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Abstract: In this paper, the Max/Min flow scheme for 
image enhancement and denoising is firstly studied, and 
the speckle problem is solved under our proposed 
reformulated Max/Min flow scheme. Furthermore, it is 
proved that the continued application of the original 
scheme erodes all structures or boundaries for the grey-
level (or color) image. In order to control smoothing 
effect, the zero-crossing detector and GVF field are 
introduced in the curvature flow respectively, so that the 
proposed schemes can reach a steady state solution, and 
the final steady state images maintain the essential 
structures of the shape while the small oscillations are 
smoothed out.

1. INTRODUCTION

Since the eighties, linear and nonlinear PDE’s models 
have been introduced into image restoration and analysis 
as multi-resolution techniques. Of interest are the studies 
on the image anisotropic diffusion, in which the 
smoothing has to be adaptively controlled by the amount 
of smoothing and the direction along the image features 
respectively, such as Perona-Malik equation [1], shock 
filter [2], etc. The directional control is concerned at all 
times. Based on the total variation (TV) norm, the 
diffusion equation is written as a divergence form [3], 
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of intensity in the direction orthogonal to the gradient. 
For noise elimination, the diffusion equation in [4] is 

defined as, 
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operator of Gaussian σG∇  enhances the boundaries of
the shape. It has been proved that this diffusion equation 
is well-posed in the space of bounded variation. The 
similar model is also proposed in [8] independently. If an 
image is interpreted as a collection of iso-intensity 
contours which can be evolved, it is obvious that the 
divergence form of ξξI  can be interpreted as the 

curvature of intensity contour [6,7], 
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leads to a kind of diffusion equations, which is called the 
geometric curvature flow in the front propagation, and 
written as II t ∇= κ . In [5], Chen et al. generalized the 
curvature motion as image multi-scale analysis model, 

IFI t ∇= )(κ , where F is an increasing function of its 
curvature, and presented the proof of the uniqueness and 
existence of its viscosity solution. Usually, the speed 
function F is defined as one of the following two forms 

κκ =)(F  or 3)( κκ =F . The former is called the 
curvature flow, the later is called affine invariant flow 
[9], which permits to get the affine invariance. In order to 
enhance the image and remove noise without too much 
blurring, the Max/Min flow scheme is first proposed in 
[6]. Unfortunately, the implementation of this scheme 
contains a numerical problem that some speckle will 
appear in the grey-level (or color) image and contaminate 
the entire image gradually. An example is shown in 
Fig.2(a-c).
In addition, we wish a steady state image could be 
obtained, which removes noise while preserving the 
interesting boundaries simultaneously. In other words, 
we hope that the Max/Min flow scheme can reach a 
steady state solution. Unfortunately, it is not always 
guaranteed. In this paper, we proved that all the 
structures would be smoothed out under the original 
Max/Min flow scheme. In our presented schemes, the 
second derivate zero-crossing detector and the gradient 
vector flow (GVF) field [10] are introduced in the 
curvature flow under the Max/Min flow framework 
respectively, so that these modified schemes can reach 
trivial steady state solutions. However, the Max/Min 
flow framework is a flexible computational framework, 
and many methods and strategies can be combined into 
this framework.
This paper is organized as follows: in section 2, the 
Max/Min flow scheme is briefly introduced. In section 3, 
the Max/Min flow scheme is reformulated to overcome 
the above speckle problem. In section 4, it is proved that 
the continued application of the original scheme would 
erode all structures or boundaries for the grey-level (or 



color) image. In order to obtain a steady state solution, 
the GVF field and the second derivate zero-crossing 
detector are introduced in the curvature flow under the 
Max/Min flow framework respectively in section 5. 
Finally, our conclusions appear in section 6.

2. MAX/MIN FLOW SCHEME

The Max/Min flow scheme was first introduced in [6] for 
the grey scale, texture and color image enhancement and 
noise removal. An image is interpreted as a collection of 
iso-intensity contours which can be evolved. The level 
set equation of image intensity I can be written as,

IFI t ∇=                                    (1)
where, 
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where Ω is a neighborhood around some point. The 
above definition of speed function is called the Max/Min 
flow framework. For the binary images, the threshold is 
simply taken as the average of the two intensity values. 
Whereas, for the grey-scale and texture images, the 
threshold should be estimated as the average value of the 
intensity obtained along the direction perpendicular to 
the gradient direction in the neighborhood Ω. Let the 
interior intensity of the shape be less than the exterior 
ones. The particular behavior of the max flow and min 
flow are respectively described in the following 
properties, (see [6,7] for detail)
Property 1: The flow under F = min( ,0) allows the 
inward concave fingers to grow outward, while 
suppressing the motion of the outward convex regions. 
And the motion halts as soon as the convex hull is 
obtained.
Property 2: The flow under F = max( ,0) allows the 
outward convex regions to grow inward while 
suppressing the motion of the inward concave regions. 
Once the shape becomes fully convex, the flow becomes 
the same as regular curvature flow, in which case the 
shape collapses to a point.
In fact, the key idea of the Max/Min flow scheme is to 
select the correct choice of flow that both smoothes out 
small oscillations, while maintains the essential details of 
the shape.

3. ANALYSES AND SOLUTION OF SPECKLE 
PROBLEM

The speckle problem appearing in implementation of the 
scheme (1) results from the texture or noise in images. It 
is a numerical drawback.
First, we imagine the binary case where there are only 
two grey levels in an image: one is object intensity, and 

another is background intensity. Suppose that the 
background color is lighter than the object color, i.e. its 
intensity value is greater than the object one. The 
threshold in Eq.(1) is defined as the average of these two 
intensity values (see Fig. 1). Let some intensity contour 
pass the point A, and the circle range is the neighborhood 
around point A. If point A belongs to the object region, 
the smoothing takes place. Since the threshold is greater 
than the intensity average of )(XI  in the neighborhood 
around the point A, the max flow is chosen. And since 
the contour shape is convex, the curvature of point A is 
always positive, and the intensity contour moves inward 
the object region until the average becomes greater, and 
the “min” switch takes over. If point A belongs to the 
background region, no diffusion takes place. Since the 
threshold is less than the average, the min flow is chosen. 
But then the curvature of point A is positive, the speed is 
set to zero. Thus, no change occurs at the point A.
When the observed image is a gray scale or texture 
image, the analysis will become more complicated than 
the binary case. The threshold in Eq.(1) is defined as the 
average value of the intensity obtained in the tangential 
line, which is tangent to the intensity contour at point A 
(see Fig.1). Suppose that the threshold is greater than the 
average of the neighborhood and the curvature of point A 
is positive. Obviously, the intensity of point A should be 
updated. Because of the spurious edge, noise or 
numerical errors, it is possible that the intensity value of 
point A is greater than the threshold. Thus, its intensity 
value is updated as a greater one. After several iterations, 
the distinct highlight speckles will appear at point A. For 
the dark speckles, there is a similar analysis too.

Fig. 1. The decision of max/min flow

In Fig.2(a-c), we illustrate the evolution results at 
different iteration steps. With continued application of 
scheme Eq.(1), the speckles will contaminate the whole 
images gradually. In order to overcome the above 
problem, the decision rule in Eq.(1) should be revised. 
According to the two properties in section 2, we know 
that the flow under )0,max(κ=F  diffuses away all of 
the information while the flow under )0,min(κ=F
preserves some of the structure. It is clear that when the 
average is less than the threshold, selecting the max flow 
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is to smooth out small oscillations, but not to enhance. 
Thus, any enhancement operation should be suppressed. 
According to the above analysis, we notice that the 
decision rule is too simple to select the correct choice 
between the max and min flows. So, the max/min flow 
can be re-defined as,

( )

( )

















>
>Ω∈





<
<Ω∈

=

ThresholdYI
ThresholdYX

otherwise
ThresholdYI

ThresholdYX

F

)(
)(average

),0,min(

,0
)(

)(average
),0,max(

κ

κ

  (2)

Obviously, when the threshold is greater than the 
average, but the intensity of point A is greater than the 
threshold, the speed function is set to zero. So, no 
speckle appears at point A. The experiment result is 
shown in Fig.2(d).

a. iteration=30                  b. iteration=60

c. iteration=90                      d. iteration=60
Fig. 2. The speckles appear using Eq.(1) in (a-c), but they 

could be suppressed by Eq.(2) in (d).

4. CURVATURE EQUATION UNDER MAX/MIN 
FLOW FRAMEWORK

As a kind of anisotropic diffusion model, the curvature 
flow contains a few particular geometric and numerical 
advantages. The most attractive quality of this kind of 
approaches is that sharp boundaries are preserved. 

According to Grayson’s theorem, we know that all 
information is eventually removed through continued 
application of the curvature flow scheme. In order to 
preserve some important features after continued 
application of the curvature flow scheme, the Max/Min 
scheme is introduced in the speed function [6,7]. We will 
prove that this expectation could not be guaranteed under 
the scheme of Eq.(1).
First, consider the definition of the speed function. We 
wish the scheme of Eq.(1) could reach a steady state 
solution, i.e. 0=tI . Roughly speaking, we might think 
that the final solution (intensity )(XI ) be a harmonic 
function, and that the curvature flow could lead Eq.(1) 
towards a harmonic solution. According to the mean 
value theorem for harmonic functions, we know that the 
isolated noise points and notch shaped structure in the 
neighborhood around some point would be smoothed out 
gradually. It is easy to verify that the inflectional shape 
or boundary in the neighborhood will gradually become 
straight or die out according to the definition of the speed 
function in Eq.(1). They are illustrated in Fig.3. Thus, we 
have,

Proposition 1: The speed function in Eq.(1) will result 
in the edges or boundaries of shape tending to straight.

Fig.3 The boundary of shape tending to straight, where the 
circle is a neighborhood around some point

Then, we consider the continued application of the 
scheme of Eq.(1). It is expected that all oscillations 
below some radius level be removed, while all features 
above that level are preserved; and the algorithm can 
stop automatically once the sub-scale noise is removed. 
Unfortunately, it isn’t able to accomplished in practice.
Suppose that after enough iteration steps, all oscillations 
below some radius (it is also the radius of neighborhood 
around some point) are removed. In other word, the 
inflection edge becomes straight line in the neighborhood 
around every point that is on the boundaries of shapes 
according to the proposition 1, while all the features 
above that radius will be preserved. This supposition is 
described as follows.
Assume that L is a bending boundary above some radius 
r, and the circle is the neighborhood around some point 

L∈∀x  (see Fig.4). Point 1x  is far away from point nx . 
In the neighborhood around points nxx ,1 , the two 



segments of L are both straight lines, LBABA nn ⊂,11 , 
whose extension lines intersect at point C.

Fig.4 The edge L in a steady state image

Let the increment r≤∆x  is small enough, so that the 

new segment of L, 22 BA , in the neighborhood around 
point L∈∆+= xxx 12  is a straight line. Then, 

LBABBAA ∈∆+=∆+= 221212 ,and,, xx . Obviously, 
after the limited extension steps m, 
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have CBm = . Similar extension procedure is applied to 

point nx . After the limited extension steps p, we have 
CAp = , i.e. LCBAAB ppmmpm ∈= ,,,,and, xx . Then, 

in the neighborhood around point C, the two segments of 
L, CC pm xx and , should have the same slope. In other 

words, the two line segments nnBABA and11  also have 

the same slope. Thus, the straight lines CBCA nand1

overlap, and LCBCA n ⊂,1 . It is clear that the edge L
must be straight line. This conclusion conflicts with the 
initial supposition. Hence, L must be a straight line.
If the length of L is limited, there is a corner at the ends 
of L. Continued application of scheme Eq.(1) smoothes 
out these corners, and results in diffusing away all of the 
structures. From the above analysis, we conclude the 
following proposition,

Proposition 2: The final steady state solution of scheme 
Eq.(1) should be the following two cases:
1) If the inflection edge becomes straight line in the 

neighborhood with arbitrary radius level around 
every point that is on the boundaries of shapes, the 
edge of shape must be a straight line over the 
boundary of the whole image;

2) otherwise, all the features are smoothed out.

The regular curvature equation usually satisfies the 
maximum/minimum principle, i.e. the solution does not 
have local maximum or minimum at time 0>t , and the 
global extrema are bounded by these of the initial and 
boundary conditions. The boundary conditions usually 

refer to Neumann boundary conditions ( 0=
∂
∂
n
I  where n

is the direction of gradient). Obviously, the global 
extreme occurs at initial time, i.e. )(0 xI . And the steady 
state solution should be a constant function. The Grayson 
theorem implies that the shapes or boundaries driven by 
the curvature flow will collapse to a point, and all 
information die out. This is the steady state solution of 
the regular curvature equation. It is clear that the 
decision rule in Eq.(1) results in the same steady state 
solution as one of the regular curvature flow.
Another interested phenomenon is that many continued 
iteration of scheme Eq.(1) with some small radius is 
roughly similar to one application of scheme Eq.(1) with 
some large radius. Assume that the length of some edge l
is greater than a radius, rl > , no diffusion takes place 
at the center of l, while the smoothing takes place at the 
two ends of l under the scheme of Eq.(1). It can be 
noticed that the length of l is becoming less and less with 
continued application of scheme Eq.(1). When rl < , 
the diffusion takes place at center of l. The edge l is 
smoothed out. If the radius is selected so large that the 
initial edge l satisfies rl <  at the beginning, it is 
obvious that diffusion takes place at every point on l. The 
edge l will be smoothed out quickly. So, we have,

Proposition 3: Iteration of scheme Eq.(1) with a small 
radius is roughly the same as one evolution with a large 
radius.

a. original image             b. iteration=140

c. iteration=360            d. iteration=80
Fig. 5. The comparison of evolution results between radius=1 

and radius=5

In Fig.5(a-c), we illustrate the evolution of a simple grey 
image using Eq.(2) with radius=1. From Fig.5(a-c), it can 
be seen that the continued iteration of this Max/Min flow 
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will result in the erosion of the structure of the object. In 
addition, the evolution result for Eq.(2) with radius=5 is 
shown in Fig.5(d). It can be noticed that Fig.5(d) is 
similar to Fig.5(b) even with different numbers of 
iteration and radii. 

5. MODIFYING SCHEME

It is ideal that the algorithm could stop automatically 
once some scale noise was removed, and the continued 
iteration of the Max/Min flow scheme would not produce 
further smoothing. Hence, a stricter stop criterion is 
required. Although does the scheme of Eq.(1) smooth out 
all the structures, the Max/Min flow scheme is a flexible 
computational framework. Its problem is that the 
decision rules in Eq.(1) are inapposite. It needs to be 
redefined. In fact, under the Max/Min flow scheme, we 
have two choices, one is to modify the curvature term 
and another is to redefine the decision rules.

Modified Scheme 1
First, we present a new scheme by redefining the 
decision rules. Consider the heat operator to be applied 
to the image intensity. Obviously, isotropic smoothing 
takes place in all directions. Sharp boundaries will be 
smeared. Conversely, the inverse heat equation could 
deblur or enhance an image. The famous example is the 
shock filter, in which the sign of the Laplacian, sign( I), 
is used to decide the evolving direction. Since the change 
of sign(∆I) indicates that the current position should be 
on some boundaries. The reverse heat equation would 
enhance these boundaries. In the curvature motion 
equation, the diffusion should take place in the direction 
orthogonal to the gradient, whereas the boundaries in the 
gradient direction only need to be enhanced. This is 
easily fulfilled by replacing the Laplacian with the 
second derivative of image intensity in the direction of 
intensity gradient, ηηI , where  is the direction of 
gradient. The scheme of Eq.(2) can be rewritten as,
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where, σG  is a Gaussian filter with variance 2σ . The 
edgef term in Eq.(3) is namely a zero-crossing detector 
based on the second derivative. When 0>edgef , the 
edges are out of the detection window 33×Ω . The 
diffusion takes place. On the other hand when 

0≤edgef , the window 33×Ω  should straddle the edges. 
So, no diffusion takes place. In practice, this kind of 
zero-crossing methods is usually implemented with the 
sophisticated canny edge detector. In this scheme, we 
firstly apply the canny detector on a sub-image centered 
around some point Y with n by n size. Then, the window 

)(33 Y×Ω  around the point Y is defined on the output 
binary image from the canny detector. In this way, the 
edgef term becomes very simple.
It can be easily verified that when the current point is on 
some boundaries, the change of the sign of the second 
derivate stops the motion of the Max/Min flow. The 
further diffusion across the edges is suppressed. In this 
way, the sharp boundaries will be preserved, and 
smoothing would take place inside a region, but not 
across region boundaries. Hence, the scheme of (3) can 
reach a steady state solution.

a. original image           b. Using Eq.(3) with iteration=400

c. Using Eq.(2) with iteration=200
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d. Error diagram
Fig. 6. Comparison of the evolution results using Eq.(2) and 

Eq.(3).

In Fig.6, we illustrate the evolution results of using the 
scheme of Eq.(2) and Eq.(3) with radius=1 on a 
mammographic image. Fig.6(d) demonstrates the scheme 
of Eq.(2) and Eq.(3) respectively reaching a steady state 
solution with the evolution error, which is calculated as, 
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1 , where m and n are the 

width and height of image respectively. It can be noticed 
that the algorithm by Eq.(3) can stop automatically when 
all textures below the radius are removed, and the 
continued application of Eq.(3) will not produce further 
change. This should be contrasted with the results of 
applying Eq.(2), which can’t terminate automatically, 
and will evolve into an image where the texture is 
smoothed and structure is eroded all along. In addition, it 
can be noticed that the effect of diffusion also relies on 
the zero-crossing detector. It is critical to select proper 
thresholds for the canny edge detector.

Modified Scheme 2
In the above presented scheme, the second derivate zero-
cross detector is introduced to the decision rules under 
the Max/Min flow framework. As well, we yield the 
second presented scheme by introducing the gradient 
vector flow field to the curvature term.
The gradient vector flow (GVF) is computed as a 
diffusion of the intensity gradient vectors. In other 
words, the GVF is estimated directly from the continuous 
gradient space, and its measurement is contextual and not 
equivalent with the distance from the closest point. Thus, 
the noise can be suppressed. Besides that, the GVF 
provides a bi-directional force field that captures the 
object boundaries from either side. This provides a 
correct evolving direction for the curvature flow, and will 
lead to a steady state solution in the following presented 
scheme.
First, a Gaussian edge detector (zero mean, with Eσ
variance) is used in the edge map defining [11],
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The GVF field )(xvr  is defined as the equilibrium 
solution to the following vector diffusion equation,
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where  is a blending parameter. This field contains 
mainly contextual information and the flow vectors of 
this field always point to the closest object boundaries.
The )(xvr  is dot-multiplied by the intensity norm vector, 
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For the convenience, the Gaussian operator σG  in )(xf
is omitted. Obviously, the above equation is equal to the 
second derivative of I in the direction of the intensity 
gradient, ηηI , up to a positive scale . The sign of Nv ⋅

r

will change along the normal to the boundaries in the 
neighborhood of boundaries even if the direction of 
gradient N doesn’t change. Thus, the GVF indicates a 
correct evolution direction of the curvature flow, but not
the intensity gradient. In Fig.7, the vector )(xv

r
 in the 

GVF image always point to the closest boundaries of 
object.

Fig.7 GVF field corresponding to the rectangle on right image

Obviously, the optimal way to reach the boundaries is to 
move along the direction of GVF. Given the fact that the 
propagation of the curvature flow always takes place in 
the inward normal direction, it is clear that the optimal 
propagation is obtained when the direction of )(xv

r
 and 

the evolving direction of the original curvature flow from 



the observed images, ─ N, are identical. Because of the 
noise or spurious edge, the evolving direction of the 
curvature flow can’t always align to the )(xvr . Hence, the 
worse case occurs when the )(xvr  is tangent to the 
evolving direction. However, the correct curvature flow 
can be defined by their inner product as follows,
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Under the Max/Min flow framework, we have
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From the proposition 2, we know the curvature flow 
under the Max/Min flow framework will smooth out all 
structure except the edges of shape over the boundary of 
the whole images. When the curvature flow  is replaced 
by κ̂ , it is obvious that the evolving direction of the 
curvature flow should be determined by ( )Nv κ⋅−

rsign . 
Consider a small neighborhood of some point on the 
boundaries of shape Ω. For some point X∈Ω, we assume 
that the intensity curvature >0 and the GVF and the 
evolving direction of the curvature flow  have the same 
direction, i.e. ( ) 1=⋅− Nv κ

rsign . If the max flow is 
selected according to the decision rules in Eq.(4), the 
convex in Ω is smoothed. The curvature flow runs across 
the boundary of shape. Then, in the next iteration, the 
GVF and the evolving direction of the curvature flow 
have opposite directions, i.e. ( ) 1−=⋅− Nv κ

rsign . Even if 
the max flow is selected according to the decision rules 
in Eq.(4), the speed function is set to zero, i.e. 0=F , 
and therefore any the further diffusion would be 
suppressed. So, the final steady state image should 
contain the essential structures of the shape.
In fact, the flow under κ̂=F  is namely the shock filter. 
Expanding κ̂ , we yield,
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and its evolution equation, IIsignIt ∇−= κλ ηη )( . 
Clearly this is the standard shock filter equation up to a 
positive scale κ . The scheme of (4) may be viewed as 
an implementation of the shock filter under the max/min 
flow framework. As a matter of fact, the classical shock 
filter is extremely sensitive to noise. Whereas, the 
scheme of Eq.(4) performs well on enhancing and 
denoising.

The distinct advantage of the GVF fields is to provide a 
large capture range for the edges. This is in favor of 
denoising. Thus, we illustrate the scheme of (4) on the 
noisy and blurred image. In Fig.8, we show the evolution 
results of applying our presented scheme of (4) on the 
same mammographic image as in Fig.6. The original 
image is degraded with Gaussian noise (zero mean, with 
0.1 variance) in Fig.8(b). Fig.8(d) demonstrates the 
scheme of Eq.(4) reaching a steady state solution with 
the evolution error diagram. Obviously, the presented 
scheme can effectively remove noise while preserving 
some essential features of object simultaneously. The 
original medical image is very blurry, and its luminous 
contrast is very low. In order to illustrate the properties 
of the scheme (4), we apply this scheme on a nature 
scene image, so that its advantages become evident. In 
Fig.9(b), the original water lily image is blurred and 
degraded with Gaussian noise. We can see that the 
features of the lily image are enhanced effectively, and 
the final steady state image can preserve the essential 
details. In addition, the final effect of diffusion also relies 
on the GVF fields. The ideal case is that all the essential 
details of shape should be preserved in the GVF fields.

a. Original image               b. Gaussian noisy image

c. iteration=400



100 200 300 400 Iteration

0.01

0.02

0.03

0.04

0.05
Error

d. Error diagram
Fig.8 Applying Eq.(4) on the Gaussian noisy image

a. original image   b. blurring and adding Gaussian noise

c. iteration=200
Fig.9 Water lily image is restored

6. CONCLUSIONS

In this paper, we studied the image enhancement and 
denoising under the Max/Min flow framework, and 
solved the speckle problem under the proposed 
reformulated Max/Min flow framework. Furthermore, we 
proved that the continued application of the original 
scheme would erode all structures or boundaries for the 
grey-level (or color) image. In order to control 
smoothing effect, the zero-crossing detector and GVF 
field are introduced in the curvature flow, so that the 
proposed schemes can reach a steady state solution 
respectively, and the final steady state image maintains 

the essential structures of the shape while the small 
oscillations are smoothed out.
From the experiment results of the medical image, the 
edge contrast is not enough. Thus, we will try to 
introduce the inverse diffusion equation to the proposed 
scheme in future work.
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