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Abstract

Visual learning is expected to be a continuous and robust
process, which treats input images and pixels selectively.
In this paper we present a method for subspace learn-
ing, which takes these considerations into account. We
present an incremental method, which sequentially updates
the principal subspace considering weighted influence of
individual images as well as individual pixels within an im-
age. This approach is further extended to enable determina-
tion of consistencies in the input data and imputation of the
values in inconsistent pixels using the previously acquired
knowledge, resulting in a novel incremental, weighted and
robust method for subspace learning.

1. Introduction
In the real world, visual learning is supposed to be a ro-
bust and continuous process. All available visual data is
not equally important; in the case of occlusions or other un-
desirable intrusions in the field of view some visual data
can even be misleading. A human visual system treats vi-
sual data selectively and builds efficient representations of
observed objects and scenes even under non-ideal condi-
tions. Furthermore, these representations can afterwards be
updated with newly acquired information, thus adapting to
the changing world. In this paper we propose a method,
which introduces similar principles in the subspace-based
machine visual learning and recognition as well.

Visual learning is often approached by the appearance-
based modeling of objects and scenes. Models are usually
built using principal component analysis (PCA), which in
its original form has, however, several shortcomings with
respect to the premises mentioned above. PCA-based learn-
ing is traditionally performed in a batch mode, thus requir-
ing all training images to be given in advance, which is not
admissible in the framework of continuous learning. In this
paper we propose an incremental method, which processes
images sequentially one by one and updates the representa-
tion at each step accordingly. Each image can be discarded
immediately after the model is updated, which makes the
method perfectly well suited for real on-line scenarios. In

contrast with the traditional batch methods, the incremental
approach enables efficient estimation of the principal sub-
space from a large number of training images as well.

In addition, in the standard PCA approach all pixels of an
image receive an equal treatment. Also, all training images
have equal influence on the estimation of principal axes. In
this paper, we present a generalized PCA approach based on
the incremental algorithm, which estimates principal axes
and principal components considering weighted pixels and
images. We further extend this weighted approach into a
method for learning from incomplete data, which builds the
model of an object even when a part of input data is missing.
Furthermore, we also advance this approach into a method
for robust incremental learning, which detects inconsisten-
cies in the training images and builds the representations
from consistent data only. As a result, the obtained models
are more robust and efficient enabling more reliable visual
recognition even when the learning conditions are not ideal.

Several methods for incremental PCA have already been
proposed in the computer vision community [12, 4, 7, 8].
These methods are mainly used as an incremental substitute
for the standard PCA and are designed neither for weighted
nor for robust learning. The incremental methods proposed
in [10, 11] are tailored for temporally weighted learning al-
lowing newer images to have a larger influence on the es-
timation of the current subspace than the older ones. The
incremental method presented in this paper is more gen-
eral and enables assigning arbitrary temporal and spatial
weights. The only previously proposed incremental method
that explicitly deals with spatial weights is the method
for incremental singular value decomposition of data with
missing values introduced by Brand [3]. All other previ-
ously reported methods for estimation of principal axes in
the presence of data with varying reliability and missing
data (e.g., [15, 6, 5, 16]) operate in a batch mode. Also
the methods that tackle robust learning of eigenspaces by
determining the reliability of individual images [19] and
pixels [5, 18, 1] operate in a batch mode, processing all
training images simultaneously. Furthermore, they are ex-
ecuted in an iterative manner by repeating time consuming
procedures on the entire set of training images. Therefore,
the processing time is usually very long, and even becomes
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prohibitive when the number of training images is large. In
this paper we embed the robust approach into the incremen-
tal framework by processing training images individually,
which enables efficient visual learning from large training
sets as well.

The paper is organized as follows. In section 2, we
present the basic algorithm for incremental learning. In sec-
tion 3 we extend this algorithm into a weighted algorithm,
which considers temporal and spatial weights. Next, we
present a special case of the algorithm, which can handle
missing data. This algorithm is then advanced into a robust
incremental algorithm, which can detect and discard incon-
sistencies in the input images. In section 4 we present the
experimental results. Finally, we summarize the paper, ex-
pose the contributions, and outline some work in progress.

2. Incremental PCA
In this section we propose a method for incremental learn-
ing. It takes the training images sequentially and computes
the new eigenspace from the subspace obtained in the pre-
vious step and the current input image.

Let us suppose that we have already built an eigenspace
from the first � images. In the step � � � we could calcu-
late a new eigenspace from the reconstructions of the first
� input images and a new image using the standard batch
method. The computational complexity of such an algo-
rithm would be prohibitive, since at each step we would
have to perform the batch PCA on a set of high-dimensional
data. However, identical results can be obtained by us-
ing low-dimensional coefficient vectors of the first � input
images instead of their high-dimensional reconstructions,
since coefficient vectors and reconstructed images encom-
pass the same visual variability, i.e., they are just repre-
sented in different coordinate frames. Since the dimension
of the eigenspace is small, this algorithm is computationally
very efficient.

The summarized procedure for one update of the current
eigenspace is outlined in Algorithm 1 1. This algorithm in-
creases the dimension of the subspace by one. After the
update, we can discard the least significant principal vector
to preserve the dimension of the subspace [2].

The initial values of the mean image, the eigenvectors,
and the coefficients can be obtained by applying the batch
PCA on a small set of images. Alternatively, one can sim-
ply set the first training image as the initial eigenspace by
assigning ���� � ��, ���� � ����, and ���� � �. In
this way, the algorithm is completely incremental, requiring
only one image to be available at each time instant.

1� � IR��� denotes a matrix of � � -dimensional principal axes,
� � IR��� is a matrix of � �-dimensional coefficient vectors, � � IR�

is the mean image. Superscript denotes the step which the data is related
to (���� denotes the values of� at the step �). ���� denotes a �� �

matrix of ones.

Algorithm 1 : Incremental PCA

Input: current mean vector ����, current eigenvectors
U���, current coefficients A���, new input image x.

Output: new mean vector ������, new eigenvectors
U�����, new coefficients A�����, new eigenvalues
������.

1: Project a new image x into the current eigenspace:
a � U�����x� ����� .

2: Reconstruct the new image: y � U���a � ����.
3: Compute the residual vector: r � x� y.

r is orthogonal to U���.
4: Append r as a new basis vector:

U� �
�

U��� r
�r�

�
.

5: Determine the coefficients in the new basis:

A� �

�
A��� a

0 �r�
�

.

6: Perform PCA on A�. Obtain the mean value ���, the
eigenvectors U��, and the eigenvalues ���.

7: Project the coefficient vectors to the new basis:
A����� � U����A� � ���1������ .

8: Rotate the subspace U� for U��: U����� � U�U�� .
9: Update the mean: ������ � ���� � U���� .

10: New eigenvalues: ������ � ��� .

It is worth noting that this algorithm estimates the iden-
tical principal subspace as the method proposed by Hall et
al. [7]. However, the subspace is obtained in a different
way. In contrast to our method, which between the learn-
ing steps passes coefficient vectors of all training images,
the Hall’s method passes eigenvalues only. While one may
consider this as an advantage, since less data is being passed
from step to step and calculation of the covariance matrix is
faster, this can also be disadvantageous, because the coeffi-
cients are not estimated and maintained during the learning
process, thus less information is available. Our algorithm
calculates the coefficients at that time instant, when the par-
ticular image is added to the model, and then maintains their
values throughout the process of incremental learning. This
is slightly slower, however it has two advantages. The first
advantage is, that each image can be discarded immediately
after it has been used for updating the subspace. This is
very appropriate (and possibly required) for on-line scenar-
ios (eg. navigation of mobile robots with limited memory
resources). And finally, since more information is encom-
passed in the model, our method can be advanced into a
method for weighted learning of eigenspaces, which can
consider arbitrary temporal weights.

We will demonstrate the behavior of the proposed algo-
rithm on a simple 2-D example. The 2-D input space con-
tains 41 points shown as black dots in Fig. 1. The goal is
to estimate 1-D principal subspace, i.e., the first principal
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axis. The eigenspace is being built incrementally. At each
step one point (from the left to the right) is added to the
representation and the eigenspace is updated accordingly.
Fig. 1 illustrates how the eigenspace evolves during this
process. The principal axis, obtained at every sixth step,
is depicted. The points, which were appended to the model
at these steps, are marked with crosses. One can observe,
how the origin of the eigenspace (depicted as a square) and
the orientation of the principal axis change through time,
adapting to the new points, which come into the process.
At the end, the estimated eigenspace, which encompasses
all training points, is almost identical to the eigenspace ob-
tained using the batch method.
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Figure 1: Incremental learning.

3. Weighted and Robust Approach
In order to achieve selective influence of pixels and images,
the individual pixels as well as images can be weighted with
different weights. In practice, it is useful to deal with two
types of weights: temporal weights �� � IR��� , which put
different weights on individual images and spatial weights
�� � IR� , which put different weights on individual pixels
within an image2.

3.1. Temporal Weights
Temporal weights determine how important the individual
images are for the estimation of principal subspace. If the
temporal weight for one image is higher than the weights
for the other images, the reconstruction error of this image
should be smaller than the reconstruction errors of the other
images. Similarly, the contribution of its principal compo-
nents to the estimation of the variance should be larger in
comparison with that of the other principal components.

From this observation we can derive an algorithm for
estimation of the principal subspace considering temporal
weights. The principal axes, which maximize the weighted
variance of the projections of the input images onto the

2The left superscript is used to distinguish between temporal (��) and
spatial (��) weights.

principal axes, can be obtained by eigendecomposition (or,
similarly, singular value decomposition) of the weighted
covariance matrix. If the matrix �� � IR��� is com-
posed from � re-scaled input vectors centered around the
weighted mean:

��� �
�

������ � ��� � � � � � �� � (1)

the weighted covariance matrix can be calculated as

� �
���

���
���

�� ��� � (2)

Using this algorithm, the estimated principal subspace does
not depend on all training images equally. For instance, if a
training image has the weight 2, while all the other images
have the weight 1, the result of this algorithm equals the
result of the standard PCA algorithm, which has two copies
of the particular image in the training set.

It is quite straightforward to incorporate the temporal
weights into the incremental algorithm. The core of this al-
gorithm is still the standard batch PCA on low-dimensional
data (step 6 of Algorithm 1). We can replace this standard
batch PCA with the weighted algorithm, which considers
temporal weights. This is feasible, because our incremental
algorithm maintains low-dimensional coefficients of all in-
put images throughout the process of the incremental learn-
ing (in contrast with the other incremental approaches).
Therefore, the representation of each image can be arbitrar-
ily weighted at each update.

To illustrate the behavior of the proposed algorithm, we
put different weights on the training points from our simple
2-D example. We set temporal weights to ��� � ��, which
gives a larger influence to the recent points. Fig. 2 depicts
the evolution of the eigenspace. By comparing this figure
with Fig. 1 it is evident how the weights affect the learning
process. At the end of the learning sequence, the weighted
mean vector is closer to the points at the end of the point
sequence, since the weights of these points have higher val-
ues. The principal axis is oriented in such a direction that
enables superior reconstruction of these points.
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Figure 2: Weighted incremental learning.
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3.2. Spatial Weights
Spatial weights control the influence of individual pixels
within an image. Therefore, if a part of an image is not
reliable or important for the estimation of principal compo-
nents, its influence should be diminished by decreasing the
weight of the corresponding pixels.

Incorporating spatial weights into the process of in-
cremental learning is more complex. After the current
eigenspace is updated with a new input image, this image
is discarded and only its low-dimensional representation is
preserved. Therefore, in the later stages we can not asso-
ciate weights to individual pixels. This can be done only
during the update.

Let us assume that the weights range from 0 to 1. If a
weight is set to 1, it means that the corresponding pixel is
fully reliable and should be used as is. If a weight is set
to 0, it means that the value of the corresponding pixel is
irrelevant and it is not related to the correct value. We can
recover an approximate value of this pixel by considering
the knowledge acquired from the previous images. By set-
ting the weight between 0 and 1, we can balance between
the influence of the value yielded by the current model and
the influence of the pixel value of the input image.

We can achieve this by adding a preprocessing step to the
update algorithm. First we calculate the coefficients of the
new image � by using the weighted method. Instead of us-
ing the standard projection, the coefficients �� are obtained
by solving an over-determined system of linear equations

�
����� �

�
���

��
���

����� � 	 � � � � �
 (3)

in the least squares sense. By reconstructing the coefficients
we obtain the reconstructed image � which contains pixel
values yielded by the current model. By blending images
� and �, considering spatial weights by using the following
equation

���	� � ����� � ��� ������ � 	 � � � � �
 � (4)

we obtain the image which is then used for updating the cur-
rent eigenspace. In this way, a selective influence of pixels
is enabled also in the incremental framework.

3.3. Missing Pixels
In the real world applications, it is often the case that not all
data is available. The values of some pixels are missing or
they are totaly non-reliable. Such pixels are referred to as
missing pixels. Estimation of the principal subspace in the
presence of missing pixels can be regarded as a special case
of spatially weighted PCA where the weights of missing
pixels are set to zero.

The blending step in the algorithm for weighted incre-
mental learning reduces to the imputation of missing pixels.
Before the current eigenspace is updated with the new im-
age, the missing pixels have to be optimally filled in. Since
not all pixels of an image are known, some coordinates of
the corresponding point in the image space are undefined.
Thus, the position of the point is constrained to the subspace
defined with the values of the known pixels. Given the cur-
rent principal subspace ����, which models the input data
seen so far, the optimal location is the point in the missing
pixels subspace which is closest to the principal subspace.
This point is obtained by filling-in the missing pixels with
the reconstructed values, which are calculated from the co-
efficients estimated from the known pixels only. Since this
coefficients reflect the novel information in the new image
contained in the known pixels, we may assume that the pre-
diction in the missing pixels will be fine as well. Such an
improved image is the best approximation of the correct im-
age that we can obtain from the information contained in the
known pixels and in the current eigenspace.

Thus, the new image � if first projected into the current
principal subspace���� by solving a system of linear equa-
tions arising from non-missing pixels (3). The obtained co-
efficient vector 	 is then reconstructed and the values in the
reconstructed image are used for filling-in the missing pix-
els. The resulting image is then used for updating the cur-
rent eigenspace.

A practically equivalent rule for imputation of missing
pixels was proposed also by Brand in the context of incre-
mental singular value decomposition [3]. As shown in [3],
such a rule for imputation of missing pixels minimizes the
distance of the vector representing a new image to the cur-
rent subspace and maximizes the concentration of the vari-
ance in the top singular values. Consequently, such impu-
tation rule minimizes the rank of the updated SVD guaran-
teeing parsimonious model of the data.

3.4. Robust Approach
The developed method for subspace learning from incom-
plete data can be further extended in a method for robust
learning. In the robust framework the positions of ‘bad’
pixels are not known in advance, however, we are aware that
images may contain outliers. We treat as outliers all pixels,
which are not consistent with the information contained in
other images. Since at each step we have a current model of
the object or scene seen so far, we can detect outliers in the
new image and treat them as missing pixels.

This is achieved by projecting the new image into the
current eigenspace in a robust manner. Instead of a simple
projection, a robust procedure based on subsampling and
hypothesize-and-select paradigm is used [9]. Coefficients
are obtained mainly from inliers, thus their reconstructions
tend to the correct values in outliers as well. Consequently,
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the reconstruction error in outliers is large, which makes
their detection easier. Therefore, to make the incremen-
tal learning robust, we first detect outliers in a new image
and replace their values with reconstructed values, which
are good approximations of the correct values. Such an
improved outlier-free image is then used for updating the
eigenspace. Providing that the outliers are detected dur-
ing the learning process using the robust procedure, the ob-
tained eigenspace is robust as well.

We can refer to this procedure as a ‘hard’ robust al-
gorithm, since the pixels, which are detected as outliers,
are replaced with reconstructed values, while the remain-
ing pixels stay intact. An alternative ‘soft’ approach is to
weight each pixel according to its reliability, which is de-
termined with respect to the reconstruction error. The new
image � is thus projected into the current eigenspace using
the simple (and fast) standard projection and the obtained
coefficients are used for reconstruction (�). The obtained
reconstruction error yields the spatial weights (e.g., ��� �
������ � ��� � ��), which are then used by the weighted
algorithm to update the current principal subspace.

To demonstrate the behavior of the robust incremental al-
gorithm, we significantly changed the values of the second
coordinate of five points in our 2-D example. Fig. 3 shows
that when the non-robust incremental method is used, these
outlying points pull the origin in a wrong direction and in-
correctly orient the estimated principal axis. On the other
hand, the robust method sequentially detects the outlying
coordinate values, replaces these values with their recon-
structions (shown as circles) and updates the eigenspace ac-
cordingly. At the end, the principal axis obtained using this
approach is very close to the optimal one.
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Figure 3: Robust incremental learning.

An important advantage of such incremental method is
that it processes only one image at each step, while the it-
erative batch robust methods process all images at each it-
eration. For that reason, the incremental method is signifi-
cantly faster and enables robust learning from a large num-
ber of training images. Since the model is being incremen-
tally updated with new images, this method is very suitable

for on-line applications as well.
On the other hand, it suffers (like all incremental meth-

ods) from a potential danger of error propagation. If the
initial eigenspaces, built in the early stages of the learning
process, encompass only a limited number of appearances
of an object or a scene, then all the pixels in the subsequent
images, which significantly differ from the appearances of
the first images, are considered as outliers and no novel in-
formation is added to the model. This particularly holds
true for the ‘hard’ robust version of the updating algorithm.
Therefore, the initial eigenspace, which is built in the begin-
ning of the learning process, should be reliable and stable. It
should roughly model heterogeneous appearances of an ob-
ject or a scene and it should be obtained from a set of pixels
containing as few outliers as possible. When the model en-
compasses a sufficient number of appearances it becomes
more stable and this is no longer a problem [17].

4. Experimental Results

We performed various experiments to evaluate the proposed
methods. Here we first present the results of the experi-
ments where PCA was used for building representations of
faces. These experiments nicely demonstrate the efficiency
of the proposed methods. Then we present the results of an
experiment, where the proposed methods were applied for
background modeling.

4.1. Representations of faces

In the first experiment we used for the testbed the ORL face
database [14] consisting of 400 images (10 images of each
of 40 subjects), rescaled to the size of ��� �� pixels. The
images entered into the learning process sequentially one by
one (one image of each of 40 subjects first, then the second
image of each subject and so on to the tenth image). Six
training images are shown in Fig. 5(a). The goal was to
represent all 400 images with just 25 images (eigenfaces)
using incremental learning.

First, we present the performance of the incremental
method in comparison with the standard batch method. Ta-
ble 1 shows the mean squared reconstruction errors (MSRE)
of the images reconstructed from the coefficients obtained
by projecting the training images into the eigenspaces,
which were built using the batch method (batch) and the
proposed incremental method (incX). The results are very
similar; MSRE obtained using the incremental method is
only 1% worse. When the coefficients which were ob-
tained and maintained during the learning process are re-
constructed, the mean squared reconstruction error (incA)
is still very similar. In this case, the degradation of the re-
sults is 2%. Figs. 5(a-c) show some training images and
their reconstructions using the batch and the incremental
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(incA) method. We can hardly notice any difference be-
tween both reconstructed images. The results show that the
proposed incremental method is almost as efficient as the
batch method (which is optimal in the sense of MSRE).

In the second experiment we put different temporal
weights on the training images. Since people’s faces are
changing through time, we would prefer that the latest im-
ages are better represented than the old ones. Such rep-
resentation would be more appropriate for face recogni-
tion, since new images of faces, which will have to be rec-
ognized, will be more similar to the last training images
than to the first ones. Therefore, we put larger weights
on the images at the end of the image sequence. The re-
sults are depicted in Fig. 4. For every group of 40 images
the mean squared reconstruction error is presented for non-
weighted (incA, incX) and weighted (WincA, WincX) incre-
mental method. We can observe that the MSRE in the last
four groups of images is smaller when the weighted method
is used. Thus these images are better represented and their
reconstructions are more detailed as can be observed on the
last two images in Fig. 4(d). Although the overall mean
squared reconstruction error of all training images is bigger,
the weighted reconstruction error is smaller, as presented in
Table 1. This is exactly what we wanted to achieve.

batch incA incX WincA WincX
MSRE 582 594 587 636 602
WSRE 598 597 570 562

Table 1: Results of batch PCA, IPCA and WIPCA.
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Figure 4: Weighted IPCA.

Then we erased a quarter of each of the last 360 images
(Fig. 5(e)) to test the performance of the incremental al-
gorithm which sequentially estimates the values of miss-
ing pixels. We left the first 40 images complete in order
to make possible to learn at least the initial representations
from the complete data. First we calculated the mean image
over all non-missing pixels, imputed the missing quarter on
each image with the mean values and performed the stan-
dard incremental PCA. Then we applied the incremental al-

gorithm for learning from incomplete data, which sequen-
tially imputed missing pixels using the previously acquired
knowledge. This method reconstructed the missing quar-
ters significantly better, as can be observed in Figs. 5(f,g).
Table 2 shows the overall mean squared reconstruction er-
ror between the complete original images and the recon-
structed images obtained from the coefficients, which were
estimated during the incremental learning. The error ob-
tained using the method which sequentially estimates miss-
ing pixels (robust) is significantly smaller than when the
simple mean-substitution was used (standard).

Finally, we occluded each of the last 360 images
with a randomly positioned square of a random intensity
(Fig. 5(h)). The standard non-robust incremental method
included also the squares into the representation, so they
appear in the reconstructed images shown in Fig. 5(i) as
well. On the other hand, the proposed robust incremental
method managed to sequentially detect squares as outliers
and reconstruct their values before the update. Therefore,
the squares were not included into the representation and the
reconstructed images (Fig. 5(j)) look much more similar to
the optimal reconstructions shown in Fig. 5(b). Therefore,
the robust method significantly outperformed the standard
one, as can also be concluded from the mean squared re-
construction errors presented in Table 2.

standard robust optimal
missing pixels 760 644 594

occlusions 915 710 594

Table 2: Results of standard and robust IPCA.

4.2. Background modeling
The goal of the background modeling is to build a model
of the background by detecting and discarding the objects
(foreground) in a sequence of images [13, 5]. Due to its
incremental nature and simplicity the proposed incremental
PCA is very well suited for solving such type of problems.

We performed the experiments on PETS’2001 training
sequences3. Six images from one sequence are depicted
in Fig. 6(a). The goal was to detect pedestrians, cars, and
bikers, which are crossing the scene and to adapt the back-
ground model accordingly. We built the eigenbackground
model consisting of eight eigenvectors. The backgrounds
estimated at six time steps of the modelling process (i.e.,
the reconstructed training images, which were processed in
those moments) obtained using three different approaches
are presented in Figs. 6(b-d).

First we applied the proposed non-robust incremental
method. One could expect that the outliers (pedestrians and
cars), which are not consistent with the appearance of the

3The images are publicly available on ftp://pets2001.cs.rdg.ac.uk/ .
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Figure 5: (a) Training images. Reconstructions using (b)
batch PCA, (c) IPCA, (d) weighted IPCA. (e) Training im-
ages with missing pixels. Reconstructions using (f) mean
substitution and standard IPCA, (g) IPCA with reconstruc-
tion of missing pixels. (h) Occluded training images. Re-
constructions using (i) standard IPCA, (j) robust IPCA.

background, are not modeled within the first principle com-
ponents and are therefore not included in the subspace rep-
resentations. However, this is not true in general; one can
observe that the cars are still included in the background
model in the third and fourth image in Fig. 6(b).

Then we applied the ‘hard’ robust method. This me-
thod successfully detected the pedestrians and cars, recon-
structed their values and excluded them from the represen-
tation (Fig. 6(c)). In the subsequence of images around
the images presented in the third and the fourth columns
in Fig. 6 one car leaves the scene and another car parks in
the spare lot. This changes are detected as ‘foreground’ and
do not affect the background model. Using the ‘hard’ robust
procedure, the background adapts only to smooth changes,

which are not detected as outliers.
If a more flexible model is required, we can use the tem-

porally weighted ‘soft’ robust method. In this case, the out-
liers are only down-weighted and are not completely re-
placed. As a consequence, they are not included in the
model, if they appear only for a short period of time, how-
ever, if they appear for a longer period, they are gradually
incorporated in the model of the background. This is evi-
dent from the last two images in Fig. 6(d). The car, which
has left the scene is not a part of the background any more,
while the new car, which has parked in the spare lot, has
been integrated into the current background. In this way,
the eigenbackground model can be more adaptive, accom-
modating to the current appearance of the scene.

5. Conclusion

In this paper we proposed a novel method for weighted
and robust incremental learning. The proposed incremen-
tal algorithm for PCA has the same general advantages over
the batch method as other previously reported incremental
approaches: it is significantly faster when the number of
training images is high, and it enables updating the cur-
rent eigenspace and on-line learning. In addition, there
are two advantageous features that make our method fun-
damentally distinct. Firstly, our method maintains the co-
efficients throughout the process of learning, thus the orig-
inal images can be discarded immediately after the update.
For some applications with a limited amount of memory re-
sources (e.g. mobile platforms, wearable computing) this
may be the only option. Using other methods, the images
have to be kept in the memory until the end of the learn-
ing process, if we want to obtain their representations in
the final eigenspace. And secondly, since our method main-
tains the coefficients of all images, it can be advanced into
a weighted method, which considers an arbitrary temporal
weight at each image at every step. Furthermore, the pro-
posed weighted method handles also spatial weights, which
can be set for each pixel in every image separately. Fi-
nally, by adding the robust preprocessing step, the method
is suited for visual learning in non-ideal training conditions
as well. Due to its incremental nature, this method for ro-
bust learning of eigenspaces is significantly faster than pre-
viously proposed batch methods.

The method is suitable for continuous on-line learning,
where the model adapts to input images as they arrive. The
algorithm is flexible, since it is able to treat each pixel and
each image differently. Therefore, more recent (or more
reliable, or more informative, or more noticeable) images
can have a stronger influence on the model then others. The
principles of short-term and long-term memory, forgetting,
and re-learning can be implemented and investigated. These
topics are the subject of our ongoing research.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



(a)

(b)

(c)

(d)

Figure 6: (a) Six input images from PETS’2001 training sequence. Background extracted by (b) non-robust IPCA, (c) ‘hard’
robust IPCA, and (d) temporally weighted ‘soft’ robust IPCA.
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