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Abstract

In film production, it is sometimes not convenient or
directly impossible to shoot some night scenes at night.
The film budget, schedule or location may not allow
it. In these cases, the scenes are shot at daytime, and
the ’night look’ is achieved by placing a blue filter in
front of the lens and under-exposing the film. This tech-
nique, that the American film industry has used for many
decades, is called ’Day for Night’ (or ’American Night’
in Europe.) But the images thus obtained don’t usually
look realistic: they tend to be too bluish, and the ob-
jects’ brightness seems unnatural for night-light. These
problems stem from the fact that this Day for Night pro-
cess is exclusively optical (filters, film exposure), and
hence it can’t provide the modifications that account for
how we see the world at night: different spectrum for
the night illuminant, desaturation of colors, brightness
modification according to wavelength, contrast modi-
fication according to luminance adaptation levels, and
non-uniform and non-linear loss of resolution. In this
article we introduce a digital Day for Night algorithm
that achieves very realistic results. We use a set of very
simple equations, based on real physical data and visual
perception experimental data. To simulate the loss of
visual acuity we introduce a novel diffusion Partial Dif-
ferential Equation (PDE) which takes both luminance
and contrast into account, produces no ringing, is stable,
very easy to implement and fast. The user only provides
the original day image and the desired level of darkness
of the result. The whole process from original day image
to final night image is implemented in a few seconds,
computations being mostly local.

1 Introduction
In his book ’Making movies’ [10], the great American direc-
tor Sidney Lumet points out the difficulties of night shooting
on location. Apart from the inherent lack of control that lo-
cations have (as opposed to studios), night shooting requires
that everything be lit artificially. This may be a big prob-
lem if the location covers a wide area. In some locations
the terrain may make it difficult to bring the truckloads of
lamps and generators that the shooting requires. Because
they make a lot of noise, generators are placed far from the

set so as not to interfere with the sound department. Very
long cables have to be laid from the lights to the generators,
and the rigging crew and electricians have much more extra
work. If the night shooting continues for weeks, cast and
crew get exhausted. And on the days when night shooting
takes place, there is time for very little or no day shooting
at all, which may complicate the schedule. If the geography
of the location is very inconvenient or dangerous for shoot-
ing at night, or if the budget can’t afford extra pay for night
shooting, or if a schedule delay is out of the question, what
is usually done is Day for Night: the night scene is shot at
day, but with a technique that gives a ’night look’ to the film.

This technique is exclusively optical, typically a blue fil-
ter is placed behind the lens, and the film is under-exposed.
While this usually works, the results nonetheless lack real-
ism. Blue turns out to be the predominant color, the other
colors virtually indistinguishable. The objects in the scene
have a very unnatural brightness. They are dimmer than with
daylight, but somehow we still can see everything that is in
the scene. Moreover, no detail is lost: if there is a sign with
small fonts, we can read it as if it were noon.

The problem is that with mere optical means (blue filters,
under-exposure) we can not expect to reproduce all the mod-
ifications that account for how we see the world at night.
Firstly, let us assume that no artificial light source is present
in our scene, i.e., that all the light is supposed to be com-
ing from the moon, the sky and the stars. While it is true
that at night we perceive blue objects brighter, this is not
due to the light at night being bluer. Actually, light at night
has a power spectrum with a stronger red component than
daylight, and with less blue [9]. It is the human visual sys-
tem that works very differently under low light conditions.
The colors are perceived as less vivid, brightness is modified
according to wavelength, the contrast changes significantly,
and visual acuity decreases. It is therefore usual for Day
for Night footage to be heavily retouched in post-production,
mostly manually, by a color artist.

In this article we propose an algorithm to automatically
transform a ’day image’ into a ’night’ version of it. The only
other input necessary is the desired level of darkness of the
final result. Currently our implementation only deals with
natural light sources, but we hint at a way to incorporate ar-



tificial lighting to our scenes. Our algorithm uses a very sim-
ple set of equations to model the different factors involved in
night vision. These equations are based on physical data and
visual perception experimental data.

The main contributions of this paper are the following. For
the simulation of the loss of visual acuity, we introduce a
novel diffusion PDE that models the spatial summation prin-
ciple [4], takes both luminance and contrast into account,
produces no ringing, is stable, very easy to implement and
fast. We start by replacing daylight illumination with night-
like illumination, a procedure which to the best of our knowl-
edge is novel when addressing this problem.

2 The Day for Night algorithm
Our algorithm takes as input a color RGB image (coming
from digital video or obtained from a scanned film) and a
desired level of luminance for the final result. We transform
the image in five steps. While the user would typically only
care about the final image, we present here all the steps sepa-
rately. This may help the user to modify some steps to obtain
a more expressive result. The aim is to achieve realistic and
visually pleasing results, even if they are not entirely com-
pliant with the models of human visual perception.

We perform the following operations for each pixel in the
image, one at a time. In the first step, we estimate the re-
flectance values for the object in the scene at that particular
pixel. For this we assume that the day scene has been lit with
daylight and we use the standard illuminant D65 to approx-
imate it. Then we replace the D65 with an estimation of the
spectrum of the night sky. This is, to the best of our knowl-
edge, a novel procedure in the context of this problem. In
the second step we modify the chromaticity of the estimated
reflectance values, assuming that the eye is dark adapted. In
the third step we modify the luminance values, since the lu-
minous efficiency function depends on the illumination level
of the scene. In the fourth step we modify the contrast, since
threshold values for ’just noticeable differences’ depend on
illumination levels. These steps 2 to 4 are implementations
of algorithms already introduced in the literature on tone re-
production and modeling of visual perception, like those of
[16, 19, 7]. Finally, in the fifth step we perform diffusion on
the image to account for the loss of visual acuity at night-
time illumination levels. For this last step we introduce a
novel equation that models the spatial summation principle
[4].

One note concerning the evaluation of the results. We will
be producing images of rather low luminance, so they will
look very differently on a computer screen in a well lit room
than on a dimly lit room. Another crucial factor for the eval-
uation is the ’brightness’ setting of the monitor. We recom-
mend the reader to set the brightness level to 50%, the moni-
tor being in a well lit room with no direct light on the screen.
This would be an approximation only, for correct evaluation
calibrated hardware is required.

Let us comment on each of these steps now. For a very

thorough coverage of Color Science, and an in-depth expo-
sition of the concepts mentioned in this article, we refer the
interested reader to the excellent treatise by Wyszecki and
Stiles [20].

2.1 Estimation of reflectance values

Let us say we have an object with reflectance β(λ), where λ
is the wavelength, and it is lit with an illuminant with spec-
tral power S(λ). In the XYZ color model of the CIE [20],
the tristimulus values X, Y and Z of an object-color stimulus
are obtained with these equations:

X = k
∫
β(λ)S(λ)x(λ)dλ

Y = k
∫
β(λ)S(λ)y(λ)dλ

Z = k
∫
β(λ)S(λ)z(λ)dλ

(1)

where the factor k is defined so that the Y tristimulus for the
perfect reflection diffuser (β(λ) = 1.0 at all wavelengths)
is equal to 100. Functions x(λ), y(λ) and z(λ) denote the
color-matching functions for a standard observer. These are
experimental values tabulated by the CIE. The values X, Y
and Z at each given pixel are known, we get them by con-
verting the original R, G and B values (i.e. we go from the
RGB to the XYZ color model).

Care must be taken in that the RGB image has been ac-
quired non-linearly from real-world luminances [16]. Each
type of photographic film has a characteristic curve that de-
termines how luminances in the real world (Lrw) are en-
coded as transparencies (T ) in the film: T = a1Lrw

γ , where
the constant factor a1 depends on the film speed and the
choice of exposure time, lens and camera aperture. This
function T (Lrw) is valid within a certain interval of lumi-
nances, outside which the value T is ’clipped’. Since we
need to work with real-world luminances, we must undo the
transformation: T ′ = a2T

1
γ . For this we need the contrast

sensitivity specification of the film stock that was used to
shoot the original image. If we don’t have this data, we can
nonetheless obtain good results by assuming a value for γ
and selecting a value for the ’night γ’ that gives a visually
convincing result, as is done in subsection 2.4.

Returning to equation (1), the values for S(λ) are not
known precisely, unless they were measured when the orig-
inal image was taken. But it is safe to assume for S(λ) the
properties of the CIE standard illuminant D65, which corre-
sponds to a phase of natural daylight. The only unknowns
are then the reflectance values. Since we want to substi-
tute the daylight illuminant S(λ) with a nighttime illuminant
S′(λ), we must first compute β(λ). If we take just three
wavelengths λ1, λ2 and λ3, we can obtain a very rough esti-
mate of β(λ1), β(λ2) and β(λ3) by solving the 3x3 system
of equations we get from (1) if we replace the integrals with
discrete summations of three terms. Once we know these
values, we substitute S(λi) with S′(λi), i = 1, 2, 3. We
have taken λi near the values for monochromatic red, green
and blue, so we may also call them λr, λg and λb.



From now on in our work, we will be dealing with this
discrete set of three values per continuous function involved.
This is a very crude approximation, motivated by the fact
that we only start with three values per pixel, the R, G and
B values. In our experiments we have used for S ′(λ) the
experimental values obtained in [11]. If we only change the
illuminant, the image colors get warmer. This, as we men-
tioned above, is due to the fact that the night light S ′(λ) has
more power in the long wavelengths and less in the short
ones (i.e. more ’red’ and less ’blue’.)

2.2 Modification of chromaticity

The perceived chromaticity depends greatly on the illumina-
tion level. As we decrease the illumination level, the colors
become less saturated. A color that is very vivid under day-
light seems less and less vivid as the illumination decreases.
This property is very difficult to emulate directly on film,
with techniques ranging from the pre-exposing of film [10]
to the ’bleach by-pass’ at the developing stage [6]. The ex-
perimental data in [8], [20] and [13] show how monochro-
matic lights of different wavelengths are seen with evolv-
ing chromaticities as the surrounding luminances change.
We use these data to modify accordingly the color match-
ing functions x(λ), y(λ) and z(λ). This is nothing novel,
see for instance the excellent works [7], [5], [19].

2.3 Modification of luminance

There are two kind of photoreceptors in the retina, the rods
and the cones. Under low light (scotopic) conditions only
the rods are active. Since there is only one type of rods, noc-
turnal vision is monochromatic. At daylight (photopic) light
levels the rods become saturated and all the visual informa-
tion comes from the cones. There are three types of cones,
each one is tuned to a certain wavelength range. Trichro-
matic generalization explains how color stimuli can be ex-
pressed as additive mixtures of three fixed primary stim-
uli. At intermediate illumination levels (mesopic conditions)
both rods and cones are active.
The spectral luminous efficiency functions V (λ) and V ′(λ)
are tabulated by the CIE and measure how brightness is per-
ceived as a function of wavelength in the photopic and sco-
topic ranges respectively. In the mesopic range, the spec-
tral luminous efficiency function depends on the illumination
level, and we get it from tabulated experimental data in [20].
It can not be approximated by a linear combination of V (λ)
and V ′(λ). From the spectral luminous efficiency function,
the luminance L is computed.

There are two values to be set concerning luminance at
night, its mean value and variance. The mean value is set by
the specification of desired ambient luminance by the user.
While the variance is set by default, the user may modify it.
The choice of variance sets the maximum brightness, which
is crucial if we have artificial light sources in the scene, as
we will see in section 3.

We proceed in this manner and compute:

L′0 =

∫
β(λ)S′(λ)V ′(λ)dλ

Then we impose the selected mean and variance for our mod-
ified luminance L′:

L′ =
L′0 − µ

a

b

µ
+ b

where b will be the desired mean at night, µ is the mean of
L′0 (the quotient b

µ allows the change of units), and a con-
trols the variance ratio of L′0 and L′ (i.e. it allows us to set
any given variance for L′). Unless otherwise stated, we use
a value of a = 1. The user may modify a to increase the
variance and make artificial lights brighter, for instance.

2.4 Modification of contrast
Because the eye adjusts to its surroundings, human sensi-
tivity to contrast depends on the adaptation luminance [16].
Contrast in our night image then must be different than in
the original daylight scene. We can achieve this in two ways,
either by approximating the eye’s performance or by simu-
lating the use of a given type of photographic film.

To approximate the eye’s performance several models
have been proposed [16, 19, 7]. We have implemented in
our experiments a modification of the tone reproduction op-
erator of Ward et al. [19], where they combine the rod and
cone sensitivity functions and build a five-interval piecewise
approximation for ∆Lt(La). In their notation, ∆Lt is the
’just noticeable difference’ at the given adaptation level La.
We compute the resulting luminance Ln from the real-world
luminance Lrw with Ln =

∆Lt(L
′
a)

∆Lt(Larw )Lrw, where L′a and
Larw are actually 8-neighbor local averages of L′ and Lrw
respectively.
If we choose to simulate the use of a given type of photo-
graphic film with a characteristic curve of γn, then our night
luminance Ln will be approximated as Ln = cL′(L

1
γ )γn ,

where L′ stands for the original L after modification in the
previous steps. If γ is not known, we just assume γ = 1 and
choose γn to achieve visually pleasing results. (These equa-
tions may be refined at will with more accurate descriptions
of the characteristic curves of the film.)

An example, in figure 2, compares both methods (in this
figure we have also simulated the loss of acuity, see section
2.5.) Figure 2 (right) shows the result of simulating a photo-
graphic film. To most observers, the result may be visually
more pleasing than that obtained with an emulation of the
eye’s performance (figure 2 (middle)). The reason for this is
that we are accustomed to a certain “look” of night images
on photographs and movies, which we usually prefer over
“real” looking night images, that may appear as too dark or
without enough contrast. On the other hand, if the original
day image has a sharp contrast, the “night” result may be
very convincing. In any case, the user may select in our al-
gorithm the method that suits him/her best.



2.5 Loss of acuity: Diffusion

Visual acuity is the ability of the eye to see fine detail. The
highest level of acuity is achieved at photopic levels and it
decreases as the background luminance diminishes. But it
also depends on contrast: increasing the level of contrast in-
creases the resolution at a given luminance level. In previous
work [7] this is modeled as isotropic diffusion. A 2D Gaus-
sian filter is applied to the image, the radius of the Gaus-
sian depending on the adaptation luminance. The idea is to
cancel high spatial frequencies, following experimental data
relating maximum visible spatial frequency (of a high con-
trast grating) and adaptation luminance. However, as nei-
ther contrast nor local luminance are taken into account, the
resulting images seem unrealistic since they evoke the ef-
fects produced by an out of focus camera. In [5] there is a
small correction to the computation of the Gaussian’s size,
but the procedure is basically the same. In [19] the authors
approximate convolution with a Gaussian of explicitly vary-
ing radius: we shall prove that this approach causes ringing
to appear in the resulting image. In [15] the authors choose a
spatial filtering approach, performing low-pass filtering fol-
lowed by sharpening. The results are definitely better than
with Gaussian blurring, but artifacts like ringing are present,
and there are several parameters that are set subjectively.

Our contribution will be the following. We will prove that
there is a family of PDE’s that diffuse a given image ade-
quately matching the loss of acuity in night vision. The dif-
fusion process takes both local luminance and contrast into
account. And unlike previous methods, ringing is guaran-
teed not to occur. When working on a sequence of images,
no temporal artifacts appear either. The implementation of
these PDE’s is straightforward, and they run fast since the
number of iterations is very low. These PDE’s are called
Fast Diffusion Equations, and are related to Porous Medium
Equations. The method we introduce here could also be used
to simulate loss of acuity on images shot at night, since film
and cameras can not emulate this human vision process.

Psychophysical and physiological experiments cited in [4]
show that neighbouring photoreceptors in the retina interact
accordingly to the level of illuminance at each point. That is,
the light perceived at a single point in the retina not only cre-
ates an excitation at the photoreceptor at this site, it produces
a lateral excitation as well and all of them are combined ad-
ditively. This process is called spatial summation and the
extent of the area of summation varies inversely with the lo-
cal illuminance.

Indeed, in [4] the authors start from a set of axioms for in-
tensity dependent spatial summation to determine the point
spread function relating the input image I to the output im-
age O(I). The basic idea is that is that each input point
(x, y) contributes with a non-negative point spread value to
every output point (p, q), the size of this contribution de-
pending on the intensity value I(x, y) and the distance from
(x, y) to (p, q). Thus the point spread function has the form
S((x, y), (p, q), I) and this gives the contribution from (x, y)
to (p, q) when the input intensity at (x, y) is I . Then they as-

sumed

(i) S is nonnegative,

(ii) S is spatially homogeneous and circularly symmetric,
hence S = S(d2, I), where d2 = (x− p)2 + (y − q)2,

(iii) The effective area covered by the PSF around each in-
put point varies inversely with the intensity at that point,
which can be translated into the relation

S(d2, I) = Q(I)S(Q(I)d2, 1)

where Q(I) is an increasing function of I . Indeed, in
[4], the authors took Q(I) = I .

(iv) If we write S(r2) = S(r2, 1) then we normalize the in-
tegral of S(x2 + y2) over the (x, y) plane to be equal to
1, i.e.,

∫

−∞

∞∫

−∞

∞
S(x2 + y2) dx dy = 1.

Then the main example used by the authors is the Gaussian
function. To relate Q(I) with the variance of the Gaussian
function, we use the notation Q(I) = 1

σ2(I) . Then we may
write

S(d2, I(x, y)) =
1

2πσ2(I)
exp
− [(x−p)2+(y−q)2]

2σ2(I) (2)

and

O(I)(p, q) =

∫

−∞

∞∫

−∞

∞
I(x, y)S(d2, I(x, y)) dx dy.

(3)
Then the authors discussed the main properties of this filter
[4]. Apart from its expected effect of improving spatial res-
olution as illuminance increases, this mechanism also yields
edge-enhancement (Mach bands) and other band-pass filter
effects. In fact, working with a step function as input I , and
operating on the integral O(I) we obtain the following re-
sult:

Theorem 1 We have O(I)(p, q) as in eq.(3), and I(x, y) is
a step function valued I for x < 0 and I+D for x ≥ 0. Then
there exists a positive real number Θ s.t. O(I)(p, q) > I+D
if p > Θ.

In other words, ringing is guaranteed to appear if we use this
approach.

We will propose now a PDE that performs this spatial
summation process. The main assumption in the set of ax-
ioms above is that the effective radius of the PSF depends
inversely on the intensity I . Hence, we shall assume that

σ(I) is a decreasing function of I .

To study the infinitesimal action and the local effect of the
filter, we shall proceed as usual [1], we introduce an scale
parameter t > 0, and write tσ(I) instead of σ(I). Then we
compute the asymptotic expansion of O(I, t)(p, q) around
t = 0 to obtain the following result.



Theorem 2 We have O(I, t)(p, q) = I(p, q) +
Ct2∆(Iσ2(I))(p, q) + o(t2).

Thus the underlying PDE is the nonlinear diffusion equation

It = ∆(Iσ2(I)) (4)

As examples we may take σ2(I) = I−β , 0 < β < 1, or
σ2(I) = log(1+αI)

I , α > 0. If the function ϕ(r) = rσ2(r) is
continuous and increasing in <, equation (4) with Neumann
boundary conditions is well posed for any initial condition
I0 ∈ L1(Ω) ∩ L∞(Ω), and satisfies a comparison principle.
Therefore there is no ringing behavior for these equations.
For the mathematical treatment of this kind of equations we
refer to [2], [3, 18] and references therein.

As a particular case of (4), we take σ2(I) = log(1+αI)
I ,

α > 0, which gives:

It = ∇ ·
( ∇I

1 + αI

)
= ∆ (log(1 + αI)) (5)

where I is a function that represents the level of luminance
at each site, and α is a tunable parameter that controls the
level of diffusion. In equation 4, the anisotropy of the diffu-
sion is controlled by the local luminance values. Pixels with
high luminance values are diffused less than pixels with low
luminance. Recall that usually the anisotropy is controlled
by the magnitude of the gradient (see [17] and the seminal
work by Perona and Malik [12], a model in which images are
smoothed while preserving edges). Furthermore, experimen-
tal data on human vision acuity show that spatial summation
is not only inversely proportional to luminance but also in-
versely dependent on contrast. This is also the behavior ex-
hibited by solutions of equation 5, as we have experimentally
checked in the case of square waves (see experiment in figure
1). We wonder if there is a connection of the above models
with Weber’s, Fechner’s, or Stevens’ Law [20].

For simplicity we apply this equation to each of the three
color components separately, though an equivalent vector-
diffusion equation could be devised after [14].

The numerical implementation of each scalar diffusion
equation is done with a scheme based on finite differences.
If we consider the representation of a color component value
at each point of the image grid as Ii,j = I(i, j), with
1 ≤ i ≤ N and 1 ≤ j ≤ M (N is the number of lines
and M the number of columns) and the finite differences at
both sides to represent the spatial derivatives, we get:

∇+Ii,j = (Ii+1,j − Ii,j , Ii,j+1 − Ii,j)

∇−Ii,j = (Ii,j − Ii−1,j , Ii,j − Ii,j−1)

The numerical scheme used is:

In+1 = In + ∆t




∇− ·

(
∇+I
1+αI

)
if n = 2̇

∇+ ·
(
∇−I
1+αI

)
if n = 2̇ + 1

(6)

where In is the image I at time n and ∆t is the time step
between two iterations.

We have obtained experimentally the time of diffusion
T necessary to loose at each level of darkness the de-
tails whose frequency is above the Highest Resolvable Spa-
tial Frequency in accordance with data from Shaler in [7].
Firstly, we have chosen three different luminances and we
have created three images of a square wave grating with im-
age dimensions corresponding to the width subtended by one
degree of arc at a viewing distance of one meter. Each of
these images contains a number of cycles just above the max-
imum number of cycles detectable at that level of luminance.
The average value of the image is fixed to 255 for a log lumi-
nance of 3 and we decrease it proportionally to the decrease
in log luminance. Then, we fix α = 0 (isotropic diffusion)
and ∆t = 0.1 (below 0.25 which is the CFL stability con-
dition for the Perona Malik equation [12]) and we find the
necessary number of iterations to achieve a uniform image
at a distance of one meter. Finally, we interpolate linearly
the number of iterations between these points and we obtain
the following expression for the number of steps:

steps =





12− 36log(L) if log(L) < −0.5

12− 6.4log(L) if −0.5 ≤ log(L) < 1.875

0 if log ≥ 1.875

We have set α to 0.01, obtaining very good results for natural
images in a wide range of ambient luminances. Please note
that this value of α is fixed in the algorithm and thus it is not
a parameter that the user has to change.

Equation (5) is well-posed, has existence and uniqueness
results, and is also monotonicity preserving, so no ringing
may occur. The robustness of the equation make it suitable
for video sequences, no temporal artifacts appear (see exam-
ples in http://www.tecn.upf.es/˜mbertalmio/day4nite).

Figure 4 show how fine details are lost as the luminance
level decreases. Also, for any given image and luminance
level, more detail is lost in darker regions than in light ones.
Notice how the achieved effect of loss of acuity is very dif-
ferent from an out-of-focus blur. In particular, in figure 4,
as the luminance decreases it becomes harder and harder to
read the numbers on the wall, or the text in banners, books
and cardboard boxes, just as it happens to our eyes when the
light grows dim. But pronounced edges are preserved, as we
can see in the dark bands on the wall, or the white sheets of
paper hanging from the tables in this same figure.

3 Examples
Figures 2 to 4 show several results, for different images,
night illumination levels and contrast-modification methods.
Notice how these images look quite realistic. These results
must be visually convincing by themselves, the point being
that the observer does not notice that they come from day im-
ages. In particular, notice how colors have become less satu-
rated but we may still tell them apart, they are not predomi-
nantly different shades of blue as we would get with conven-
tional Day for Night. Brightness and contrast are what we



would expect in a night scene, objects do not have an unreal
illumination. Realism is enhanced by the controlled loss of
resolution, which blurs small (and not too bright) details, as
our eyes do at night.

Our algorithm has been developed with the assumption
that all light in the scene is natural, i.e. that the illuminant is
one for the whole image. We are currently working on how
to circumvent this constraint, so we can introduce artificial
light sources in our images. The problem is that it is very
hard to approximate, at each pixel location, the interaction
between different light sources, with different intensities and
spectral power. Figure 3 shows a test for one image of this
sort, where we have assumed that the highest luminances in
the scene correspond to the artificial light source. We have
increased the luminance there modifying the original vari-
ance by a factor greater than 1. The results are more realistic
but this method can fail at points with high luminance but
which do not correspond to light sources (see white line on
the road in figure 3).

If the original image presents a cloudy sky, as in figures
2 and 4, we can not achieve a dark sky in the night scene.
If this is a problem we could choose to avoid showing the
sky when shooting, as done in traditional Day for Night. We
could also explore a way to segment the sky and treat differ-
ently the pixels in that region.

The whole process is in the order of a few seconds in a
regular PC for a 600x800 24 bits RGB image, most of the
computations being local. We have not optimized our code,
but since what we are doing is basically constructing a color
LUT (and then diffusing the resulting image), the speed may
be increased greatly from our current implementation, where
we deal with each pixel separately. Also in moving pictures
there is great space and time redundancy, another source for
speed-ups.

4 Conclusion and future research
We have introduced a digital Day for Night algorithm that
achieves very realistic results. Our algorithm performs modi-
fication of the spectrum for the night illuminant, desaturation
of the colors, brightness modification according to wave-
length, contrast modification according to luminance adap-
tation levels, and non-uniform and non-linear loss of resolu-
tion. We use a set of very simple equations, based on real
physical data and visual perception experimental data. To
simulate the loss of resolution we have introduced a novel
diffusion equation, possibly connected with Weber’s law,
which is well-posed, has existence and uniqueness results,
and is also monotonicity preserving, so no ringing may oc-
cur. The robustness of the equation make it suitable for video
sequences, no temporal artifacts appear. The user only has
to provide the original day image and the desired level of
darkness of the result. More accurate results are obtained
if our algorithm is provided with the characteristic curve of
the photographic film used. The whole process from origi-
nal day image to final night image takes a few seconds, all

the computations being local, but optimizations could easily
speed up the process in an order of magnitude.

The main limitation of our algorithm is that it has been
developed with the assumption that all light in the scene is
natural, i.e. that the illuminant is one for the whole image.
We are currently working on how to circumvent this con-
straint. The input images are in RGB format coming from
digital video or obtained from a scanned film. Part of future
research is to include emulations of the film developing pro-
cess, and to reformulate our algorithm in terms and units that
cinematographers use.
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Figure 1: Loss of acuity simulation via PDE’s: diffusion depends on luminance and contrast.



Figure 2: Original scene (left), emulating night vision (middle), emulating film (right).

Figure 3: Original scene (left), result with variance ratio a = 1 (middle), increasing variance of luminance with a = 0.1 (right).

Figure 4: Some night scenes with decreasing values of ambient luminance: 1, 0.6, 0.3, 0.1 and -0.1 logcd/m2,
5, 8, 10, 11 and 15 iterations of diffusion respectively from left to right and from top to bottom.


