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Abstract be given by

We propose an algorithm to increase the resolution of multi- u(z) = aqun (2) + ...+ At (2). (1)

spectral satellite images knowing the panchromatic imagg gt ;s mention that in digital images, the only accessi-
high resolution and the spectral channels at lower resolutigfy information is a sampled and quantized versionpf
Our algorithm is based on the assumption t_hat, toa Iarg_e X7, 7), where(4, §) is a set of discrete points (in general on
tent, the geometry of.the spectral chgn_nels is cont_alned in H"Srid) andu(i, j) belongs in fact to a discrete set of val-
topographic map of its panchromatic image. This assumpss o1, ..., 255 in many cases. Since, by Shannon’s theory,
tion, together with the relation relating the panchromatic injje can assume that(z) is recoverable at any point from
age to the spectral channels, and the expression of the !H@’sample&(@j), as a first approximation, we may assume

resolution pixel in terms of the high resolution pixels giveg 5t the image:(x) is known in a continuous domain, up to
by some convolution kernel followed by subsampling, cogse quantization noise.

stitute the elements to construct an energy functional (W|th_|_he purpose of this paper will be to describe a method

several variants) whose minima will give the reconstructed . ; . . .
R ncrease the resolution of satellite multispectral images

spectral images at higher resolution. We shall discuss e 1 we know the corresponding panchromatic image at a
well foundedness of the above approach and describe our nus P gp 9

merical approach. Finally, some experiments are displayerHgher resolution. We shall assume that the panchromatic
' ' imageu has been sampled at higher resolution, and we have
an imageu(i, j) of size N x N pixels. The spectral chan-
nels have been sampled at a lower resolution giving images
1 Introduction of size &' x I (typically p = 2, or 4) which we shall de-
note byu? = (uf, ..., uk,), the superscript being explicitly
A grey level image can be realistically modeled as a rdgfFluded to stress thg loss of resolution of thelmultispecFraI
functionu(z) wherez represents an arbitrary point of a recdata. Our purpose will be to reconstruct the high resolution
angleQ in IR? andu(z) denotes the grey level at Typi- multlspegtral imagel = (u_l, .-, U, ), Which will be an im-
cally u(z) represents the photonic flux over a wide band 8@€ Of sizeV x N, knowing the data: and«”. For that
wavelengths and we have a proper grey level image. B¢ shall take |nt.o account several_ constraints |mposeq by
low, we shall refer to this image as the panchromatic imada€ data generation model. In particular, the low resolution
A multispectral image may be represented by a funcﬁonpme[ is formed from the high res'olutlon pixel by a low pass
from IR? to IR"™ wherem represents the number of Specfjltermg followed by a s_ub_sampllng. If we denote bythe
tral channels. For colour images, typically, = 3 if we ImPpulse response of this filter, we may write
consider the usuak, G, B channels. If we add the infrared N
channel to the colour channels we have a multispectralimage v (i,7) = k * u;(i,5) Vi,j € {0,...,— —1}. (2)
with m = 4. In this case each coordinate @) represents b
the intensity corresponding to a spectral channel, when e precise kerndl used in our simulations will be specified
photonic flux is subjected to an spectral selective filter, bebiglow. Obviously, we have to respect also the relation (1).
in the visible range, the infrared or the ultraviolet one. Wenally, we shall use the geometric information contained in
shall say that the panchromatic imageorresponds to thethe panchromatic image. Indeed, we shall constraint the ge-
multispectral image: if w(xz) has been obtained by addingmetry of the spectral channels at higher resolution to follow
(with some mixing coefficients) the coordinatesibfvhich the geometry of the panchromatic image. This constitutes
represent the energies of different spectral bands. In ottier main feature of our approach and needs further expla-
words, ifd = (uy, ..., uy, ) @nday, ..., o, represent the mix- nation. First, we shall explain what do we understand by
ing coefficients to compute the total spectral energy from ttiee geometric information contained in the panchromatic im-
above channels, the corresponding panchromatic image agk, and more generally, in any scalar image, including any



spectral channel. Then we shall explain the reasons whaittle into the plandR? without crossing points. Indeed,
support the underlying assumption tivaages taken on dif- in [2] it is proved that ifu is a function whose upper level
ferent spectral bands share common geometric informaticets X ,u are sets of finite perimeter (in particular,ifis a
For that we shall review the main conclusions in [7],[9]. function of bounded variation [3]), then the boundaries of
Before going into the details of our method, let us sdgvel sets can be described by a countable family of Jordan
that there exists a huge literature on the subject. The mostves with finite length. The family of all level lines of an
performing methods are based on the injection of high frieaage was called thempographic mag6]. We can conceive
quency components (corresponding to spatial details predbettopographic map as a tool giving a complete description
in the high resolution panchromatic image) in interpolated the geometry for grey level images.
versions of the multispectral data [12], or improvements Still, we have to go a step further in the description of the
based on multiresolution analysis of P+XS images [1]. Fgeometry of the topographic map. We shall assume that that
more information we refer to [1],[12], and references thereive can compute the normal unit vector to the level lines of
u, i.e., there is a vector field : Q@ — IR? with [f(x)] < 1
1.1 Mathematical morphology of scalar im- &€ such that- Vu = |Vul. To givg a rigorou; sense to this
ages expression, We.co_uld assume for instance thata functlon_
of bounded variation if2, and we have that (almost all) its
In this subsection, we shall consider scalar images, thatléyel setsu > )] are sets of finite perimeter whose bound-
images with a single channel, be it colour (or any other species are Jordan curves, and there is a vector fleldich
tral channel) or grey level. coincides with the unit normal vector at almost any point

What is the geometric information content of an imagd them (see Section 5). Then the ideniity Vu = [Vu|
2 This is the question we want to discuss briefly here. ¢4 be understood as equality of two measures. In prac-
this paragraph, we are simply summarizing some argume'i'ﬁg' at thevdlscrete level, can be defined by the relation
contained explicitly or implicitly in the Mathematical Mor-0(z,¥) = |ng§ij§\ whenVu(z,y) # 0, andf(z,y) = 0
phology theory [11], which were further developed in [6]. whenVu(z,y) = 0. This vector field will be the right ana-

The sensors of a camera or a CCD array transform {itic tool which we require to impose the constraint that the
continuum of light energies to a finite interval of value8€0metry of any functiom is specified by the geometry of

by means of a nonlinear contrast functipn The contrast ¥ indeed, by.

changeg depends on the properties of the sensors, but also

on the illumination conditions and the reflection propertieg 2 Geometry and color in natural images

of the objects, and those conditions are generally unknown.

Images are observed modulo an arbitrary and unknown c@¥hat is geometric content of a color image ? Obviously, the

trast change. These observations lead the physicist and pggwer to this question is quite complex and, strictly speak-

chologist M. Wertheimer [13] to state as a basic principleg, it cannot be reduced to the geometry of its associated
that the gray level is not an observable. intensity image. Indeed, counterexamples can be given were

Mathematical Morphology recognized contrast invarian€8!0r Objects exist with a constan})intt_ensity._ But what hap-
as a basic invariance requirement and proposed that imB§@s In images of natural scenes ? Will the light create color

analysis operations take into account this invariance prin@Rterns with color edges with a constant intensity ? This
ple [11, 8]. With this principle, an image is a represen- problem was addressed in [7] and the authors experimentally
tative of an equivalence class of imagesbtained fromu checked the hypothesis that the essential geometric contents

via a contrast change, i.a:,= g(u) whereg, for simplic- of a color image is contained in the level lines of the cor-
ity, will be a continuous strictly increasing function. Undei€Sponding intensity image. Indeed, they designed an algo-
this assumption, an image is characterized by its upper m to constrain the color channels of a given image to have
lower) level setsXy = [u > A = {z : u(z) > A} (resp. the same geometry (i.e. the same level lines) as the grey level
X =[u< ) ={z:u N A}). Moreover the image canl?]- The algorithm can be briefly describeplace the col-

be recovered from its level sets by the reconstruction form@E in @n image by their conditional expectation with respect
to the grey levelsIf the hypothesis above is sound, then this

u(z) = sup{\: z € X, }. algorithm should not alter the colors of the image or its vi-
sual aspect. We refer to [7] for this experimental discussion.
Thus, according to the Mathematical Morphology doctrine,

the reliable information in the image is contained in the Ie\(/]il Th f satellit I tral i
sets, independently of their actual levels. Thus, we are le U?’ € case ot satellite multispectral images

consider that the geometric information, the shape informg-the case of multispectral satellite images, the analogous
tion, is contained in those level sets. assumption would be that images of the same scene taken
We can further describe the level sets by their boundaries, different wavelength bands would share a common geo-
0Xu, which are, under suitable very general assumptiomsetric information. Indeed, this assumption was experimen-
Jordan curves. Jordan curves are continuous maps fromtttly studied in [9]. The experiments were done on images




of four spectral channels corresponding to the blue, grearich correspond to (1), and (2), respectively. To give a
red and near infrared regions. Two channels were compasedse to the relations in (4), we need to assume that it is
by means of their topographic maps. Two types of compgpiessible to evaluatk * X,, at any point ofS. For that, we

son were proposed: by means of the unit normal vector fisldall assume that

of the topographic map, and by means of pieces of its ley, . . .
lines [9]. With both comparison procedures the conclusicg ) kQ'S the kernel of a convolution operator mapping
was the same, the channels which are in the visible region L7(42) into C'(Q2).

share a large portion of its topographic map, this amount dénder assumptioH ), for any point(i,j) € €, the map
creases, but it is still large for the infrared channel. For thghich to anyf € L?(2) associates the value

red and infrared images, it was also showed that, after con-

trast inversion, there is still a portion of the topographic map . « f(;, j) = / k((i, ) = (z,9) f(@,y) dx dy

which is common to the topographic map of the blue channel Q

[9]. : : - onal B2 entit
Thus, based on the above arguments, we shall adopt;fg%é:gnstgnnuszes linear functional in(2) and identities (4)

hypothesis that for satellite multispectral imagesa large ,

extent, the geometry of the spectral channels is contained ir{ghe groblserr_] c_)f recovermg{Xl,Xg,Xg.)_ from v and

the topographic map of its panchromatic imag&his as- (X7, X5, X3 )_'S |II-p_osed. Indeed, conditions (3) and (4)

sumption, together with (1) and (2) is the basis of our varido not de_termlne unqu_Jer the vectaK:, Xz, X?{)’ and th?

tional approach to the problem studied here. proplem mvolyes the inversion of_a convolution equation.

) . ] Typically one is led to a regularization method. The geomet-
Let us explain the plan of the paper. Section 2 is deVOtﬁE{Drequirement that the geometry of the imagés Xo, X3

to describe the energy functional of our variational moded given by the geometry of the intensitywill give the re-
Finally, Section 3 is devoted to the description of the algauired regularization.

rithm and the numerical experiments. We end up in Section

4 with some conclusions. Finally, in Section 5 we briefigonstraining the geometry of the spectral channels.
comment on the mathematical justification of the problemsinces has the direction of the normal to the level lines of
u, the counterclockwise rotation of angte’2, denoted by

) ) 6+, represents the tangent vector to the level lines.ofn
2 The energy functional: continUOUS this case, if the spectral channels share the geometry of the

an dlscrete descrlptlon panChromatiC image, we have
) ) 0+ - VX, =0, n=1,23. (5)
2.1 The continuous formulation
o ) ] _ Obviously, the relations (5) cannot be exactly satisfied and
To fixideas, we assume that the multispectral image is gi\§B have to impose them in a variational framework (together

by a function : @ — R* whereQ is a rectangle of with the other constraints discussed at the introduction) by
IR?, say[0,1]2. We shall denote the coordinates @foy minimizing the sum of integrals

(X1, X5, X3) and call them the red, green and blue channels.

As above, we denote hythe intensity image corresponding 3
{0 7. Z%/ﬂ 65 VX, P (p=1,2), (6)
n=1

Assume that we are given the imagen 2 and that we
know the values ofi on a sampling gridS C Q whose Wherey, > 0. The same relationship can be imposed in
points will be called the low resolution pixels. Let us ded slightly different way. Indeed, given the vector figld
note by S the known values ofi on S, in coordinates, Of unit normals to the level sets of, and assuming that
@S = (X$,X5,X5). Recall that the low resolution pixelX1, X2, X3 € BV(Q2) we shall require thatvX,| =
is formed from the high resolution pixel by a low pass filtefl - VXn, n = 1,2,3. Again, these relations can be im-

ing followed by subsampling. Lét be the impulse responsePOSEd in a variational framework by minimizing the sum of
of this filter. Our purpose will be to reconstructfrom the integrals

datau and®. According to the discussion of Section 1, we >
should impose the following two relations 2—31 Tn /Q(‘VX”| —0-VXy). ()
w(z) = a1 X1(2) + 0 Xo(z) + a3 X3(2) A3) Let us write functional (7) in a convenient form for compu-

tational purposes. For that, we integrate by parts the second
whereas, as,as > 0, ay + as + a3 = 1, are the coeffi- term of each integral, and usirlg v = 0 on 92 (wherev is
cients which give the intensity image in terms of the specttfie outer unit normal t6£2), we may write (7) in the form
channels, and

3

X3(i,§) = k* X(3,§),Y(,7) € S,n=1,2,3  (4) Q

n=1



In both cases, the constants(n = 1, 2, 3) permit to control
the relative weight assigned to each channel.

Imposing (3) and (4) in a variational framework. We im-
pose the constraint (3) by minimizing the integral term

/((11X1 + o Xs 4+ asXs — u)’ )
Q
We may impose (4) by minimizing the sums
> (kx Xaling) = X7(0.9)°. (10)
(4,5)€S

We may write the above relations in an integral form, and this
will be useful in order to write the Euler-Lagrange equations
in a more compact form. We need some notation for that.
Let é(; ;) be the Dirac’s delta at the poifit, j). LetTls =
>_(i.j)es (i) be the Dirac’s comb defined by the gri
Then, we may write (10) as the integral

Figure 1: The color reference image’.

/ Mg(k * Xo(2,y) — X5(2,9))2dudy  (11)
Q

where X7 (z,y) denotes an arbitrary extension (frasnto

Q) of X2 (4, 5) as a continuous function. Since the integrarf@dbject to the same constraints as (13). Experiments on this

of (11) is multiplied byIlg, the term (11) does not dependunctional have been reported in [4]. Finally, let us note that

on the particu|ar extension dfs, n = 1, 27 3. the first integral in (14) was also used in [5] in the context
We shall impose a further constraint & G, B. Indeed, of fiIIing-in by joint interpglation of vect'or fields aqd gray

let M, = max(_jes max(M X5(i, ), n = 1,2,3. levels, in order to constrain the vector_fle!ilc_hnd the image

Then we shall in%ose that " AR 7777w to be related by - Vu = |Vul, but, in this case, both

andu where unknown.
0<X,<M, n=123. (12)

These constraints are useful for a mathematical justificatior] POth functionals we take:, 42, vs, A, > 0 (in prac-
of the algorithm. tice, all these parameters are taken equa)tandp = 1, or

Th ¢ ional. Th h2. Notice that functional (13) is invariant under the change
ne energy unctlonfi. us, We propose to compu.te. t % - —0, or, in other words, it is contrast invariant. The main
high resolution multispectral images;, X», X5 by mini-

> . i advantage of functional (13) is that the corresponding Euler-
mizing the energy functional: Lagrange equations when= 2 are linear and the steepest
descent method converges to a minimum in a much faster
way than (14).

3 3
o [T A [ (S X ¢
n=1 Q Q n=1

3
g ( (k* X, (2, y) — X5 (2,y))?
u,;/n S<( * Enl@9) 0 2.2 The discrete formulation
13)

subjectta) < X,, < M,,,n=1,2,3. . . . .
. . . To proceed with the discrete numerical algorithm, we
For the purposes of comparison, let us also write a Var'%'%tsume that the panchromatic image is given on
of (13) which is based on (8) {0,1,..., N — 1} x {0, ..., N — 1}. We replace the gradients

3 in (14) by its discrete approximation: for any scalar func-
Z%/(lVXn| +dive - VX,)+ tion f we shall use the notatioR++f = (Vi f,V/f),
n=1 79 Vtof = VIV, VO f = (Vo VS,

5 Vo f = (Vo iV, f) whereVif(i,j) = fi+1,5) —
A an_ 2 14 f(lvj).! V;f(z,]) = f(la.j)_f(l_la.j)’and Sl_mlla'r €x-
/Q(nzl “ uf+ (14) pressions hold fok’;= f (i, j). We use the notatiop™-# =

T luif vy £ 0 andg? = 0if VeBu = 0,

VPl

For simplicity, we shall only describe the discrete formu-

3
uz/glns((k*xn(m,y)—Xf(w))z



lation of (13) which can be written as

3 N—-1
SN Dm0 VO Kl g) P+

n=1 = af=+,—i,j=0

N-1 3
AD Q] anXa(ig) —uli,f)*+

i,j=0 n=1

3

n=1(ij)es

subjecttad < X,, < M,,,n=1,2,3,

each iteration by brute force. To avoid a cumbersome expres-
sion we have avoided to write in detail the terms involving
k.

3.1 Description of the data

To test our method we shall dispose of some reference im-
ages which we have been constructed by the CNES for
this purpose. Thus, we are given a reference multispec-
tral imagei ™’ = (Ryer(i,5), Gref(i,5), Brer(i,4)),i,j €

{0, ..., N — 1}, which has a resolution df.8 m/pizel and

satisfies Shannon’s rule. We shall consider the case where
wref are the usual color red, green, and blue channels, but
they could also represent the near infrared, red and green

_ (15) channels. The images take integer values in the range be-
Observe that we have used simultaneously the four digeeno and1023. Instead ofX1, Xo, X5 we shall use the

cretizations for the gradient, since using only one of themyal notation?, G, B. The corresponding intensity image
may produce some artifacts or asymmetries in the resultssléomputed by

is still to be precised the kernkland the discrete approxima-
tion of k x { X7, X5, X3}. This will be done in next Section.u’"ef(i,j) = apRcs(i,§) + agGres (i, j) + apBres (i, §)-

3 Algorithm and numerical experi-
ments

Figure 2: The panchromatic image at resolutiohm/pixel,
denoted in the text by.

To construct an image at resolutidré m /pizel we sub-
sample the imag@ e/ by a factor of2. Let us denote this
image byii' ¢ = (Ry.¢,G1.6, B1.g). Then

1.6/, -\ _ ~ref(o; o, ) N

a1, 5) = 4" (2,25) i,5€{0,..., 5 1}. @7

To construct an image at resolutidre m /pizel either we
average the pixels af'-% with a window of size 2 followed
by a subsampling of factd? (or we average the pixels of
"¢/ and subsample them by a factordf Let us denote this
image byii*? = (Rs.2,G3.0, B3.2). The precise relation is

@i, 5) = 3 S tmyeiony €020+ 1,25 +m)
(18)
= 1 X m)efo2y T (4 + 1,45 +m).

fori,j € {0,..., &' —1}. Our data will be constituted by’

and (R1.6,G1.6, B1g), or by u™/ and (R3.2,G3.2, B3.2),
depending if we want to test our algorithm to increase the
resolution by a facto@ or 4. The particular kernel is de-
scribed either by the relation betwegh® anda™/ given in

(17), or by the relation betweeit? andi™¢/ given in (18).
These kernels were suggested to us by the CNES with the
purpose of simple numerical experimentation.

To minimize (15) using the gradient descent method, va¢2  Numerical experiments

iteratively actualize the solution using the equation

XpHh = Xb+
FALLE Y s dives Pt (< 08 VAP XE > goof)
—pAtk! x (g (k * X2 — X3))
—)\anAt(Zizl anXP — ).
(16)

We have tested both cases: an increase of resolution by a
factor2, and4. To simplify our presentation we shall con-
centrate on the case of factor

As we have said in the previous subsection, our channels
Xy, X5, X3, represent the usudt, G, B channels. In our
experiments, we have taken = as = a3 = % (but they

The constraint tha¥,,, n = 1,2, 3, should remain in the could be any givenvalues),angd = =v3 =1, A=pu=
range betwee® and an upper value can be imposed aftér Let us mention that, in our experiments below, we have



Lt subsampling by subsampling:™/ by a factor of2 (see Figure 4.b). Us-
=4 TR ing this panchromatic image'® (which also permits us to
. . e compute the vector fielélentering in (15)), and the color im-
subsampling . | e convolution agei>2, we minimize (15) by means of the gradient descent
o] | . +subsanpling equations given in (16). The kernklis given by the first of
equations in (18). As initial conditions for (16) we simply
cre % U’ take a replication by a factar of @32, see Figure 4.c. We
obtain as a result an intermediate imagé" at a resolu-

) tion of 1.6 m/pixel. This intermediate result is displayed in
Figure 3: Our two-step strategy. Figure 4.d.

Tha E Joam x2

STEP 2

In the second step we compute a zoom of faetof the
result@’™t" of the previous step reaching finally the reso-
lution of 3.2m/pixel. This time the panchromatic image
is u™¢f (resolution3.2m /pizel), and the color image at the
resolution1.6m /pizel is @™, Again, we minimize (15)
(with convolution operatok = ¢) by means of the gradient
descent equations (16). We take as initial condition the im-
age obtained by a simple replication of the pixelsiofte
by a factor2. The result obtained is displayed in Figure 5.

The full scheme is contained in Figure 3. This scheme
in two steps is not essential to the method but it serves to
speed up its convergence. We could also proceed to a direct
minimization of (15) using equations (16), initialized with
the image obtained frori®-2 by a simple replication of its
pixels by a factort. Let us remark that more sophisticated
initializations (FFT or DCT based, or based on bilinear inter-
polation) could be used and they lead to similar results than
the ones reported here, though they exhibit a faster conver-

Figure 4: a) Top left: color image at resolutiore m/pixel, gence when using a di_rect minimization, and a slightly faster
72, b) Top right: the panchromatic image obtained by sufi?"vergence when using the two-step method.

samplingu”¢/ by a factor2 (resolution1.6 m/pixel. c) Bot- The PSNR's of the R,G,B channels are

tom left: initialization of (16) obtained by a replication oft3.07,46.55,43.83, respectively. Table 1 contains the
@32 by a factor2. d) Top right: the resulfi"**" obtained statistics of errors between Figures 5 and 1. Note that the

using (16). maximum error is 110.6 (recall that images take values in
the range from 0 to 1023) in the red channel, and is localized
in a pixel near the swimming pool, which has been lost
checked that the functional attains its minimum, in the serthge to the subsampling. High errors are mostly localized
that the value of each term of the functional (15) is nedr.toin regions with strong saturation of the intensity. Even if
The reference imagé ™/ = (Ryef,Gref, Brey) is dis- we do not display them here, let us mention that we also
played in Figure 1. Figure 2 displays the correspondempared these results with the results obtained with a
ing panchromatic image™/. Both are at resolutio.8 simple interpolation method like bilinear, and bicubique,
m/pixel. and the maximum{*, and¢? errors were typicallys times
The reference image permits us to assess the quahigger.
of the reconstructed image. We shall compare the reFinally, in Figure 6 we display the result obtained by mini-
constructed image$R, G, B) with the reference imagesmizing (14) instead of (13). The PSNR of tRe G, B chan-
(Ryef,Gref, Brey) both visually and by displaying some ernels are43.26,46.74,43.77, respectively. The statistics of
ror measures. We shall compute the PSNR, the maximurors are displayed in Table 2. We see that the errors are
the ¢! and¢? errors on the whole image and on certain reptightly better. In spite of this, the Euler-Lagrange equations
resentative regions. We also display the histogram of errassfunctional (13) withp = 2 are linear in the unknown vari-
and we make explicit some percentiles. ables, and the gradient descent exhibits a faster convergence.
We minimize (15) using the gradient descent equatiomke time spent reconstructing an image of size 800x800 pix-
given in (16). To accelerate its convergence we decompeteon a Pentium 1.8 GHz is of 63 seconds. A possible solu-
the algorithm in two steps (see Figure 3). In the first stéipn could be to compute first the result obtained using func-
we compute a zoom of facta@rof %2 = (Rs.,G3.0, B32) tional (13) withp = 2, followed by some gradient descent
(see Figure 4.a). For that, we need a panchromatic imageitktions of the equations corresponding to functional (14)
us call itu!5, at the resolution.6m /pizel which we create in order to improve the resuilt.




Figure 5: The reconstructed image obtained using functiofé@dure 6: The reconstructed image obtained using functional
(13) withp = 2. (14).

4 Conclusions

Errors
Max | 27 [ F [ode] Pio [ Pas [ Pao [ Prs [ Pan |

We have reported a variational model for increasing the res [ Channal N
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model is the incorporation of the hypothesis that, for satel- [ s orwmws [ o1 6] 23] 260l 55 [ 2ol 8o 4l 5 4 268
lite multispectral imagedp a large extent, the geometry of e e T
the spectral channels is contained in the topographic map o [l = LR (e e e P i
|t_s panchromatic |mageWe have constructe(_j tvyo slightly T I T T
S d d 47 0 14 02 0.4 08 1.3 i
different energy func_tlonals (14) and (13) which incorporate [Stieets and grous o g it 1o o od e
the above three basic postulates. We have to note that fun  [?hits dots ofwindows | &25] 23] 25 3 | 2a] 57| 75| 34 450
tional (13) is invariant under contrast inversion, i.e, under the —
change of) into —6. This could make it more adapted to treat "
the case of near infrared, red and green channels. Combin
tion of both functional should also be explored. Finally, we
described our algorithm to minimize them and we displayec
some experiments. (L0 i
. 0 1 2 3 4 B & 7 8 310 11213 1616 17 1813 20 21 22 23 24 26 26 27 28 23 20
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] Table 1: errors corresponding to the experiment of Figure 5.

5 Appendix In the histogram of errors, the columns correspond to red,
green, and blue errors, respectively.

Functions of bounded variation. Let () be an open set in
IR™. A functionu € L'(Q) whose partial derivatives in the
sense of distributions are measures with finite total variatithe essential boundag@y* E, which is rectifiable with finite
in Q is called a function of bounded variation. The class ¢f"~! measure, and compute the normal to the level set at
such functions will be denoted bV (Q). We say that a H"~! almost all points of* E. Thus at almost all points of
measurable sef C @ hasfinite perimeterin @ if its indi- almost all level sets ofi € BV (Q) we may define a nor-
cator functionyg € BV (Q). If w € BV(Q) almost all its mal vectorf(z). This vector field of normalg can be also
level setslu > A\ = {z € Q : u(z) > A} are sets of fi- defined (hence extended to &) as the Radon-Nikodym
nite perimeter. For sets of finite perimet@rone can define derivative of the measur&« with respect to|Vu|, i.e., it
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Histogram Press, 1982.

fi [12] L. Wald, T. Ranchin, and M. Mangolini, Fusion of Satellite Images
of Different Spatial Resolutions: Assessing the Quality of Resulting
Images, Photogramm. Eng. Remote. Sensing, vol. 63(6), pp. 691-699,

1997.
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Table 2: errors corresponding to the experiment of Figure 6.

formally satisfied) - Vu = |Vu| and, alsolf| < 1 a.e.. We
shall refer to the vector field as the vector field of unit nor-
mals to the topographic map af For further information
concerning functions of bounded variation we refer to [3].

Existence of solutions of the variational problems (13)
and (14). Let W'2(Q) denote the space of functionsec
L?(Q) such thatVu € L?(Q). Assume thad : Q — R is
such thatf(z)| < 1 a.e., and satisfiegiv 0+ ¢ L?(Q). Let
W(€,0) be the completion of¥1:2(Q2) with respect to the

norm
D(u) = (/Q |6+ - Vu|2)1/2 + (/Q |u\2)1/2‘

We have the following result.

Theorem 1 If div 6+ € L?(Q), then the functional (13) ad-
mits @ minimum iV (2, 6)3. Similarly, if divé € L?(Q),
functional (14) admits a minimum BV (2)3.
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