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Abstract

We propose an algorithm to increase the resolution of multi-
spectral satellite images knowing the panchromatic image at
high resolution and the spectral channels at lower resolution.
Our algorithm is based on the assumption that, to a large ex-
tent, the geometry of the spectral channels is contained in the
topographic map of its panchromatic image. This assump-
tion, together with the relation relating the panchromatic im-
age to the spectral channels, and the expression of the low
resolution pixel in terms of the high resolution pixels given
by some convolution kernel followed by subsampling, con-
stitute the elements to construct an energy functional (with
several variants) whose minima will give the reconstructed
spectral images at higher resolution. We shall discuss the
well foundedness of the above approach and describe our nu-
merical approach. Finally, some experiments are displayed.

1 Introduction

A grey level image can be realistically modeled as a real
functionu(x) wherex represents an arbitrary point of a rect-
angleΩ in IR2 andu(x) denotes the grey level atx. Typi-
cally u(x) represents the photonic flux over a wide band of
wavelengths and we have a proper grey level image. Be-
low, we shall refer to this image as the panchromatic image.
A multispectral image may be represented by a function~u
from IR2 to IRm wherem represents the number of spec-
tral channels. For colour images, typically,m = 3 if we
consider the usualR,G,B channels. If we add the infrared
channel to the colour channels we have a multispectral image
with m = 4. In this case each coordinate of~u(x) represents
the intensity corresponding to a spectral channel, when the
photonic flux is subjected to an spectral selective filter, be it
in the visible range, the infrared or the ultraviolet one. We
shall say that the panchromatic imageu corresponds to the
multispectral image~u if u(x) has been obtained by adding
(with some mixing coefficients) the coordinates of~u which
represent the energies of different spectral bands. In other
words, if~u = (u1, ..., um) andα1, ..., αm represent the mix-
ing coefficients to compute the total spectral energy from the
above channels, the corresponding panchromatic image will

be given by

u(x) = α1u1(x) + ... + αmum(x). (1)

Let us mention that in digital images, the only accessi-
ble information is a sampled and quantized version ofu,
u(i, j), where(i, j) is a set of discrete points (in general on
a grid) andu(i, j) belongs in fact to a discrete set of val-
ues,0, 1, ..., 255 in many cases. Since, by Shannon’s theory,
we can assume thatu(x) is recoverable at any point from
the samplesu(i, j), as a first approximation, we may assume
that the imageu(x) is known in a continuous domain, up to
the quantization noise.

The purpose of this paper will be to describe a method
to increase the resolution of satellite multispectral images
when we know the corresponding panchromatic image at a
higher resolution. We shall assume that the panchromatic
imageu has been sampled at higher resolution, and we have
an imageu(i, j) of sizeN × N pixels. The spectral chan-
nels have been sampled at a lower resolution giving images
of size N

p × N
p (typically p = 2, or 4) which we shall de-

note by~up = (up
1, ..., u

p
m), the superscriptp being explicitly

included to stress the loss of resolution of the multispectral
data. Our purpose will be to reconstruct the high resolution
multispectral image~u = (u1, ..., um), which will be an im-
age of sizeN × N , knowing the datau and~up. For that
we shall take into account several constraints imposed by
the data generation model. In particular, the low resolution
pixel is formed from the high resolution pixel by a low pass
filtering followed by a subsampling. If we denote byk the
impulse response of this filter, we may write

up
i (i, j) = k ∗ ui(i, j) ∀i, j ∈ {0, ...,

N

p
− 1}. (2)

The precise kernelk used in our simulations will be specified
below. Obviously, we have to respect also the relation (1).
Finally, we shall use the geometric information contained in
the panchromatic image. Indeed, we shall constraint the ge-
ometry of the spectral channels at higher resolution to follow
the geometry of the panchromatic image. This constitutes
the main feature of our approach and needs further expla-
nation. First, we shall explain what do we understand by
the geometric information contained in the panchromatic im-
age, and more generally, in any scalar image, including any



spectral channel. Then we shall explain the reasons which
support the underlying assumption thatimages taken on dif-
ferent spectral bands share common geometric information.
For that we shall review the main conclusions in [7],[9].

Before going into the details of our method, let us say
that there exists a huge literature on the subject. The most
performing methods are based on the injection of high fre-
quency components (corresponding to spatial details present
in the high resolution panchromatic image) in interpolated
versions of the multispectral data [12], or improvements
based on multiresolution analysis of P+XS images [1]. For
more information we refer to [1],[12], and references therein.

1.1 Mathematical morphology of scalar im-
ages

In this subsection, we shall consider scalar images, that is,
images with a single channel, be it colour (or any other spec-
tral channel) or grey level.

What is the geometric information content of an image
? This is the question we want to discuss briefly here. In
this paragraph, we are simply summarizing some arguments
contained explicitly or implicitly in the Mathematical Mor-
phology theory [11], which were further developed in [6].

The sensors of a camera or a CCD array transform the
continuum of light energies to a finite interval of values
by means of a nonlinear contrast functiong. The contrast
changeg depends on the properties of the sensors, but also
on the illumination conditions and the reflection properties
of the objects, and those conditions are generally unknown.
Images are observed modulo an arbitrary and unknown con-
trast change. These observations lead the physicist and psy-
chologist M. Wertheimer [13] to state as a basic principle
that the gray level is not an observable.

Mathematical Morphology recognized contrast invariance
as a basic invariance requirement and proposed that image
analysis operations take into account this invariance princi-
ple [11, 8]. With this principle, an imageu is a represen-
tative of an equivalence class of imagesv obtained fromu
via a contrast change, i.e.,v = g(u) whereg, for simplic-
ity, will be a continuous strictly increasing function. Under
this assumption, an image is characterized by its upper (or
lower) level setsXλ = [u ≥ λ] = {x : u(x) ≥ λ} (resp.
X ′

λ = [u ≤ λ] = {x : u(x) ≥ λ}). Moreover, the image can
be recovered from its level sets by the reconstruction formula

u(x) = sup{λ : x ∈ Xλ}.

Thus, according to the Mathematical Morphology doctrine,
the reliable information in the image is contained in the level
sets, independently of their actual levels. Thus, we are led to
consider that the geometric information, the shape informa-
tion, is contained in those level sets.

We can further describe the level sets by their boundaries,
∂Xλu, which are, under suitable very general assumptions,
Jordan curves. Jordan curves are continuous maps from the

circle into the planeIR2 without crossing points. Indeed,
in [2] it is proved that ifu is a function whose upper level
setsXλu are sets of finite perimeter (in particular, ifu is a
function of bounded variation [3]), then the boundaries of
level sets can be described by a countable family of Jordan
curves with finite length. The family of all level lines of an
image was called thetopographic map[6]. We can conceive
the topographic map as a tool giving a complete description
of the geometry for grey level images.

Still, we have to go a step further in the description of the
geometry of the topographic map. We shall assume that that
we can compute the normal unit vector to the level lines of
u, i.e., there is a vector fieldθ : Ω → IR2 with |θ(x)| ≤ 1
a.e. such thatθ ·∇u = |∇u|. To give a rigorous sense to this
expression, we could assume for instance thatu is a function
of bounded variation inΩ, and we have that (almost all) its
level sets[u ≥ λ] are sets of finite perimeter whose bound-
aries are Jordan curves, and there is a vector fieldθ which
coincides with the unit normal vector at almost any point
of them (see Section 5). Then the identityθ · ∇u = |∇u|
can be understood as equality of two measures. In prac-
tice, at the discrete level,θ can be defined by the relation
θ(x, y) = ∇u(x,y)

|∇u(x,y)| when∇u(x, y) 6= 0, andθ(x, y) = 0
when∇u(x, y) = 0. This vector field will be the right ana-
lytic tool which we require to impose the constraint that the
geometry of any functionv is specified by the geometry of
u, indeed, byθ.

1.2 Geometry and color in natural images

What is geometric content of a color image ? Obviously, the
answer to this question is quite complex and, strictly speak-
ing, it cannot be reduced to the geometry of its associated
intensity image. Indeed, counterexamples can be given were
color objects exist with a constant intensity. But what hap-
pens in images of natural scenes ? Will the light create color
patterns with color edges with a constant intensity ? This
problem was addressed in [7] and the authors experimentally
checked the hypothesis that the essential geometric contents
of a color image is contained in the level lines of the cor-
responding intensity image. Indeed, they designed an algo-
rithm to constrain the color channels of a given image to have
the same geometry (i.e. the same level lines) as the grey level
[7]. The algorithm can be briefly described:replace the col-
ors in an image by their conditional expectation with respect
to the grey levels. If the hypothesis above is sound, then this
algorithm should not alter the colors of the image or its vi-
sual aspect. We refer to [7] for this experimental discussion.

1.3 The case of satellite multispectral images

In the case of multispectral satellite images, the analogous
assumption would be that images of the same scene taken
on different wavelength bands would share a common geo-
metric information. Indeed, this assumption was experimen-
tally studied in [9]. The experiments were done on images



of four spectral channels corresponding to the blue, green,
red and near infrared regions. Two channels were compared
by means of their topographic maps. Two types of compari-
son were proposed: by means of the unit normal vector field
of the topographic map, and by means of pieces of its level
lines [9]. With both comparison procedures the conclusion
was the same, the channels which are in the visible region
share a large portion of its topographic map, this amount de-
creases, but it is still large for the infrared channel. For the
red and infrared images, it was also showed that, after con-
trast inversion, there is still a portion of the topographic map
which is common to the topographic map of the blue channel
[9].

Thus, based on the above arguments, we shall adopt the
hypothesis that for satellite multispectral images,to a large
extent, the geometry of the spectral channels is contained in
the topographic map of its panchromatic image.This as-
sumption, together with (1) and (2) is the basis of our varia-
tional approach to the problem studied here.

Let us explain the plan of the paper. Section 2 is devoted
to describe the energy functional of our variational model.
Finally, Section 3 is devoted to the description of the algo-
rithm and the numerical experiments. We end up in Section
4 with some conclusions. Finally, in Section 5 we briefly
comment on the mathematical justification of the problem.

2 The energy functional: continuous
an discrete description

2.1 The continuous formulation

To fix ideas, we assume that the multispectral image is given
by a function~u : Ω → IR3 where Ω is a rectangle of
IR2, say [0, 1]2. We shall denote the coordinates of~u by
(X1, X2, X3) and call them the red, green and blue channels.
As above, we denote byu the intensity image corresponding
to ~u.

Assume that we are given the imageu on Ω and that we
know the values of~u on a sampling gridS ⊆ Ω whose
points will be called the low resolution pixels. Let us de-
note by~uS the known values of~u on S, in coordinates,
~uS = (XS

1 , XS
2 , XS

3 ). Recall that the low resolution pixel
is formed from the high resolution pixel by a low pass filter-
ing followed by subsampling. Letk be the impulse response
of this filter. Our purpose will be to reconstructu from the
datau and~uS . According to the discussion of Section 1, we
should impose the following two relations

u(x) = α1X1(x) + α2X2(x) + α3X3(x) (3)

whereα1, α2, α3 > 0, α1 + α2 + α3 = 1, are the coeffi-
cients which give the intensity image in terms of the spectral
channels, and

XS
n (i, j) = k ∗Xn(i, j),∀(i, j) ∈ S, n = 1, 2, 3 (4)

which correspond to (1), and (2), respectively. To give a
sense to the relations in (4), we need to assume that it is
possible to evaluatek ∗ Xn at any point ofS. For that, we
shall assume that

(H) k is the kernel of a convolution operator mapping
L2(Ω) into C(Ω).

Under assumption(H), for any point(i, j) ∈ Ω, the map
which to anyf ∈ L2(Ω) associates the value

k ∗ f(i, j) =
∫

Ω

k((i, j)− (x, y))f(x, y) dx dy

is a continuous linear functional inL2(Ω) and identities (4)
have a sense.

The problem of recovering(X1, X2, X3) from u and
(XS

1 , XS
2 , XS

3 ) is ill-posed. Indeed, conditions (3) and (4)
do not determine uniquely the vector(X1, X2, X3), and the
problem involves the inversion of a convolution equation.
Typically one is led to a regularization method. The geomet-
ric requirement that the geometry of the imagesX1, X2, X3

is given by the geometry of the intensityu will give the re-
quired regularization.

Constraining the geometry of the spectral channels.
Sinceθ has the direction of the normal to the level lines of
u, the counterclockwise rotation of angleπ/2, denoted by
θ⊥, represents the tangent vector to the level lines ofu. In
this case, if the spectral channels share the geometry of the
panchromatic image, we have

θ⊥ · ∇Xn = 0, n = 1, 2, 3. (5)

Obviously, the relations (5) cannot be exactly satisfied and
we have to impose them in a variational framework (together
with the other constraints discussed at the introduction) by
minimizing the sum of integrals

3∑
n=1

γn

∫
Ω

|θ⊥ · ∇Xn|p (p = 1, 2), (6)

whereγn > 0. The same relationship can be imposed in
a slightly different way. Indeed, given the vector fieldθ
of unit normals to the level sets ofu, and assuming that
X1, X2, X3 ∈ BV (Ω) we shall require that|∇Xn| =
θ · ∇Xn, n = 1, 2, 3. Again, these relations can be im-
posed in a variational framework by minimizing the sum of
integrals

3∑
n=1

γn

∫
Ω

(|∇Xn| − θ · ∇Xn). (7)

Let us write functional (7) in a convenient form for compu-
tational purposes. For that, we integrate by parts the second
term of each integral, and usingθ · ν = 0 on∂Ω (whereν is
the outer unit normal to∂Ω), we may write (7) in the form

3∑
n=1

γn

∫
Ω

(|∇Xn|+ div θ ·Xn). (8)



In both cases, the constantsγn (n = 1, 2, 3) permit to control
the relative weight assigned to each channel.

Imposing (3) and (4) in a variational framework. We im-
pose the constraint (3) by minimizing the integral term∫

Ω

(α1X1 + α2X2 + α3X3 − u)2 (9)

We may impose (4) by minimizing the sums∑
(i,j)∈S

(k ∗Xn(i, j)−XS
n (i, j))2. (10)

We may write the above relations in an integral form, and this
will be useful in order to write the Euler-Lagrange equations
in a more compact form. We need some notation for that.
Let δ(i,j) be the Dirac’s delta at the point(i, j). Let ΠS =∑

(i,j)∈S δ(i,j) be the Dirac’s comb defined by the gridS.
Then, we may write (10) as the integral∫

Ω

ΠS(k ∗Xn(x, y)−XS
n (x, y))2 dx dy (11)

whereXS
n (x, y) denotes an arbitrary extension (fromS to

Ω) of XS
n (i, j) as a continuous function. Since the integrand

of (11) is multiplied byΠS , the term (11) does not depend
on the particular extension ofXS

n , n = 1, 2, 3.

We shall impose a further constraint onR,G,B. Indeed,
let Mn = max(i,j)∈S max(u(i,j)

αn
, XS

n (i, j)), n = 1, 2, 3.
Then we shall impose that

0 ≤ Xn ≤ Mn, n = 1, 2, 3. (12)

These constraints are useful for a mathematical justification
of the algorithm.

The energy functional. Thus, we propose to compute the
high resolution multispectral imagesX1, X2, X3 by mini-
mizing the energy functional:

3∑
n=1

γn

∫
Ω

|θ⊥ · ∇Xn|p + λ

∫
Ω

(
3∑

n=1

αnXn − u)2 +

µ
3∑

n=1

∫
Ω

ΠS

(
(k ∗Xn(x, y)−XS

n (x, y))2

(13)
subject to0 ≤ Xn ≤ Mn, n = 1, 2, 3.

For the purposes of comparison, let us also write a variant
of (13) which is based on (8)

3∑
n=1

γn

∫
Ω

(|∇Xn|+ div θ · ∇Xn)+

λ

∫
Ω

(
3∑

n=1

αnXn − u)2+

µ
3∑

n=1

∫
Ω

ΠS

(
(k ∗Xn(x, y)−XS

n (x, y))2

(14)

Figure 1: The color reference image~uref .

subject to the same constraints as (13). Experiments on this
functional have been reported in [4]. Finally, let us note that
the first integral in (14) was also used in [5] in the context
of filling-in by joint interpolation of vector fields and gray
levels, in order to constrain the vector fieldθ and the image
u to be related byθ · ∇u = |∇u|, but, in this case, bothθ
andu where unknown.

In both functionals we takeγ1, γ2, γ3, λ, µ > 0 (in prac-
tice, all these parameters are taken equal to1), andp = 1, or
2. Notice that functional (13) is invariant under the change
θ → −θ, or, in other words, it is contrast invariant. The main
advantage of functional (13) is that the corresponding Euler-
Lagrange equations whenp = 2 are linear and the steepest
descent method converges to a minimum in a much faster
way than (14).

2.2 The discrete formulation

To proceed with the discrete numerical algorithm, we
assume that the panchromatic imageu is given on
{0, 1, ..., N − 1} × {0, ..., N − 1}. We replace the gradients
in (14) by its discrete approximation: for any scalar func-
tion f we shall use the notation∇+,+f = (∇+

x f,∇+
y f),

∇+,−f = (∇+
x f,∇−

y f), ∇−,+f = (∇−
x f,∇+

y f),
∇−,−f = (∇−

x f,∇−
y f) where∇+

x f(i, j) = f(i + 1, j) −
f(i, j), ∇−

x f(i, j) = f(i, j) − f(i − 1, j), and similar ex-
pressions hold for∇±,±

y f(i, j). We use the notationθα,β =
∇α,βu
|∇α,βu| if ∇α,βu 6= 0 andθα,β = 0 if ∇α,βu = 0.

For simplicity, we shall only describe the discrete formu-



lation of (13) which can be written as

3∑
n=1

γn

4

∑
α,β=+,−

N−1∑
i,j=0

|θα,β(i, j)⊥ · ∇α,βXn(i, j)|2+

λ
N−1∑
i,j=0

(
3∑

n=1

αnXn(i, j)− u(i, j))2+

µ
3∑

n=1

∑
(i,j)∈S

(
(k ∗Xn(i, j)−XS

n (i, j))2,

subject to0 ≤ Xn ≤ Mn, n = 1, 2, 3,
(15)

Observe that we have used simultaneously the four dis-
cretizations for the gradient, since using only one of them
may produce some artifacts or asymmetries in the results. It
is still to be precised the kernelk and the discrete approxima-
tion of k ∗ {X1, X2, X3}. This will be done in next Section.

3 Algorithm and numerical experi-
ments

Figure 2: The panchromatic image at resolution0.8 m/pixel,
denoted in the text byu.

To minimize (15) using the gradient descent method, we
iteratively actualize the solution using the equation

Xp+1
n = Xp

n+
+∆tγn

4

∑
α,β=+,− divα∗,β∗ (

< θα,β ,∇α,βXp
n > θα,β

)
−µ∆tkt ∗

(
ΠS(k ∗Xp

n −XS
n )

)
−λαn∆t(

∑3
n=1 αnXp

n − u).
(16)

The constraint thatXn, n = 1, 2, 3, should remain in the
range between0 and an upper value can be imposed after

each iteration by brute force. To avoid a cumbersome expres-
sion we have avoided to write in detail the terms involving
k.

3.1 Description of the data

To test our method we shall dispose of some reference im-
ages which we have been constructed by the CNES for
this purpose. Thus, we are given a reference multispec-
tral image~uref = (Rref (i, j), Gref (i, j), Bref (i, j)), i, j ∈
{0, ..., N − 1}, which has a resolution of0.8 m/pixel and
satisfies Shannon’s rule. We shall consider the case where
~uref are the usual color red, green, and blue channels, but
they could also represent the near infrared, red and green
channels. The images take integer values in the range be-
tween0 and1023. Instead ofX1, X2, X3 we shall use the
usual notationR,G,B. The corresponding intensity image
is computed by

uref (i, j) = αRRref (i, j) + αGGref (i, j) + αBBref (i, j).

To construct an image at resolution1.6 m/pixel we sub-
sample the image~uref by a factor of2. Let us denote this
image by~u1.6 = (R1.6, G1.6, B1.6). Then

~u1.6(i, j) = ~uref (2i, 2j) i, j ∈ {0, ...,
N

2
− 1}. (17)

To construct an image at resolution3.2 m/pixel either we
average the pixels of~u1.6 with a window of size 2 followed
by a subsampling of factor2 (or we average the pixels of
~uref and subsample them by a factor of4). Let us denote this
image by~u3.2 = (R3.2, G3.2, B3.2). The precise relation is

~u3.2(i, j) = 1
4

∑
(l,m)∈{0,1} ~u1.6(2i + l, 2j + m)

= 1
4

∑
(l,m)∈{0,2} ~uref (4i + l, 4j + m).

(18)

for i, j ∈ {0, ..., N
4 −1}. Our data will be constituted byuref

and (R1.6, G1.6, B1.6), or by uref and (R3.2, G3.2, B3.2),
depending if we want to test our algorithm to increase the
resolution by a factor2 or 4. The particular kernel is de-
scribed either by the relation between~u1.6 and~uref given in
(17), or by the relation between~u3.2 and~uref given in (18).
These kernels were suggested to us by the CNES with the
purpose of simple numerical experimentation.

3.2 Numerical experiments

We have tested both cases: an increase of resolution by a
factor2, and4. To simplify our presentation we shall con-
centrate on the case of factor4.

As we have said in the previous subsection, our channels
X1, X2, X3, represent the usualR,G,B channels. In our
experiments, we have takenα1 = α2 = α3 = 1

3 (but they
could be any given values), andγ1 = γ2 = γ3 = 1, λ = µ =
1. Let us mention that, in our experiments below, we have



Figure 3: Our two-step strategy.

Figure 4: a) Top left: color image at resolution3.2 m/pixel,
~u3.2. b) Top right: the panchromatic image obtained by sub-
samplinguref by a factor2 (resolution1.6 m/pixel. c) Bot-
tom left: initialization of (16) obtained by a replication of
~u3.2 by a factor2. d) Top right: the result~uinter obtained
using (16).

checked that the functional attains its minimum, in the sense
that the value of each term of the functional (15) is near to0.

The reference image~uref = (Rref , Gref , Bref ) is dis-
played in Figure 1. Figure 2 displays the correspond-
ing panchromatic imageuref . Both are at resolution0.8
m/pixel.

The reference image permits us to assess the quality
of the reconstructed image. We shall compare the re-
constructed images(R,G,B) with the reference images
(Rref , Gref , Bref ) both visually and by displaying some er-
ror measures. We shall compute the PSNR, the maximum,
the`1 and`2 errors on the whole image and on certain rep-
resentative regions. We also display the histogram of errors,
and we make explicit some percentiles.

We minimize (15) using the gradient descent equations
given in (16). To accelerate its convergence we decompose
the algorithm in two steps (see Figure 3). In the first step
we compute a zoom of factor2 of ~u3.2 = (R3.2, G3.2, B3.2)
(see Figure 4.a). For that, we need a panchromatic image, let
us call itu1.6, at the resolution1.6m/pixel which we create

by subsamplinguref by a factor of2 (see Figure 4.b). Us-
ing this panchromatic imageu1.6 (which also permits us to
compute the vector fieldθ entering in (15)), and the color im-
age~u3.2, we minimize (15) by means of the gradient descent
equations given in (16). The kernelk is given by the first of
equations in (18). As initial conditions for (16) we simply
take a replication by a factor2 of ~u3.2, see Figure 4.c. We
obtain as a result an intermediate image~uinter at a resolu-
tion of 1.6 m/pixel. This intermediate result is displayed in
Figure 4.d.

In the second step we compute a zoom of factor2 of the
result~uinter of the previous step reaching finally the reso-
lution of 3.2m/pixel. This time the panchromatic image
is uref (resolution3.2m/pixel), and the color image at the
resolution1.6m/pixel is ~uinter. Again, we minimize (15)
(with convolution operatork = δ) by means of the gradient
descent equations (16). We take as initial condition the im-
age obtained by a simple replication of the pixels of~uinter

by a factor2. The result obtained is displayed in Figure 5.

The full scheme is contained in Figure 3. This scheme
in two steps is not essential to the method but it serves to
speed up its convergence. We could also proceed to a direct
minimization of (15) using equations (16), initialized with
the image obtained from~u3.2 by a simple replication of its
pixels by a factor4. Let us remark that more sophisticated
initializations (FFT or DCT based, or based on bilinear inter-
polation) could be used and they lead to similar results than
the ones reported here, though they exhibit a faster conver-
gence when using a direct minimization, and a slightly faster
convergence when using the two-step method.

The PSNR’s of the R,G,B channels are
43.07, 46.55, 43.83, respectively. Table 1 contains the
statistics of errors between Figures 5 and 1. Note that the
maximum error is 110.6 (recall that images take values in
the range from 0 to 1023) in the red channel, and is localized
in a pixel near the swimming pool, which has been lost
due to the subsampling. High errors are mostly localized
in regions with strong saturation of the intensity. Even if
we do not display them here, let us mention that we also
compared these results with the results obtained with a
simple interpolation method like bilinear, and bicubique,
and the maximum,̀1, and`2 errors were typically5 times
bigger.

Finally, in Figure 6 we display the result obtained by mini-
mizing (14) instead of (13). The PSNR of theR,G,B chan-
nels are43.26, 46.74, 43.77, respectively. The statistics of
errors are displayed in Table 2. We see that the errors are
slightly better. In spite of this, the Euler-Lagrange equations
of functional (13) withp = 2 are linear in the unknown vari-
ables, and the gradient descent exhibits a faster convergence.
The time spent reconstructing an image of size 800x800 pix-
els on a Pentium 1.8 GHz is of 63 seconds. A possible solu-
tion could be to compute first the result obtained using func-
tional (13) withp = 2, followed by some gradient descent
iterations of the equations corresponding to functional (14)
in order to improve the result.



Figure 5: The reconstructed image obtained using functional
(13) withp = 2.

4 Conclusions

We have reported a variational model for increasing the res-
olution of satellite multispectral data knowing the panchro-
matic image at higher resolution and the multispectral data
at a lower resolution. The model incorporates the relations
between the spectral channels and the panchromatic image
(1), and the relation describing how the low resolution pixel
is formed from the high resolution pixel by a low pass filter-
ing followed by subsampling (2). But the main feature of our
model is the incorporation of the hypothesis that, for satel-
lite multispectral images,to a large extent, the geometry of
the spectral channels is contained in the topographic map of
its panchromatic image. We have constructed two slightly
different energy functionals (14) and (13) which incorporate
the above three basic postulates. We have to note that func-
tional (13) is invariant under contrast inversion, i.e, under the
change ofθ into−θ. This could make it more adapted to treat
the case of near infrared, red and green channels. Combina-
tion of both functional should also be explored. Finally, we
described our algorithm to minimize them and we displayed
some experiments.
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5 Appendix

Functions of bounded variation. Let Q be an open set in
IRn. A functionu ∈ L1(Q) whose partial derivatives in the
sense of distributions are measures with finite total variation
in Q is called a function of bounded variation. The class of
such functions will be denoted byBV (Q). We say that a
measurable setE ⊆ Q hasfinite perimeterin Q if its indi-
cator functionχE ∈ BV (Q). If u ∈ BV (Q) almost all its
level sets[u ≥ λ] = {x ∈ Q : u(x) ≥ λ} are sets of fi-
nite perimeter. For sets of finite perimeterE one can define

Figure 6: The reconstructed image obtained using functional
(14).

Table 1: errors corresponding to the experiment of Figure 5.
In the histogram of errors, the columns correspond to red,
green, and blue errors, respectively.

the essential boundary∂∗E, which is rectifiable with finite
Hn−1 measure, and compute the normal to the level set at
Hn−1 almost all points of∂∗E. Thus at almost all points of
almost all level sets ofu ∈ BV (Q) we may define a nor-
mal vectorθ(x). This vector field of normalsθ can be also
defined (hence extended to allQ) as the Radon-Nikodym
derivative of the measure∇u with respect to|∇u|, i.e., it



Table 2: errors corresponding to the experiment of Figure 6.

formally satisfiesθ · ∇u = |∇u| and, also,|θ| ≤ 1 a.e.. We
shall refer to the vector fieldθ as the vector field of unit nor-
mals to the topographic map ofu. For further information
concerning functions of bounded variation we refer to [3].

Existence of solutions of the variational problems (13)
and (14). Let W 1,2(Ω) denote the space of functionsu ∈
L2(Ω) such that∇u ∈ L2(Ω). Assume thatθ : Ω → IR2 is
such that|θ(x)| ≤ 1 a.e., and satisfiesdiv θ⊥ ∈ L2(Ω). Let
W (Ω, θ) be the completion ofW 1,2(Ω) with respect to the
norm

Φ(u) =
(∫

Ω

|θ⊥ · ∇u|2
)1/2

+
(∫

Ω

|u|2
)1/2

.

We have the following result.

Theorem 1 If div θ⊥ ∈ L2(Ω), then the functional (13) ad-
mits a minimum inW (Ω, θ)3. Similarly, if div θ ∈ L2(Ω),
functional (14) admits a minimum inBV (Ω)3.
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