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Abstract

We describe a sparse Bayesian regression method
for recovering 3D human body motion directly
from silhouettes extracted from monocular video
sequences. No detailed body shape model is
needed, and realism is ensured by training on real
human motion capture data. The tracker esti-
mates 3D body pose by using Relevance Vector
Machine regression to combine a learned autore-
gressive dynamical model with robust shape de-
scriptors extracted automatically from image sil-
houettes. We studied several different combina-
tion methods, the most effective being to learn
a nonlinear observation-update correction based
on joint regression with respect to the predicted
state and the observations. We demonstrate the
method on a 54-parameter full body pose model,
both quantitatively using motion capture based
test sequences, and qualitatively on a test video
seguence.

1. Introduction

We consider the problem of estimating and tracking the 3
configurations of complex articulated objects from monoc
ular imagese.g.for applications requiring 3D human body
pose or hand gesture analysis. There are two main scho
of thought on this. Model-based approachgaesuppose

an explicitly known parametric body model, and estimate
the pose by either:(i) directly inverting the kinemat-

ics, which requires known image positions for each bod
part (Taylor, 2000); or(ii) numerically optimizing some

form of model-image correspondence metric over the pose
variables, using a forward rendering model to predict th
images, which is expensive and requires a good initial
ization, and the problem always has many local minim
(Sminchisescu & Triggs, 2003). An important sub-case i
model-based trackingvhich focuses on tracking the pose
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Fé_l simple generic articular skeleton model; while including

estimate from one time step to the next starting from a
known initialization, based on an approximate dynamical
model (Bregler & Malik, 1998, Sidenbladh et al., 2002). In
contrast,learning based approachesy to avoid the need
for accurate 3D modelling and rendering, and to capitalize
on the fact that the set ¢fpical human poses is far smaller
than the set of kinematically possible ones, by estimating
(learning) a model that directly recovers pose estimates
from observable image quantities (Grauman et al., 2003).
In particular, example based methoasxplicitly store a
set of training examples whose 3D poses are known,
and estimate pose by searching for training image(s) sim-
ilar to the given input image, and interpolating from
their poses (Athitsos & Sclaroff, 2003, Stenger et al., 2003,
Mori & Malik, 2002, Shakhnarovich et al., 2003).

In this paper we take a learning based approach, but in-
stead of explicitly storing and searching for similar training
examples, we use sparse Bayesian nonlinear regression to
distill a large training database into a single compact model
that generalizes well to unseen examples. We regress the
current pose (body joint angles) against both image descrip-
tors (silhouette shape) and a pose estimate computed from
previous poses using a learned dynamical model. High di-
ensionality and the intrinsic ambiguity in recovering pose
rom monocular observations makes the regression nontriv-
ial. Our algorithm can be related to probabilistic tracking,
ut we eliminate the need for(i) an exact body model

a%t must be projected to predict an image; éijda pre-

defined error model to evaluate the likelihood of the ob-
Served image signal given this projection. Instead, pose
is estimated directly, by regressing it against a dynamics-
ased prediction and an observed shape descriptor vector.
Regressing on shape descriptors allows appearance varia-
fons to be learned automatically, enabling us to work with

an estimate of the pose in the regression allows the method

%o overcome the inherent many-to-one projection ambigui-
Ties present in monocular image observations.

Our strategy makes good use of the sparsity and generaliza-
tion properties of our nonlinear regressor, which is a variant
of the Relevance Vector Machine (RVNipping, 2000).



RVM'’s have been usea.g, to build kernel regressors for

2D displacement updates in correlation-based patch track-
ing (Williams et al., 2003). Human pose recovery is sig-
nificantly harder — more ill-conditioned and nonlinear,
and much higher dimensional — but by selecting a suffi-
ciently rich set of image descriptors, it turns out that we
can still obtain enough information for successful regres-
sion (Agarwal & Triggs, 2004a).

Our motion capture based training data models each joint
as a spherical one, so formally, we represent 3D body pose
by 55-D vectorsx including 3 joint angles for each of the
18 major body joints. The input images are reduced to
100-D observation vectousthat robustly encode the shape

ofa human. image S|Ih0uet.te. legn a temporal sequen(ﬁgum 1. Different 3D poses can have very similar image obser-
of observations;, the goal is to estimate the correspond- 4tions, causing the regression from image silhouettes to 3D pose
ing sequence of pose vectoxs. We work as follows: 5 pe inherently multi-valued.

At each time step, we obtain an approximate preliminary

pose estimate, from the previous two pose vectors, us-Of training and test images from different viewpoints, but
ing a dynamical model learned by linear least squares réather than using random synthetic poses, we used poses
gression. We then update this to take account of the ofaken from real human motion capture sequences. Our re-

servationsz; using a joint RVM regression ovet, andz,  Sults thus relate to real poses and we also capture the dy-
— x = r(%,z) — learned from a set of labelled training namics of typical human motions for temporal consistency.

examples{(z;,x;)|i = 1...n}. The regressor is a lin- The motion capture data was taken from the public website
ear Combinatioﬁ(x7 Z) = Zk ay, oy (X, Z) of prespecified www.ict.usc.edu/graphics/animWeb/humanoid

scalar basis functionfspy,(x,z) |k = 1... p} (here, instan- e et al., 1999) developed a Bayesian learning frame-
Flated Gaussian kernels). The learned regressor is regu brk to recover 3D pose from known image locations of
in the sense that the weight vectaysare well-damped to 4y joint centres, based on a training set of pose-centre
control over-fitting, and sparse in the sense that many ofy;rs “optained from resynthesized motion capture data.
them are zero. Sparsity occurs because the RVM activelorj g Malik, 2002) estimate the centres using shape con-
selects only the ‘most relevant bass_fqnctlons — the onegy¢ image matching against a set of training images with
that rea!ly need to have nonzero coefficients to complete ﬂ}ﬁe-labelled centres, then reconstruct 3D pose using the al-
regression successfully. gorithm of (Taylor, 2000). Rather than working indirectly
via joint centres, we chose to estimate pose directly from

Previous work: There is a good deal of prior work on hu- the underlying image descriptors, as we feel that this is

man pose analysis, but relatively little on directly Iearninq.kely to prove both more accurate and more robust, pro-
3D pose from image measurements. (Brand, 1999) models '

. . ) ; . viding a generic framework for estimating and tracking any
a dynamical manifold of human body configurations with a = . .
; : .. prespecified set of parameters from image observations.
Hidden Markov Model and learns using entropy minimiza-
tion. (Athitsos & Sclaroff, 2000) learn a perceptron map<{Pavlovic et al., 2000, Ormoneit et al., 2000) learn dynami-
ping between the appearance and parameter spaces. Hurmahmodels for specific human motions. Particle filters and
pose is hard to ground truth, so most papers in this area uSBCMC methods have widely been used in probabilistic
only heuristic visual inspection to judge their results. Howtracking frameworkse.g (Sidenbladh et al., 2002). Most
ever, the interpolated-nearest-neighbor learning methodof the previous learning based methods for human track-
of (Shakhnarovich et al., 2003) used a human model refRrg take a generative, model based approach, whereas our
dering package (®serfrom Curious Labs) to synthesize approach is essentially discriminative.
ground-truthed training and test images of 13 degree of
freedom upper body poses w_ith a Iir_nitew(oo)_sc_et of ran- 2. Observations as Shape Descriptors
dom torso movements and view points, obtaining RMS es-
timation errors of abou®0° per d.o.f. In comparison, our To improve resistance to segmentation errors and occlu-
regression algorithm estimates full 54 d.o.f. body pose argions, we use a robust representation for our image ob-
orientation — a problem whose high dimensionality wouldservations. Of the many different image descriptors that
really stretch the capacity of an example based method sucbhuld be used for human pose estimation, and in line with
as (Shakhnarovich et al., 2003) — with mean errors of onlyBrand, 1999, Athitsos & Sclaroff, 2000), we have chosen
about4°. We also used ®seRrto synthesize a large set to base our system on image silhouettes. There are two




main problems with silhouettes: i) (Artifacts such as the human body, the observations depend on a great many
shadow attachment and poor background segmentation tefagdtors that are difficult to control, ranging from lighting
to distort their local form. This often causes problems wheand background to body shape and clothing style and tex-
global descriptors such as shape moments are used, adure, so any hand-built observation model is necessarily a
(Brand, 1999, Athitsos & Sclaroff, 2000), because each lagross oversimplification.
cal error pollutes every component of the descriptor. T??
be robust, shape descriptors must have good spatial local .
: A, ) ! (z|x) from examples, then to work backwards via its Ja-
ity. (ii) Silhouettes make several discrete and continuoys %" . ; )
L . . ... cobian to get a linearized state update, as in the extended
degrees of freedom invisible or poorly visible. It is diffi- : . . -
. Kalman filter. However, this approach is somewhat indirect,
cult to tell frontal views from back ones, whether a person _ . : .
o . . - and it may waste a considerable amount of effort modelling
seen from the side is stepping with the left leg or the ngh?l

one. and what are the exact poses of arms or hands tiPearance details that are irrelevant for predicting pose.
o . X P e r]nstead, we prefer to learn a ‘discriminative’ (diagnostic or
fall within (are ‘occluded’ by) the torso’s silhouette (Seeanti—causal) modeb(x|z) for the posex given the obser-
fig. 1). These factors limit the performance attainable fro”\]/ationSZ 1. the difference between generative and dis-
silhouette-based methods. criminative classification, and the regression based trackers
Histograms of edge information are a good way to encodef (Jurie & Dhome, 2002, Williams et al., 2003). Similarly,
local shape robustly (Lowe, 1999). Here, we use shape coimthe context of maximum likelihood pose estimation, we
texts (histograms of local edge pixels into log-polar binswould prefer to learn a ‘diagnostic’ regressor= x(z),
(Belongie et al., 2002) to encode silhouette shape quasie. a point estimator for the most likely stategiven the
locally over a range of scales, making use of their localitpbservationg, not a generative predictar= z(x).
properties and capability to encode approximate spatial p
sition on the silhouette — see (Agarwal & Triggs, 2004a)

ne way around this would be to learn the generative model

?jnfortunately, this brings up a second problem. In monocu-
Unlike Beloanieet al we use quite small image re ionSIarhuman pose reconstruction, image projection suppresses
9 ' q 9 9 most of the depth (camera-object distance) information, so

(roughly the size of a limb) to compute our shape context . A
. . . he state-to-observation mapping is always many-to-one. In
and for increased locality, we normalize each shape con- : o
act, even when the labelled image positions of the pro-

text histogram only by the number of points in its region. g .

o . . ; cted joint centers are known exactly, there may still be
This is essential for robustness against occlusions, shad- . . )
2 . some hundreds or thousands of kinematically possible 3D
ows,etc The shape context distributions of all edge points . o P L

) : oses, linked by ‘kinematic flipping’ ambiguities.f. e.g
on a silhouette are reduced to 100-D histograms by vec..~ >~ . . ; . .
o : {Sminchisescu & Triggs, 2003)). Using silhouettes as im-
tor quantizing the 60-D shape context space using Gaussian : . .

. : : e observations allows relatively robust feature extraction,

weights to vote softly into the few histogram centres neare : I : )
ut induces further ambiguities owing to the lack of limb

o the contexts. This softening allows us to compare hIﬁ:dbelling: it can be hard to tell back views from front ones,

tograms using simple Euclidean distance rather than, sa ; : NS . .
Earth Movers Distance (Rubner et al., 1998). Each imagae/hd which leg or arm is which in side views. These ambi

observation (silhouette) is thus finally reduced to a 100- uities make learning to regressirom z difficult because

uantized-distribution-of-shape-context vector, giving rea. - true mapping is actually multi-valued. A single-valued
9 P . » VNG MG ot squares regressor will tend to either zig-zag erratically
sonably good robustness to occlusions and to local S|Ih01[_1J-

ette segmentation failures etween different training poses, or (if highly damped) to

' reproduce their arithmetic mean (Bishop, 1995), neither of
) ] which is desirable. Introducing a robustified cost func-
3. Tracking and Regression tion might help the regressor to focus on just one branch
of the solution space so that different regressors could be

The 3D pose can only be observed indirectly via ambiguo %f’:lrned for different branches, but applying this in a heav-

and noisy image measurements, so it is appropriate to star . : . -
by considering the Bayesian tracking framework in Whic@grw;g(:hed 54-D target space is not likely to be straight

our knowledge about the state (pose)given the observa-

tions up to timet is represented by a probability distribu- To reduce the ambiguity, we can take advantage of the fact
tion, the posterior state densiyx;|z;,z:—1, ..., Zo). that we are tracking and work incrementally from the pre-
vious statex; ;' (e.g (D’Souza et al., 2001)). The basic
assumption of discriminative tracking is that state informa-
tion from the current observation is independent of state in-

Given an image observation; and a priorp(x;) on
the corresponding pose;, the posterior likelihood for
x; is usually evaluated using Bayes’ rulp(x;|z:)
p(z¢|x¢) p(x¢), Wwherep(z,|x,) is a precise ‘generative’ ob-  As an alternative we tried regressing the paseagainst a
servation model that predicts and its uncertainty given sequence of the last few silhouettes, z;—1, . . .), but the ambi-
x;. Unfortunately, when tracking objects as complicated aguities are found to persist for several frames.
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formation from previous states (dynamics): s0r ‘ [~ Tracking resuits for left ip a”é'er
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p(Xt |Zt7Xt_1, .. ) X p(Xt | zt)p(xt ‘Xt—h .. ) (1)

o

The pose reconstruction ambiguity is reflected in the fact
that the likelihoodp(x; | z;) is typically multimodal é.g
it is obtained by using Bayes’ rule to invert the many-

Left hip anglle (in degrees)
>

to-one generative model(z|x)). Probabilistically this —a0f
is fine, but to handle it in the context of point estima- ~s0/ ‘ ‘ ‘ ‘ ‘ ‘
tion / maximum likelihood tracking, we would in princi- 0 50 100 150 200 250 300

ple need to learn aulti-valuedregressor forx,(z;) and
then fuse each of the resulting pose estimates with the esti-
mate from the dynamics-based regressdi;_1,...). In-
stead, we adopt the working hypothesis that given the dy-
namics based estimate — or any other rough initial esti-
matex; for x, — it will usually be the case that only one

of the observation-based estimates is at all likely a poste-
riori. Thus, we can use the, value to “select the correct
solution” for the observation-based reconstructiqfiz; ). e
Formally this gives a regressa; = x;(z, X;), wherex; . T

serves mainly as a key to select which branch of the pose-

from-observation space to use, not as a useful prediction &fgure 2. An example of mistracking caused by an over-narrow
x; in its own right. (To work like this, this regressor mustPoSe kernelK,. The kernel width is set to 1/10 of the optimal

be nonlinear and well-localized #,). Taking this one step value, causing the tracker to lose track from abiett 20, after
Lo . which the state estimate drifts away from the training region and
further, if %, is actually a useful estimate o, (€.g from all kernels stop firing by about=200. Top: the variation of one

a dynamical model), we can use a single regressor of tr'[':)Ef:‘trameter (left hip angle) for a test sequence of a person walk-

same formx; = x,(z;,%;), but now with a stronger de- ing in a spiral.Bottom: The temporal activity of the 120 kernels
pendence o#, to capture the net effect of implicitly recon- (training examples) during this track. The banded pattern occurs
structing an observation-estimatg(z;) and then fusing it pecause the kernels are samples taken from along a similar 2.5 cy-
with x; to get a better estimate &f. cle spiral walking sequence, each circuit involving about 8 steps.
The similarity between adjacent steps and between different cir-
cuits is clearly visible, showing that the regressor can locally still
generalize well.

In this section we detail the regression methods that we USe b . e
. S gblhty and avoid over-fitting, we actually learn the autore-

for recovering 3D human body pose. Poses are represente . L . )

gression fork; in the following form:

as real vectors € R™. For a full body model, these are

55-@imensio_ngl, incIu.dipg 3 joint gr)gles for each of_the 18 %, = (I+A)(2xi1 — X¢—2) + Bxy_y )

major body jointd. This is not a minimal representation of

the true human pose degrees of freedom, but it correspondéerel is them x m identity matrix. We estimaté and

to our motion capture based training data, and our regreB by regularized least squares regression againshini-

sion methods handle such redundant output representationizing || €|3 + A(||A||Zqp + || Bl/Zop) OVver the training set,

without problems. with the regularization parametarset by cross-validation

to give a well-damped solution with good generalization.

Kernel bases

4. Learning the Regression Models

4.1. Dynamical (Prediction) Model

. . 4.2. Likelihood (Correction) Model
Human body dynamics can be modelled fairly accurately

with a second order linear autoregressive procegss=  Now consider the observation model. As discussed above,
%, + €, wherex, = Ax,_; + Bx,_» is the second or- the underlying density(x; |z;) is highly multimodal ow-

der dynamical estimate of, ande is a residual error vector ing to the pervasive ambiguities in reconstructing 3D pose
(c.f. e.g (Agarwal & Triggs, 2004b)). To ensure dynamicalfrom monocular images, so no single-valued regression
_ functionx; = x;(z;) can give acceptable point estimates

LA > = . for x;. This is confirmed in practice: although we have
wrap around through 360 We maintain continuity by regressing
(a,b) = (cos 0, sin 0) rather thard, usingatan2(b, a) to recover managed to learn moderately successful pose regressors

6 from the not-necessarily-normalized vector returned by regre& = X(z), they tend to systematically underestimate pose
sion. We thus hav@x 18+1 = 55 parameters to estimate. angles (owing to effective averaging over several possible

2The subject’s overall azimuth (compass heading artytn



RVM Training Algorithm

8 0. Initialize A with ridge regression. Initialize the run-
é ning scale estimatas,e = ||al| for the components of
™ vectorsa.
4 \ \ \ \ \ 1. Approximate thevlog|a| penalty terms with
0.7 0.75 0.8 0.85 0.9 0.95 1 « . . ” 2 . L
Damping factor (s) quadratic bridges'v (a/ascae)® + const (the gradients

match atuscad ;

2. Solve the resulting linear least squares probler jn
3. Remove any componerdghat have become zero, up-
solutions) and to be subject to occasional glitches whefedate the scale estimatesae = |la||, and continue from
the wrong solution is selected (Agarwal & Triggs, 2004a)| 1 until convergence.
Although such regressors can be combined with dynamics-
based predictors, this only smooths the results: it cannot Figure 4. Our RVM training algorithm.
remove the underlying underestimation and ‘glitchiness’.

Figure 3. The variation of the RMS test-set tracking error with
damping factos. See the text for discussion.

_ _ ~ Fig. 2 illustrates this effect, for ar-kernel a factor of 10
In default of a reliable method for multi-valued regressionparrower than the optimum. The method initially seemed to
we include & non-linear dependence onwith z; in the  pe sensitive to the kernel width parameters, but after select-
observation-based regressor. ~ Our full regression modglg optimal parameters by cross-validation on an indepen-
also includes an explicit; term to represent the direct con- gent motion sequence we observed accurate performance

the final model becomes, = %, + €’ wheree' is aresidual  {glerance factor 0f-2 on 3, and~4 on 3,.

error to be minimized, and: o S ) _
The coefficient matrixC in (3) plays an interesting role.

%, SettingC = I forces the correction model to act as a differ-
(f(kt,zt)> ential update orx;. On the other extrem&> = 0 gives
k=1 largely observation-based state estimates with only a la-
tent dependence on the dynamics. An intermediate setting,
however, turns out to give best overall results. Damping
éhe dynamics slightly ensures stability and controls drift —
in particular, preventing the observations from disastrously
‘switching off’ because the state has drifted too far from
&he training examples — while still allowing a reasonable
amount of dynamical smoothing. Usually we estimate the
full (regularized) matrixC from the training data, but to get
or(x,2) = Ku(x,x5) - K. (2, 2) (4) anideaof the trade-offs involved, we also studied the effect
of explicitly settingC = sI for s € [0,1]. We find that a
where(xy, z;,) is a training example anfl,, K, are (here, small amount of damping,,,; ~ .98 gives the best results
independent Gaussian) kernels frspace andz-space, overall, maintaining a good lock on the observations with-
Ko (x,x) = e Bellx—xi|? andK,(z,z;) = e—B:lz—=?>  outlosing too much dynamical smoothing (see fig. 3.) This
simple heuristic setting gives very similar results to the full

Building the basis from Gaussians based at training examyqqel obtained by learning an unconstraiéd
ples in joint (x,z) space forces examples to become rel-

evapt only !f they have s!m|lar esqmated posesl simi- _4.3. Relevance Vector Regression
lar image silhouettes. It is essential to choose the relative
widths of the kernels appropriately. In particular, if theThe regressor is learned using a Relevance Vector Machine
x-kernel is chosen too wide, the method tends to averad@&ipping, 2001). This sparse Bayesian approach gives sim-
over (or zig-zag between) several alternative pose-fronikar results to methods such as damped least squares / ridge
observation solutions, which defeats the purpose of includegression, but selects a much more economical set of ac-
ing x in the observation regression. On the other hand, biyve training examples for the kernel basis. We have also
locality, the observation-based state corrections are effetested a number of other training methods (including ridge
tively ‘switched off’ whenever the state happens to wanderegression) and bases (including the linear basis). These are
too far from the observed training examples. So if the not reported here, but the results turn out to be relatively in-
x-kernel is set too narrow, observation information is onlysensitive to the training method used, with the kernel bases
incorporated sporadically and mistracking can easily occunaving a slight edge.

p
% = Cx+»  dyoi(ks,z) = (C D)

3)

Here, {¢r(x,z) |k = 1...p} is a set of scalar-valued
basis functions for the regression, adg are the corre-
spondingR™-valued weight vectors. For compactness, w
gather these into a®?-valued feature vectof(x, z)
($1(x,2),...,¢,(x,2))" and anm xp weight matrixD
(dy,...,d,). In the experiments reported here, we use
instantiated-kernel bases of the form:
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Figure 5. Tracking results on a spiral walking test sequence. (a) Variation of a joint-angle parameter, as predicted by a pure dynamical
model initialized at = {0, 1}, (b) Estimated values of this angle from regression on observations alm®(initialization or temporal
information), (c) Results from our novel joint regressor, obtained by combining dynamical and state+observation based regression
models. (d,e,f) Similar plots for the overall body rotation angle. Note that this angle wraps &@ifmde. 6 = 6 + 360°.

When regressing on x (using generic notation), we use
Euclidean norm to measune-space prediction errors, so

1 m
AN L / o}
the estimation problem takes the form: Dx,x') = m ; |(: = @) mod 1807 (6)

N The training silhouettes were created by using Curious
. : Labs’ POSERto re-render poses obtained from real human
A = argmin Af(x;) —vilI? + R(A 5 : .
s Z A £0ai) =il (A © motion capture data, and reduced to 100-D shape descrip-
tor vectors as if§2. We used 8 different sequences totalling
~2000 instantaneous poses for training, and another two
where R(—) is a regularizer orA. RVM’s take either in- sequences 0f£400 points each as validation and test sets.
dividual parameters or groups of parame’@(m ourcase, - e dynamical model is learned from the training data ex-
columns ofA), and impose log ||a|| regularizers or priors

: S actly as described 4.1, but when training the obser-
on each group. Rather than using the (Tipping, 2000) a\F/lation model, we find that its coverage and capture ra-

gorithm for training, we use a continuation method basegius can be increased by including a wider selectiott,of

\?v?thsuz‘;edsrzlt\i/gl}{bﬁgp;os)g?ﬁgﬁ‘?ame;)%g (|:|§(|)|Sreengls(l)a;zaet::sh values than those produced by the dynamical predictions.
q 9 scal Hence, we train the moded = x;(%,z) using a combina-

ey prior gradlent @llscale @ rUNNIng scale estimate fer ion of ‘observed’ samplegk;, z;) (with x; computed from
The bridging functions allow parameters to pass throug s ) .
)) and artificial samples generated by Gaussian sampling

zero if they need to, without too much risk of premature

. : . L N (x¢, %) around the training state;. The observatiom;,
trapping at zero. The algorithm is sketched in fig. 4. Regué\{)rresponding toak, is still used, forcing the observation

larizing over whole columns (rather than individual compo-, .

) . based part of the regressor to rely mainly on the observa-
nents) of A ensures a sparse expansion, as it swaps entl{.e . ;

: . : ions,i.e. on recovering; (or at least an update #q) from
basis functions in or out. S . ; . :
z;, USingx, mainly as a hint about the inverse solution to
] ) choose. The covariance matrix is chosen to reflect the

5. Experimental Results & Analysis local scatter of the training examples, with a larger variance

We conducted experiments using a database of motion ¢ glong the tangent to the trajectory at each point to ensure

ture data for am: — 54 d.o.f. body model (3 angles for each | at phase lag between the state estimate and the true state
o : : : . is reliably detected and corrected.

of 18 joints, including body orientation w.r.t. the camera).

We report mean (over all angles) RMS (over time) absolutig. 5 illustrates the relative contributions of the different

difference errors between the true and estimated joint anglerms in our model by plotting tracking results for a mo-

vectors, in degrees: tion capture test sequence in which the subject walks in a

i=1



decreasing spiral. (This sequence was not included in t

training set, although similar ones were). The purely d

namical model (2) provides good estimates for a few tim

steps, but gradually damps and drifts out of phase. (Suc

damped oscillations are characteristic of second order line

autoregressive dynamics, trained with enough regulariz

tion to ensure model stability). At the other extreme, using

observations alone without any temporal informatioa. (

C = 0 andK, = 1) provides noisy reconstructions with

occasional ‘glitches’ due to incorrect reconstructions. Pa

els (c),(f) show that joint regression on both dynamics an

observations gives smoother and stabler tracking. There

still some residual misestimation of the hip angle in (c) a

aroundt=140 and¢=380. Here, the subject is walking di- o0 t=060 =120 t=180 =240 t=300

rectly towards the camera (heading antgjie)°), sothe only  Figure 6. Some sample pose reconstructions for a spiral walking

cue for hip angle is the position of the corresponding footsequence not included in the training data, corresponding to fig-

which is sometimes occluded by the opposite leg. Eveares 5(c) & (f). The reconstructions were computed with a Gaus-

humans have difficulty estimating this angle from the silsian kernel RVM, using only 348 of the 1927 training examples.

houette at these points. The average RMS estimation error per d.o.f. over the whole se-

quence ist.1°.

Fig. 6 shows some silhouettes and corresponding maximum

likelihood pose reconstructions, for the same test sequence.

The 3D poses for the first two time steps were set by hand wshere the observation model gave completely incorrect ini-

initialize the dynamical predictions. The average RMS estitializations.

mation error over all joints using the RVM regressor in this

test is4.1°. Well-regularized least squares regression oveg Discussion & Conclusions

the same basis gives similar errors, but has much higher

storage requirements. The Gaussian RVM gives a spar¥ée have presented a method that recovers 3D human body

regressor for (3) involving only 348 of the 1927 training ex-pose from sequences of monocular silhouettes by direct

amples, thus allowing a significant reduction in the amouritonlinear regression of joint-angles against histogram-of-

of training data that needs to be stored. Reconstruction réhape-context silhouette shape descriptors and dynamics

sults on a test video sequence are shown in fig. 7. The rbased pose estimates. No 3D body model or labelling of

construction quality demonstrates the generalized dynanimage positions of body parts is required. Regressing the

cal behavior captured by the model as well as the methodose jointly on image observations and previous poses al-

robustness to imperfect visual features, as a naive backews the intrinsic ambiguity of the pose-from-monocular-

ground subtraction method was used to extract somewh@pservations problem to be overcome, thus producing sta-

imperfect silhouettes from the images. ble, temporally consistent tracking. We use a kernel-based
. . ! Relevance Vector Machine for the regression, thus selecting

In terms of pomputgtloqal time, the _flnal RVM regressor al; sparse set of relevant training examples as exemplars. The

ready runs in real tlm_e in Matlab. Sll_houette extraction aniethod shows promising results on tracking unseen video

sha_pe—context descriptor compl_Jtatl_ons are currently doré%quences, giving an average RMS errot.of per body-

ofﬂlne, but. would be doable online in rgal time. The (o_fHoint-angle on real motion capture data.

fline) learning process takes about 26 min for the RVM wit

~2000 data points, and about the same again for (Matlalp ;tre work: We plan to investigate the extension of

Shape Context extraction and clustering. our regression based system to a complete discriminative

The method is reasonably robust to initialization errors. ThBayesian tracking framework, including multiple hypothe-

results shown in figs. 5 and 6 were obtained by initializings€s and robust error models. We would also like to include

from ground truth, but we also tested the effects of autadcher features, such as internal edges in addition to silhou-

matic (and hence potentially incorrect) initialization. In anette boundaries to reduce susceptibility to poor image seg-

experiment in which the tracker was automatically initial-mentation.

ized at each time step in turn using the pure observation

model, then tracked forwards and backwards using the dyxcknowledgments

namical tracker, the initialization lead to successful track-

ing in 84% of the cases. The failures occur at the ‘glitches’, This work was supported by the European Union projects

VIBES and LAVA, and the research network PASCAL.



t=14

t=20

t=26 t=32

Figure 7. 3D poses reconstructed from a test video sequence (obtained from www.nada-ktedség/data.html). The presence of
shadows and holes in the extracted silhouettes demonstrates the robustness of our shape descriptors — however, a weak or noisy
observation signal sometimes causes failure to track accur&@alyatt = 8, 14, the pose estimates are dominated by the dynamical
predictions, which do ensure smooth and natural motion but may cause slight mistracking of some parameters.

References

Agarwal, A., & Triggs, B. (2004a). 3D Human Pose from Sil-
houettes by Relevance Vector Regressioh.Conf. Computer
Vision & Pattern Recognition

Agarwal, A., & Triggs, B. (2004b). Tracking Articulated Mo-
tion with Piecewise Learned Dynamical Model€uropean
Conf. Computer Visian

Athitsos, V., & Sclaroff, S. (2000). Inferring Body Pose with-
out Tracking Body Partdnt. Conf. Computer Vision & Pattern
Recognition

Athitsos, V., & Sclaroff, S. (2003). Estimating 3D Hand Pose
From a Cluttered Imagédnt. Conf. Computer Visian
Belongie, S., Malik, J., & Puzicha, J. (2002). Shape Match-

ing and Object Recognition using Shape ContexttEEE
Trans. Pattern Analysis & Machine Intelligen@, 509-522.

Bishop, C. (1995).Neural Networks for Pattern Recognition
chapter 6. Oxford University Press.

Brand, M. (1999). Shadow Puppetryint. Conf. Computer
Vision(pp. 1237-1244).

Bregler, C., & Malik, J. (1998). Tracking People with Twists
and Exponential Mapsint. Conf. Computer Vision & Pattern
Recognition(pp. 8-15).

D’'Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning

Inverse Kinematics.Int. Conf. on Intelligent Robots and Sys-
tems

Grauman, K., Shakhnarovich, G., & Darrell, T. (2003). Infer-

ring 3D Structure with a Statistical Image-Based Shape Model.

Int. Conf. Computer Visio(pp. 641-648).

Howe, N., Leventon, M., & Freeman, W. (1999). Bayesian Re-
construction of 3D Human Motion from Single-Camera Video.
Neural Information Processing Systems

Jurie, F., & Dhome, M. (2002). Hyperplane Approximation for
Template MatchinglEEE Trans. Pattern Analysis & Machine
Intelligence 24, 996-1000.

Lowe, D. (1999). Object Recognition from Local Scale-

invariant Features. Int. Conf. Computer Visior{pp. 1150—
1157).

Mori, G., & Malik, J. (2002). Estimating Human Body Config-
urations Using Shape Context Matchifturopean Conf. Com-
puter Vision(pp. 666—680).

Ormoneit, D., Sidenbladh, H., Black, M., & Hastie, T. (2000).
Learning and Tracking Cyclic Human MotiorNeural Infor-
mation Processing Systerfpp. 894-900).

Pavlovic, V., Rehg, J., & MacCormick, J. (2000). Learning
Switching Linear Models of Human MotiorNeural Informa-
tion Processing Systen(sp. 981-987).

Rubner, Y., Tomasi, C., & Guibas, L. (1998). A Met-
ric for Distributions with Applications to Image Databases.
Int. Conf. Computer VisianBombay.

Shakhnarovich, G., Viola, P., & Darrell, T. (2003). Fast Pose
Estimation with Parameter Sensitive Hashifgt. Conf. Com-
puter Vision

Sidenbladh, H., Black, M., & Sigal, L. (2002). Implicit Proba-
bilistic Models of Human Motion for Synthesis and Tracking.
European Conf. Computer Vision

Sminchisescu, C., & Triggs, B. (2003). Kinematic Jump Pro-
cesses For Monocular 3D Human Trackinigut. Conf. Com-
puter Vision & Pattern Recognition

Stenger, B., Thayananthan, A., Torr, P., & Cipolla, R. (2003).
Filtering Using a Tree-Based Estimatdnt. Conf. Computer
Vision

Taylor, C. (2000). Reconstruction of Articulated Objects
from Point Correspondances in a Single Uncalibrated Image.
Int. Conf. Computer Vision & Pattern Recognition

Tipping, M. (2000). The Relevance Vector Machingeural
Information Processing Systems

Tipping, M. (2001). Sparse Bayesian Learning and the Rele-
vance Vector Machinel. Machine Learning Research 211—
244,

Williams, O., Blake, A., & Cipolla, R. (2003). A Sparse
Probabilistic Learning Algorithm for Real-Time Tracking.
Int. Conf. Computer Visian



