) Contents in the algorithm’s training
set (top row) are marked as non-novel, while contents that are previously unseen (bottom row) are marked as novel. Evaluation of each image starts
with a uniformly distributed set of particles, shown in red (first column). After running our EM algorithm for 5 iterations, the content particles (in
red, top right) coding for the non-novel image have collapsed into the same region of the content space as the particles that coded for that content
class during training. This means the converged content particles lie within regions of high density for this class’ density tree, leading to a low
novelty score pnovel�z�S�. In contrast, the novel image’s particles (in red, bottom right) converge to a Gaussian cloud outside of any other learned
sample sets. Thus, the image’s content representation lies outside the regions of high density for all learned density trees. This causes the algorithm
to assign high novelty to the image.
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