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Recovering 3D Human Pose from
Monocular Images

Ankur Agarwal and Bill Triggs

Abstract—We describe a learning based method for recovering model [9,23]. In contrastiearning based approachesy to
3D human body pose from single images and monocular image avoid the need for explicit initialization and accurate 3D
sequences. Our approach requires neither an explicit body model modelling and rendering, and to capitalize on the fact that

nor prior labelling of body parts in the image. Instead, it recovers . .
pose by direct nonlinear regression against shape descriptor the set oftypical human poses is far smaller than the set of

vectors extracted automatically from image silhouettes. For Kinematically possible ones, by estimating (learning) a model
robustness against local silhouette segmentation errors, silhouettethat directly recovers pose estimates from observable image
shape is encoded by histogram-of-shape-contexts descriptors. Wequantities. In particularexample based methodsplicitly

evaluate several different regression methods: ridge regression, store a set of training examples whose 3D poses are known,

Relevance Vector Machine (RVM) regression and Support Vector d estimat b hing for training i imil
Machine (SVM) regression over both linear and kernel bases. The and estimate pose by searching for training image(s) similar

RVMs provide much sparser regressors without compromising t0 the given input image, and interpolating from their poses
performance, and kernel bases give a small but worthwhile [5,18,22,27].
improvement in performance. Loss of depth and limb labelling In this paper we take a learning based approach, but

information often makes the recovery of 3D pose from single . - . . S L
silhouettes ambiguous. We propose two solutions to this: the first instead of explicitly storing and searching for similar training

embeds the method in a tracking framework, using dynamics example& we use sparse Bayfasian npnlinear regression to
from the previous state estimate to disambiguate the pose; distill a large training database into a single compact model

the second uses a mixture of regressors framework to retumn that has good generalization to unseen examples. Given the
multiple solutions for each silhouette. We show that the resulting Eigh dimensionality and intrinsic ambiguity of the monocular

system tracks long sequences stably, and is also capable o . . . . .
accurately reconstructing 3D human pose from single images, ose estimation problem, the selection of appropriate image

giving multiple possible solutions in ambiguous cases. For realism féatures and good control of overfitting is critical for success.
and good generalization over a wide range of viewpoints, we train We are not aware of previous work on pose estimation that

the regressors on images resynthesized from real human motion directly addresses these issues. Our strategy is based on the
capture data. The method is demonstrated on a 54-parameter gnasification and generalization properties of our nonlinear

full body pose model, both quantitatively on independent but . . s
similar test data, and qualitatively on real image sequences. Mean regression algorithm, which is a form of tielevance Vector

angular errors of 4-5 degrees are obtained — a factor of 3 better Machi_ne (RVM)[29]. RVMs have bgen used earliee.g. _
than the current state of the art for the much simpler upper body to build kernel regressors for 2D displacement updates in

problem. correlation-based patch tracking [33]. Human pose recovery is
Index Terms—Computer vision, human motion estimation, Significantly harder — more ill-conditioned and nonlinear and
machine learning, multivariate regression, Relevance Vector Ma- much higher dimensional — but by selecting a sufficiently rich
chine set of image descriptors, it turns out that we can still obtain
enough information for successful regression. Loss of depth
and limb labelling information often makes the recovery of
3D pose from single silhouettes ambiguous. We propose two
We consider the problem of estimating and tracking 3Bblutions to this. The first embeds the method in a tracking
configurations of complex articulated objects from monoculamework, using dynamics from the previous state estimate
images,e.g. for applications requiring 3D human body poseo disambiguate the pose. The second uses a mixture of
and hand gesture analysis. There are two main schoolsr@fressors framework to return multiple possible solutions for
thought on thisModel-based approachgsresuppose an ex- each silhouette, allowing accurate pose reconstructions from
plicitly known parametric body model, and estimate the posngle images. When working with a sequence of images, these
either by directly inverting the kinematics (which has mangolutions are fed as input to a multiple hypothesis tracker to
possible solutions and requires known image positions for eagite the most likely estimate for each time step.
body part) [28], or by numerically optimizing some form of
model-image correspondence metric over the pose variablesgvious work: There is a good deal of prior work on
using a forward rendering model to predict the images (whi¢tuman pose analysis, but relatively little on directly learning
is expensive and requires a good initialization, and the proble8D pose from image measurements. Brand [8] models a
always has many local minima [25]). An important subdynamical manifold of human body configurations with a
case ismodel-based trackingwhich focuses on tracking the Hidden Markov Model and learns using entropy minimization,
pose estimate from one time step to the next starting froftthitsos and Sclaroff [4] learn a perceptron mapping between
a known initialization, based on an approximate dynamictie appearance and parameter spaces, and Shakhnazbaich

I. INTRODUCTION
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[22] use an interpolateé-nearest-neighbor learning method} ", ai. ¢1(z) of a prespecifed set of scalar basis functions
Human pose is hard to ground truth, so most papers in tHig.(z) |k = 1...p}. In our tracking framework, to help to
area [4,8,18] use only heuristic visual inspection to judgdisambiguate pose in cases where there are several possible
their results. However Shakhnaroviehal [22] used a human reconstructions, the functional form is extended to include an
model rendering package @BER from Curious Labs) to approximate preliminary pose estimate x = r(x,z). (See
synthesize ground-truthed training and test images of 13 d.@éction V.) At each time step, a state estimatds obtained
upper body poses with a limitedt¢0°) set of random torso from the previous two pose vectors using an autoregressive dy-
movements and view points. In comparison, our regressioamical model, and this is used to compute the basis functions,
algorithm estimates full body pose and orientation (54 d.o.fjhich now take the form{¢x(x,z)|k = 1...p}. Section
— a problem whose high dimensionality would really stretcWl gives an alternative method for handling ambiguities by
the capacity of an example based method such as [22]. Lileturning multiple possible 3D configurations corresponding to
[11,22], we used BSERto synthesize a large set of traininga silhouette. The functional form is extended to a probabilistic
and test images from different viewpoints, but rather than usingxture p(x) ~ >, m:d(x,r;) allowing each reconstruction
random synthetic poses, we used poses taken from real humaro output a different solution.
motion capture sequences. Our results thus relate to real dat@ur solutions are well-regularized in the sense that the
Several publications have used the image locations of theight vectorsa, are damped to control over-fitting, and
centre of each body joint as an intermediate representatisparse in the sense that many of them are zero. Sparsity occurs
first estimating these centre locations in the image, théecause the RVM actively selects only the ‘most relevant’
recovering the 3D pose from them. Howe al [12] develop basis functions — the ones that really need to have nonzero
a Bayesian learning framework to recover 3D pose frogpefficients to complete the regression successfully. A sparse
known centres, based on a training set of pose-centre p&@dution obtained by the RVM allows the system to select
obtained from resynthesized motion capture data. Mori glevant inputfeatures(components) in case of a linear basis
Malik [18] estimate the centres using shape context imaggx(z) = k' component o). For a kernel basis —¢(z) =
matching against a set of training images with pre-labelldd(z, z;) for some kernel functior (z;, z;) and centres;, —
centres, then reconstruct 3D pose using the algorithm reevant training examples are selected, allowing us to prune
[28]. These approaches show that using 2D joint centres adarge training dataset and retain only a minimal subset.
an intermediate representation can be an effective strate N . . .
but we have prefeF;red to estimate pose directly from thge)/g(:wzatlon. ¢ll describes our image descriptors and body

underlying local image descriptors as we feel that this is IikePOse representatiorylll gives an outline of our regression
ying g P .r¥1ethods.§lv details the recovery of 3D pose from single

;o perrc:gﬁcb?rg]mzl\?v:)erka?c():ru:j?rtgcgndegi?r:(:\tirr?bfr:ailrzcc):lggovgr:'r}gages using this regression, discussing the RVM's feature
9 o y . 9 KNG aN¥election properties but showing that ambiguities in estimating

prespecified set of parameters from image observations. 3D pose from single images cause occasional ‘glitches’ in
As regards tracking, some approaches have learned dynagis e its 5v describes our first solution to this problem:

cal models for specific human motions [19, 20]. Particle fllterg tracking based regression framework capable of resolving

and MCMC methods have been widely used in prObabi”St{ﬁese ambiguities, with results from our novel trackeg\iaB.

tracking frameworks.g [23,31]. Most of these methods USEH describes an alternative solution: a mixture of regressors

an explicit generative model to compute observation likelj-
hoods. We propose a discriminatively motivated framewor, ), evii concludes with some discussions and directions
in which dynamical state predictions are directly fused wi r future work.

descriptors computed from the observed image. Our algorithm
is related to Bayesian tracking, but we eliminate the need for
both an explicit body model that is projected to predict image
observations, and a corresponding error model that is usedirectly regressing pose on input images requires a robust,
to evaluate the likelihood of the observed image given tht®mpact and well-behaved representation of the observed
projection. A brief description of our regression based scherimeage information and a suitable parametrization of the body
is given is [1] and its first extension to resolve ambiguitiegoses that we wish to recover. To encode the observed images
using dynamics within the regression is described in [2]. we use robust descriptors of the shape of the subject’s image

silhouette, and to describe our body pose, we use vectors of
Overview of the approach: We represent 3D body pose byjoint angles.

55-D vectorsx including 3 joint angles for each of the 18 ma-

jor body joints. This choice corresponds to the motion capture .

data that we use to train the system (details in section II-B): 'Mages as Shape Descriptors

The input images are reduced to 100-D observation veetors Silhouettes: Of the many different image descriptors that
that robustly encode the shape of a human image silhouetteuld be used for human pose estimation, and in line with
Given a set of labelled training examplesz;,x;)|¢ = [4,8], we have chosen to base our system on image silhouettes.
1...n}, the RVM learns a smooth reconstruction function Silhouettes have three main advantaggsThey can be ex-

x = r(z), valid over the region spanned by the trainindgracted moderately reliably from images, at least when robust
points. The function is a weighted linear combinatigz) = background- or motion-based segmentation is available and

ased approach incorporated in a multiple hypothesis tracker.

Il. REPRESENTINGIMAGES AND BODY POSES
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Fig. 2.  (Left) The first two principal components of the distribution of

all shape context vectors from a training data sequence, withktheans
. ) o . centres superimposed. The average-over-human-silhouettes like form arises
Fig. 1. Different 3D poses can have very similar image observations, causiitause (besides finer distinctions) the context vectors encode approximate
the regression from image silhouettes to 3D pose to be inherently multi-valuggatial position on the silhouette: a context at the bottom left of the silhouette
The legs are the arms are reversed in the first two images, for example. receives votes only in its upper right biretc (Centre) The same projection
for the edge-points of a single silhouette (shown on the right).

problems with shadows are avoiddgd) they are insensitive
to irrelevant surface attributes like clothing colour and textur@istribution (in fact, as a noisy multibranched curve, but we
(iii) they encode a great deal of useful information about 3ffeat it as a distribution) in the 60-D shape context space. (In
pose without the need of any labelling informatitin our implementation, shape contexts contain 12 angulama-
Two factors limit the performance attainable from sildial bins, giving rise to 60 dimensional histograms.) Matching
houettes:(i) Artifacts such as shadow attachment and po§Hhouettes is therefore reduced to matching these distributions
background segmentation tend to distort their local fornf) Shape context space. To implement this, a second level of
This often causes problems when global descriptors such4&ogramming is performed: we reduce the distributions of
shape moments are used (as in [4,8]), as every local erfPoints on each silhouette to 100-D histograms by vector
pollutes each component of the descriptor: to be robust, sh&j&ntizing the shape context space. Silhouette comparison is
descriptors need to have gotatality. (ii) Silhouettes make thus finally reduced to a comparison of 100-D histograms.
several discrete and continuous degrees of freedom invisiige 100 centre codebook is learned once and for all by
or poorly visible (see fig. 1). It is difficult to tell frontal 'UNNing k-means on the combined set of context vectors
views from back ones, whether a person seen from the sid@fsall of the training silhouettes. See fig. 2. (Other centre
stepping with the left leg or the right one, and what are trRelection methods give S|mllar result_s.) For a given silhouette,
exact poses of arms or hands that fall within (are “occluded 100-D histogranz is built by allowing each of its context
by) the torso’s silhouette. Including interior edge informatioectors to vote softly into the few centre-classes nearest to
within the silhouette [22] is likely to provide a useful degree df: @nd accumulating scores of all context vectors. Tsodt

disambiguation in such cases, but is difficult to disambiguaf8ting reduces the effects of spatial quantization, allowing
from, e.g markings on clothing. us to compare histograms using simple Euclidean distance,

rather than, say, Earth Movers Distance [21]. (We have also

tested the normalized cellwise distantgp:—./p2|?, with

%‘?y similar results.) The histogram-of-shape-contexts scheme

(%ives us a reasonable degree of robustness to occlusions and

Shape Context Distributions: To improve resistance to seg-

representation. The first requirement for robustnessciglity.

Histogramming edge information is a good way to enco cal silhouette segmentation failures, and indeed captures a

local shape robustly [17,6], so we begin by computing loc gnificant amount of pose information (see fig. 3).

descriptors at regularly spaced points on the edge of t%

silhouette. We use shape contexts (histograms of local edge

pixels into log-polar bins [6]) to encode silhouette shape quasi:

locally over a range of scales, computing the contexts in local\We recover 3D body pose (including orientation w.r.t. the

regions defined by diameter roughly equal to the size of a limgamera) as a real 55-D vecty including 3 joint angles for

In our application we assume that the vertical is preservegfch of the 18 major body joints. The subject’s overall azimuth

so to improve discrimination, we do not normalize context§ompass heading anglé)can wrap around through 360To

with respect to their dominant local orientations as originalljpaintain continuity, we actually regre¢s, b) = (cos ,sin )

proposed in [6]. The silhouette shape is thus encoded agather thanf, using atan2(b,a) to recoverd from the not-
necessarily-normalized vector returned by regression. So we

Iwe do not believe that any representation (Fourier coefficiestis) have3x18+1 = 55 parameters.

based on treating the silhouette shape as a continuous parametrized curve {§/e stress that our framework is inherently ‘model-free’ and
appropriate for this application: silhouettes frequently change topolegy (

when a hand’s silhouette touches the torso’s one), so parametric curve-ba{§emdep_endem of the Ch(_)i(_:e of this pose represer)tation. The
encodings necessarily have discontinuities w.r.t. shape. system itself has no explicit body model or rendering model,

Body Pose as Joint Angles
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Here, {¢x(x)|k = 1...p} are the basis functionsay
are R™-valued weight vectors, and is a residual er-
ror vector. For compactness, we gather the weight vec-
tors into anmxp weight matrix A = (a; as --- ap)
and the basis functions into &P-valued functionf(x) =
($1(x)  ¢a2(x) --- ¢p(x))". To allow for a constant offset
Af+b, we can includep(x) =1 in f.

To train the model (estimaté), we are given a set of
training pairs{(y;,x;)|i = 1...n}. In this paper we will
usually use the Euclidean norm to measyrspace prediction

errors, so the estimation problem is of the form:
Fig. 3. Pairwise similarity matrices for (left) image silhouette descriptors
and (right) true 3D poses, for a 483-frame sequence of a person walking n
in a decreasing spiral. The light off-diagonal bands that are visible in both A := argmin Z |Af(x;) —yil> + R(A) (2)
matrices denote regions of comparative similarity linking corresponding poses A im1
on different cycles of the spiral. This indicates that our silhouette descriptors . . . o
do indeed capture a significant amount of pose information. (The light Swehere R(—) is a regularizer onA. Gathering the training
NE ripples in the 3D pose matrix just indicate that the standing-like posesgbints into anm xn output matrixY = (y1 y2 -+ yn)and
the middle of each stride have mid-range joint values, and hence are cloaer feature matrixF = (f £ o f the
on average to other poses than the ‘stepping’ ones at the end of strides). pxn - ( (Xl) (Xz) (X”>)’

estimation problem takes the form:
A = argrrgn{ |AF - Y|?+ R(A) } (3)

. 14 )
50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450

and no knowledge of the ‘meaning’ of the motion capture

parameters that it is regressing — it simply learns to preditjote that the dependence ¢ (—)} and {x;} is encoded

these from silhouette data. Similarly, we have not sought éatirely in the numerical matri¥'.

learn a minimal representation of the true human pose degrees

of freedom, but simply to regress the original motion captuss. Ridge Regression

based training format, and our regression methods handle sucpose estimation is a high dimensional and intrinsically ill-

redundant output representations without problems. conditioned problem, so simple least squares estimation —
The motion capture data was taken from the public websietting R(A) = 0 and solving forA in least squares —

www.ict.usc.edu/graphics/animWeb/ humanoid. Although wgpically produces severe overfitting and hence poor general-

use real motion capture data for joint angles, we do npiation. To reduce this, we need to add a smoothness constraint

have access to the corresponding image silhouettes, so omethe learned mapping, for example by including a damping

currently use a graphics packageydErfrom Curious Labs, or regularization ternz(A) that penalizes large values in the

to synthesize suitable training images, and also to visualize #wefficient matrixA. Consider the simplest choic&(A) =

final reconstruction. This does unfortunately involve the usg||A |2, where )\ is a regularization parameter. This gives

of a synthetic body model, but we stress that this model is n@le ridge regressor, odamped least squarggsgressor, which

part of our system and would not be needed if real motigiinimizes

capture data with silhouettes were available. IAF— Y2 = [AF—Y[?+\||A|? @

whereF = (F AI) andY = (Y 0). The solution can be
obtained by solving the linear systeMF =Y (i.e. FT AT =

This section describes the regression methods that we hate) for A in least Squafés using QR decomposition or the
evaluated for recovering 3D human body pose from termal equations. Ridge solutions are not equivariant under
above image descriptors. Here we follow standard regressiffling of inputs, so we usually standardize the inputs (

notation, representing the output pose by real vegtorsR™ scale them to have unit variance) before solvi'ng. -
and the input shape as vectorss R, 2 A must be set large enough to control ill-conditioning

For most of the paper, we assume that the relationst d _overfitting, but not so large as to cause overda_mping
betweenx andy — which a priori, given the ambiguities(orc'ng A towards 0 so that the regressor systematically

of pose recovery, might be multi-valued and hence relatioridfderestimates the solution).
rather than functional — can be approximated functionally as )
a linear combination as a prespecified set of basis functiorfs: Relevance Vector Regression

Relevance Vector Machines (RVMs) [29,30] are a sparse
Bayesian approach to classification and regression. They in-
troduce Gaussian priors on each parameter or group of pa-
rameters, each prior being controlled by its own individual

I1l. REGRESSIONMETHODS

p
y = Zak¢k(x)+e Af(x)+e 1)
k=1

2However note that in subsequent sections, outputs (3D-pose vectors) wilbin case a constant offsgt = Ax + b is included, this vectob must
be denoted byx € R55 and inputs will be instances from either thenot bedampedand hence the system takes the fof b) F = Y where
observation spacez € R'%0, or the joint (predicted) state + observation-  (F \I

space,(xT,z7)T € RIS, F= <1 0) andY = (Y 0).
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RVM Training Algorithm

1) Initialize A with ridge regression. Initialize the run
ning scale estimatesscae= ||al| for the componentd
or vectorsa.

2) Approximate the vlog|lal| penalty terms with

“quadratic bridges”, the gradients of which match
at ascae l.€. the penalty terms take the form
£ (a/ascaie)® + const.
(One can set const v(log||ascad| — 3) to match the
function values atiscae but this value is irrelevant for
the least squares minimization.) 4

3) Solve the resulting linear least squares problemin| Fig. 5. “Quadratic bridge” approximations to thelog ||a|| regularizers.

4) Remove any components that have become zerg, These are introduced to prevent parameters from prematurely becoming

. . trappedat zero. (See text.)
update the scale estimates.ae= ||al|, and continue]
from 2 until convergence.

Fig. 4. An outline of our RVM training algorithm. of y, and columnwiseones, R(A) = v, log|lax| where
ay, is the k" column of A, which select a common set of
relevant basis functions for all componentsyofBoth priors
scale hyperparameter. Integrating out the hyperpriors (Whiglye similar results, but one of the main advantages of sparsity
can be done analytically) gives singular, highly nonconvex in reducing the number of basis functions (support features
total priors of the formp(a) ~ |lal|™" for each parameter or or examples) that need to be evaluated, so in the experiments

parameter group, wherev is a hyperprior parameter. Takingshown we use columnwise priors. Hence, we minimize
log likelihoods gives an equivalent regularization penalty of

the form R(a) = vlog|lal|. Note the effect of this penalty.
If |la|| is large, the ‘regularizing forcedR/da ~ v/|al IAF —Y|* + ) log|lax| ®)
is small so the prior has little effect om. But the smaller k
|la]| becomes, the greater the regularizing force becomes.
At a certain point, the data term no longer suffices to hold
the parameter at a nonzero value against this force, and the
parameter rapidly converges to zero. Hence, the fitted model i3Ve tested two kinds of regression bas&sx). (i) Lin-
sparse — the RVM automatically selects a subset of ‘relevamiar bases f(x) = x, simply return the input vector, so
basis functions that suffices to describe the problem. Thiee regressor is linear ik and the RVM selects rele-
regularizing effect is invariant to rescalingsfff) or Y. (E.g. vant features(components ofx). (ii) Kernel bases f(x) =
scalingf — af forces a rescalingh — A/« with no change (K(x,x;) --- K(x,x,))’, are based on a kernel function
in residual error, so the regularization forcég|ja|| x o K(x,x;) instantiated at training examples, so the RVM
track the data-term gradied® F F™ o« o correctly).v serves effectively selects relevanéxamples Our experiments with
both as a sparsity parameter and as a scale-free regularizatiarous kernels and combinations of kernels and linear func-
parameter. The complete RVM model is highly nonconveions show that kernelization (of our already highly non linear
with many local minima and optimizing it can be problematiéeatures) gives a small but useful improvement in performance
because relevant parameters can easily become accidentallyabout 0.8° per body angle, out of a total mean error
‘trapped’ in the singularity at zero. However, in practice thisf around7°. The form and parameters of the kernel have
does not prevent RVMs from giving useful results. Settirtg remarkably little influence. The experiments shown use a
optimize the estimation error on a validation set, one typicalaussian kerneK (x,x;) = e Blx=xil* \ith 6 estimated
finds that RVMs give sparse regressors with performance vérgm the scatter matrix of the training data, but ot¥evalues
similar to the much denser ones from analogous methods witithin a factor of 2 from this value give very similar results.
milder priors.

To train our RVMs, we dc_> not use Tipping’s algorithm IV. POSE FROMSTATIC IMAGES
[29], but rather a continuation method based on succes- . ] ]
sively approximating the log ||a|| regularizers with quadratic e conducted experiments using a database of motion
“bridges” v (||a||/ascad? Chosen to match the prior gradient at:aptur_e_data_ for a 54 d.o.f. l_oody _model (3 angles for each
ascale @ rUNNING scale estimate far(see fig. 5). The bridging of 18 joints, including body orientation w.r.t the came_ra). We
changes the apparent curvature if the cost surfaces, allowl§§0rt mean (over all 54 angles) RMS absolute difference
parameters to pass through zero if they need to, with less r&Jkors between the true and estimated joint angle vectors, in

of premature trapping. The algorithm is sketched in figure 4€grees:

Choice of Basis

We have tested botlttomponentwisepriors, R(A) = 1
v log|A x|, which effectively allow a different set of D(x,x') = EZ |(w; — ) mod + 180°| (6)
relevant basis functions to be selected for each dimension i=1
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Fig. 6. Mean test-set fitting error for different combinations of body parts, LSR | RVM | SVM
versus the linear RVM spareseness parametefhe minima indicate the Average error (in degrees) 595 | 6.02 | 5.91
optimal sparsity / regularization settings for each body part. Limb regressors % of support vectors retained 100 3 53

are sparser than body or torso ones: the whole body regressor retains 23
features; torse, 31; right amm, 10; and the left leg, 7. Fig. 8. (Top A summary of our various regressors’ performance on different
combinations of body parts for the spiral walking test sequemtdqn) Error
r measures for the full body using Gaussian kernel bases with the corresponding
number of support vectors retained.
]
@ (b) (e) ) of z. _ |
One might expect thag.g.the pose of the arms was mainly
Fig. 7. Silhouette points whose shape context classes are retained by@Reoded by (shape-context classes receiving contributions
RVM Ifor rﬁ]gresswn(o?) (@) |Ir$ﬂ arm angles, (b) [jlght leg angles, skhown onfrom) features on the arms, and so forth, so that the arms
sample silhouette. (c-f): Silhouette points encoding torso & neck parame
values over different view points and poses. On average, about 10 featu[f‘ééjld be regressed from fewer featur_es than the whole bOdy’
covering about 10% of the silhouette suffice to estimate the pose of each b&fjd could be regressed robustly even if the legs were occluded.
part. To test this, we divided the body joints into five subsets —
torso & neck, the two arms, and the two legs — and trained
h . ih d by usi q separate linear RVM regressors for each subset. Fig. 6 shows
L e training si oue(;tes were crt(ejated y gsmrgSERto rﬁ_n €' that similar validation-set errors are attained for each part, but
the motion captured poses, and reduced to 100-D histograig optimal regularization level is significantly smaller (there
by vector quantizing their shape context distributions using |ogg sparsity) for the torso than for the other parts. Fig. 7
centres selectedhby-meanls. . o bod ft shows the silhouette points whose contexts contribute to the
Wef compar];e e“z rgsu ts oDregrgssm_gb g_y poga elrl features (histogram classes) that were selected as relevant,
transforming from 54-D to 55-D as described in section II-By, several parts and poses. The two main observations are

on the silhouette Qescriptops using_ridge, RVM and SVM that the regressors are indeed sparse — only about 10 of the
[32] based regression methods on linear and kemel bases Wil histogram bins were classed as relevant on average, and

flexible modelling of the relationship betweenand z, but
reveals which of the original input features encode useful pose
information, as the RVM directly selects relevant components

(© (d)

the functional form given in section Iil: the points contributing to these tend to be well localized in
p important-looking regions of the silhouette — but that there
x = Af(z)+e = Y a,du(z)+e (7) is a good deal of non-locality between the points selected for

k=1

making observations and the parts of the body being estimated.
Ridge regression and RVM regression use quadratic IoBSis nonlocality is somewhat surprising. It is perhaps only
functions to measur&-space prediction errors, as describedue to the extent to which the motions of different body
in section Ill, while SVM regression uses theinsensitive segments are synchronized during natural walking motion, but
loss function [26] and a linear programming method faf it turns out to be true for larger training sets containing
training. The results shown here use the SWdht [15] for less orchestrated motions, it may suggest that the localized
implementation. calculations of model-based pose recovery actually miss a

good deal of the information most relevant for pose.

A. Implicit Feature Selection

Kernel based RVM regression gives reliable pose estimafés Performance Analysis
while retaining only abou6% of the training examples, but Fig. 8 summarizes the test-set performance of the various
working in kernel space hides information associated witlegression methods studied — kernelized and linear basis
individual input features (components afvectors). Con- versions of damped least squares regression (LSR), RVM and
versely, linear-basis RVM regressiof{%) = z) provides less SVM regression, for the full body model and various subsets



possible poses. As one diagnostic for this, recall that to allow
for the 360 wrap around of the heading anglewe actually
regress(a,b) = (cosf,sind) rather thand. In ambiguous
cases, the regressor tends to compromise between several
possible solutions, and hence returns(anb) vector whose
norm is significantly less than one. These events are strongly
correlated with large estimation errors @ as illustrated in

fig. 10.

Fig. 11 shows reconstruction results on some real images.
The reconstruction quality demonstrates the method’s robust-
ness to imperfect visual features, as a quite naive background
subtraction method was used to extract somewhat imperfect
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body silhouettes from these images. The last example demon-
strates the problem of silhouette ambiguity: the method returns

@ (b) (€) (d) (e) ()
a pose with the left knee bent instead of the right one as the

Fig. 9. Some sample pose reconstructions for a spiral walking sequengithouette looks the same in the two cases, causing a glitch in
not included in the training data. The reconstructions were computed Wiﬂ;tﬁe output pose
A .

Gaussian kernel RVM, using only 156 of the 2636 training examples. T . L
mean angular error per d.o.f. over the whole sequendg08. While (a- Although numerically our results are already significantly

c) show accurate reconstructions, (d-f) are examples of misestimation: fsBtter than others presented in the literate §s compared
illustrates a label confusion (th_e left ano_l right legs have been interchangew, RMS errors of abouf(° per d.of. reported in [22]), our
(e,f) are examples of compromised solutions where the regressor has averaged . ! . o
between two or more distinct possibilities. Using single images alone, we filS€ reconstructions do still contain a significant amount of
~ 15% of our results are misestimated. temporal jitter, and also occasional glitches. The jitter is to be
expected given that each image is processed independently.
It can be reduced by temporal filtering (simple smoothing or
of it — at optimal regularizer settings computed using 2-fol€alman filtering), and also by adding a temporal dimension
cross validation. All output parameters are normalized to haug the regressor. The glitches occur when more than one
unit variance before regression and the tube widtim the solution is possible, causing the regressor to either ‘select’ the
SVM is set to correspond to an error @f for each joint wrong solution, or to output a compromised solution, different
angle. Kernelization brings only a small advantag&{on an from each. One possible way to reduce such errors would be
average) over purely linear regression against our (highly nao-incorporate stronger features such as internal body edges
linear) descriptor set. The regressors are all found to give theiithin the silhouette, however the problem is bound to persist
best results at similar optimal kernel parameters, which asig important internal body edges are often not visible and
more or less independent of the regularization prior strengthseful body edges have to be distinguished from irrelevant
The RVM regression gives very slightly higher errors than thefothing texture edges. Furthermore, even without these limb
other two regressors, but much more sparsity. For exampl&belling ambiguities, depth related ambiguities continue to
in our whole-body method, the final RVM selects just 156emain an issue. By relying on experimentally observed poses,
(about 6%) of the 2636 training points as basis kernels, dar single image method has already reduced this ambiguity
give a mean test-set error 6f0°. We attribute the slightly significantly, but human beings often rely on very subtle cues
better performance of the SVM to the different form of its los® disambiguate multiple solutions.
function. The overall similarity of the results obtained from In the absence of multiple simultaneous views, temporal
the 3 different regressors confirms that our representation awhtinuity is an important supplementary source of informa-
framework are insensitive to the exact method of regressition for resolving these ambiguities. In the following two
used. sections, we describe two different approaches that exploit
Fig. 9 shows some sample pose estimation results, emntinuity within our regression model.
silhouettes from a spiral-walking motion capture sequence that
was not included in the training set. The mean estimation V. TRACKING AND REGRESSION
error over all joints for the Gaussian RVM in this test is This section describes a novel ‘discriminative’ tracking
6.0°, but the error for individual joints varies depending orframework that fuses pose predictions from a learned dynam-
the range and discernibility of each joint angle. The RM#&al model into our single image regression framework, to
errors obtained for some key body angles are as follows (tberrectly reconstruct the most likely 3D pose at each time step.
ranges of variation of these angles in the test set are givEne 3D pose can only be observed indirectly via ambiguous
in parentheses): body heading angle® 1360°), left shoulder and noisy image measurements, so it is appropriate to start
angle: 7.5 (50.8’), and right hip angle: 422(47.#4). Fig. 10 by considering the Bayesian tracking framework in which our
(top) plots the estimated and actual values of the overall bokiyowledge about the state (pose) given the observations
heading angl® during the test sequence, showing that mualp to time¢ is represented by a probability distribution, the
of the error is due to occasional large errors that we will ref@osterior state density(x; | z;,z;—1,. .., Zo).
to as “glitches”. These are associated with ambiguous case§&iven an image observatiosn, and a priorp(x;) on the
where the silhouette might easily arise from any of severabrresponding posg;, the posterior likelihood fok; is usu-
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where p(z;|x;) is an explicit ‘generative’ observation model
that predictsz; and its uncertainty giverx,. Unfortunately,
when tracking objects as complicated as the human body,
the observations depend on a great many factors that are
difficult to control, ranging from lighting and background to
body shape and clothing style and texture, so any hand-built
observation model is necessarily a gross oversimplification.
. . One way around this would be to learn the generative model
o 50 100 150 200 250 300 350 400 p(z|x) from examples, then to work backwards via its Jacobian
Time . . .

‘ to get a linearized state update, as in the extended Kalman
filter. However, this approach is somewhat indirect, and it may
waste a considerable amount of effort modelling appearance
details that are irrelevant for predicting pose. Instead, we prefer
to learn a ‘diagnostic’ (discriminative or regressive) model
Time p(x|z) for the posex given the observationg — c.f. the
difference between generative and discriminative classifiers,
and the regression based trackers of [16,33]. Similarly, in the
05 ] context of maximum likelihood pose estimation, we prefer to
learn a diagnostic regressar= x(z), i.e. a point estimator
oS0 100 150 200 "250 900 350 400 for the most likely statex given the observations, not a

generative predictoz. = z(x). Unfortunately, this brings up

a second problem. As we have seen in the previous section,
Fig. 10. (Top): The estimated body heading (azim@ittover 418 frames of P P

the spiral walking test sequence, compared with its actual value from motiBHa9€ prOJ_eCt'On Suppresses mOSt 'Of the depth (‘?amerﬁ"ObJe‘-‘-t
capture. (Middle, Bottom): Episodes of high estimation error are strong§istance) information and using silhouettes as image obser-

correlated with periods when the norm of theos 6, sin 0) vector that was yations induces further ambiguities owing to the lack of limb
regressed to estimatebecomes small. These occur when similar silhouett

S . . L
arise from very different poses, so that the regressor is forced into outpuﬁﬁgpe"mg- So the Sta_te't_c?'Observatlon mappmg IS always many-
a compromise solution. to-one. These ambiguities make learning to regse$om z

difficult because the true mapping is actually multi-valued.

A single-valued least squares regressor tends to either zig-
zag erratically between different training poses, or (if highly

damped) to reproduce their arithmetic mean [7], neither of
which is desirable.

To reduce the ambiguity, we work incrementally from the
previous few statésx,_1,... (e.g as was done in [10]). We
adopt the working hypothesis that given a dynamics based
estimatex;(x;—1,...) — or any other rough initial estimate
x; for x, — it will usually be the case that only one of the
observation-based estimates is at all likely a posteriori. Thus,
we can use thé; value to “select the correct solution” for the
observation-based reconstructis(z; ). Formally this gives a
regressorx; = x:(z;,%;), wherex; serves mainly as a key
to select which branch of the pose-from-observation space to
use, not as a useful prediction ®f in its own right. To work
like this, the regressor must be well-localizedkin and hence
nonlinear. Taking this one step furtherxif is actually a useful
estimate ofx; (e.g from a dynamical model), we can use a
single regressor of the same fory, = x;(z¢,%:), but now
with a stronger dependence é&p, to capture the net effect of
implicitly reconstructing an observation-estimate(z;) and
to get a better estimate of;.

—— Estimated angle
- - - Actual angle

n

=]

=]
T

Torso angle (in degrees)

Torso angle error

Norm of angle vector

Fig. 11. 3D poses reconstructed from some real test images using a sir]fagn fusmg it withx;
image for each reconstruction (the images are part of a sequence from
www.nada.kth.seshedvig/data.html). The middle and lower rows respectivehA. Learning the Regression Models

show the estimates from the original viewpoint and from a new one. The L. . .

first two columns show accurate reconstructions. In the third column, a noisy OQUI discriminative tracking framework now has two levels
silhouette causes slight misestimation of the lower right leg, while the fineff regression. We formulate the models as follows and con-

column demonstrates a case of left-right ambiguity in the silhouette. tinue to use the methods described in section IlI:

4As an alternative we tried regressing the pageagainst a sequence of the
) last few silhouettegz;,z:_1,...), but the ambiguities are found to persist
ally evaluated using Bayes’ rul@(x;|z;) o p(z:|x:) p(x:), for several frames.
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1) Dynamical (Prediction) Model:Human body dynam- i — Tracking results for eft hip angle |
ics can be modelled fairly accurately with a second order I
linear autoregressive process; = x; + €, wherex; = I
Ax; 1 + Bx; o is the second order dynamical estimate of i
x; and e is a residual error vectorc(f. e.g [3]). To ensure B N\
dynamical stability and avoid over-fitting, we actually learn I \\/
the autoregression faot; in the following form: I '
% = (I+A)(2x-1 —x4-2) + Bxy1 (8) —so
. i . . i 0 50 100 159 200 250 300
where I is the m x m identity matrix. This form helps Time
to maintain stability by converging towards a default linear =
prediction if A andB are overdamped. We estimasdeandB
by regularized least squares regression againsninimizing
llell? + A(||Al1Zop + |IBllZos) OVver the training set, with the
regularization parametek set by cross-validation to give a
well-damped solution with good generalization.
2) Likelihood (Correction) Model:Now consider the ob-
servation model. As discussed above, the underlying density
p(x¢|2¢) is highly multimodal owing to the pervasive am-
biguities in reconstructing 3D pose from monocular images,
so no single-valued regression function = x(z;) can
give acceptable point estimates fof. However much of the Fig. 12.  An example of mistracking caused by an over-narrow pose kernel
‘glitchiness’ and jitter observed in the static reconstructions &f=- The kernel width is set to 1/10 of th_e optimal value, causing _the tracker
. L . to lose track from about=120, after which the state estimate drifts away
section IV-B can b? removed by feedisg into the FEQressIoN from the training region and all kernels stop firing by abbeR00. Left: the
model. The combined regressor can be formulated in severalation of a left hip angle parameter for a test sequence of a person walking
different ways. The simplest is to linearly combite with in a spiral.Right: The temporal activity of the 120 kernels (training examples)

. . . . during this track. The banded pattern occurs because the kernels are samples
the estimatex, g“{en Py equa_t'on .(7), bu_t th's Only. Smoomstaken from along a similar 2.5 cycle spiral walking sequence, each circuit
the results, reducing jitter, while still continuing to give wrongnvolving about 8 steps. The similarity between adjacent steps and between
solutions when (7) returns a wrong estimate. We thus inclu@iferent circuits is clearly visible, showing that the regressor can locally still

. S ) : I Il.

a non-linear dependence of with z, in the observation- generaiize we

based regressor, giving a state sensitive observation update.

Our full regression model also includes an explicit lin&ar
term to represent the direct contribution of the dynamics to the

5
overall state estimate, so the final model becomes x; +¢€’ 5
where€’ is a residual error to be minimized, and: % ,
p -~
~ -« -~ Xt ; ; ; ; ;
X = Cx4+ dy ¢ (%4,2:) = (C D < . > 9) §7 0.75 0.8 0.85 0.9 0.95 1
; 7 ( ) f(xt’ Zt) Damping factor (s)

Here, {¢r(x,2) |k = 1...p} is a set of scalar-valued non-F_ 15, The variation of the RMS test-set track i damoing fact
H H : H 1g. . e variation o e est-set tracking error wi amping factor
linear basis functions for the regression, add are the _“g  iic text for discussion.

correspondingR™-valued weight vectors. For compactness,
we gather these into aRP-valued feature vectof(x, z)

" and anmxp weight matrix D .
Eqdbif).(j.z,);ip).7(Ibrzl)()t(ﬁ:))experimenrtrsl feportgeld here, we use e method tends to average over (or zig-zag between) several

instantiated-kernel bases of the form alternative pose-from-observation solutions, which defeats the
purpose of includingk in the observation regression. On the
or(x,2) = Ky(x,x1) - K. (z,2) (10) other hand, too much locality is effectively ‘switches off’
the observation-based state corrections whenever the estimated
independent Gaussian) kernels onspace andz-space state happens tp wander too'far from the observed trgining
Ko(x,x1) = ePelx=xl? and K.(z,24) — - lz—z ' _exampIe_Sck._ So if thex-kernel is set too narrow, obs_ervathn
T Tk A ‘ informanon is only incorporated sporadically and mistracking

Building the basis from Gaussians based at training Exampies, easily occur. Fig. 12 illustrates this effect, forsakernel

Isr: rjnc:;:l: Er}:{azg)esgﬁﬁgumeg:z(;az?rrlri]grezr:(cajléar\llsirr:tgogl)ysgsthey h"’“élefactor of 10 narrower than the optimu_m. The method initially

' seemed to be sensitive to the kernel width parameters, but after
Mistracking due to extinction. Kernelization in joint(x,z) fixing good default values by cross-validation on an indepen-
space allows the relevant branch of the inverse solution dent motion sequence we observed accurate performance over
be chosen, but it is essential to choose the relative widthsa$ufficiently wide range for both the kernel widths: a tolerance

the kernels appropriately. If the-kernel is chosen too wide, factor of about 2 on3, and about 4 org.,.

where (xi,z;) is a training example and’,, K, are (here,
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Neutral vs Damped Dynamics.The coefficient matrixC

in (9) plays an interesting role. SettinG = I forces the
correction model to act as a differential update sgn(what
we refer to as having a ‘neutral’ dynamical model). On th
other extremeC = 0 gives largely observation-based state
estimates with only a latent dependence on the dynamics.
intermediate setting, however, turns out to give the best over
results. Damping the dynamics slightly ensures stability an
controls drift — in particular, preventing the observations from
disastrously ‘switching off’ because the state has drifted too f
from the training examples — while still allowing a reasonable
amount of dynamical smoothing. Usually we estimate the ful
(regularized) matrixC from the training data, but to get an

idea of the trade-offs involved, we also studied the effect of

explicitly settingC = sI for s € [0,1]. We find that a small _ _ _ _ _

f dampin ~ 98 gives the best results overall Fig. 15. Sample pose reconstructions for the spiral walking sequence using
amount of dampings,: ~ .98 g _ _ €rallithe tracking method. This sequence was not included in the training data, and
maintaining a good lock on the observations without losing tadrresponds to figures 14(c) & (f). The reconstructions were computed with a
much dynamical smoothing (see fig. 13.) This simple heurisffaussian kernel RVM, using only 18% training examples. The average RMS

. . L . estimation error per d.o.f. over the whole sequencé.1S.
setting gives very similar results to the model obtained by

learning the full matrixC.

t=001 t=060 t=120 t=180 t=240 t=300

a special case of (9) wher€ = 0 and K, = 1. Panels
B. Tracking Results (c),(f) show that jointly regressing dynamics and observations
0%ives a significant improvement in estimation quality, with

We trained the new regression model (9) on our moti . o :
capture data as in section IV. Eor these experiments. we ussr?i)other and stabler tracking. There is still some residual
p ' P ! ISestimation of the hip angle in (c) at aroung140 and

8 different sequences totalling about 2000 instantaneous POSESSH At these points, the subject is walking directly towards
for training, and another two sequences of about 400 poinﬁs ' ’

o . e camera (heading andgle-0°), so the only cue for hip angle
szgzrizzgﬂy?g)on and test sets. Errors are again reporteés%e position of the corresponding foot, which is sometimes

The dynamical model is learned from the training data eoccluded by the opposite leg. Humans also find it difficult to

actly as desgribed i§1\/_—A.1, but when training the obs_ervation)ésggfitf;hsli Oicsglz Jrr:én strl]r? ozllart]t?auset;i datc:;(ra(j:pgcr)]?itr?g.) maxi-
_model, we fmt_:i that_ Its coverage and _capture radius can r%%m likelihood pose reconstructions, for the same test se-
|rr1]creaseddby gck:)lud;]ngda W'd.er Iselegqon ®f values than quence. The 3D poses for the first two time steps were set by
:@ﬁg&;;t N %; Ze) ggig]lgacgrrr?bilrfgggs Sgg;i’eng%gr_\d to_ initialize the dyn_ar_nical p_redictions. The average RMS
samples(x;, z;) (\t/vitr71 %, computed from (8)) and artificial estlmatlon error over aII_Jomts using the RVM regressor in this
samples ggnetrated by (t;aussian samplifig,, %) around the test is4.1°. Well-regularized least squares regression over the
training statex,. The observation correstZJnd'n e, is same basis gives similar errors, but. has much higher storage
- 9 Xt lore, ponding tax; | requirements. The Gaussian RVM gives a sparse regressor for
still used, forcing the observation based part of the regresigi involving only 348 of the 1927 (18%) training examples
to rely mainly on the observationgge. on recoveringx; (or '

t least an undate te.) from ina%. mainl hint thus allowing a significant reduction in the amount of training
at leas a. update t). om z;, Usingx; ma y. as a . data that needs to be stored. The reconstruction results on two
about the inverse solution to choose. The covariance matri

. - Xest video sequences are shown in figs 16 and 19.
is chosen to reflect the local scatter of the training examples,In terms of computation time, the final RVM regressor

with a larger variance along the tangent to the trajectory . : . . i
: . dlready runs in real time in Matlab. Silhouette extraction
each point to ensure that phase lag between the state estimat . ,
and shape-context descriptor computations are currently done

and. the trge state is rellably. detecteq apd corrected. . offline, but should be feasible online in real time. The offline
Fig. 14 illustrates the relative contributions of the dynami %arning process takes about 2-3 min for the RVM witR000
and observation terms in our model by plotting tracking resul ta points, and currently about 20 min for Shape Context ex-

for a 'motlon captpre te;t sequence in which the .SUbJ Fhction and clustering (this being highly unoptimized Matlab
walks in a decreasing spiral. This sequence was not inclu ‘ée )
pde).

in the training set, although similar ones were. The pure

dynamical model (8) provides good estimates for a few tim&utomatic Initialization: The method is reasonably robust
steps, but gradually damps and drifts out of phase. Suhinitialization errors. Although the results shown in figs. 14
damped oscillations are characteristic of second order lineard 15 were obtained by initializing from ground truth, we
autoregressive dynamics, trained with enough regularizationaiso tested the effects of automatic (and hence potentially
ensure model stability. The results based on observations alamrrect) initialization. In an experiment in which the tracker
without any temporal information are included again here favas automatically initialized at each time step in turn using
comparison. These are obtained from (7), which is actualije pure observation model, then tracked forwards and back-
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(a) Pure dynamical model on test set (d) Pure dynamical model on test set
30 250
—— Tracking results for left hip angle —— Tracking results for torso angle
- — - True value of this angle 200} — - - True value of this angle

b1 g ,
- J

150F | S
S

'
T
|
'
|
'
'

-50r

Left hip angle (in degrees)

—100

Torso heading angle (in degrees)

|
|
'
|
|
1
"

—-150

a4 ; H H H H H H H _o H H H H H H H H
° 50 100 150 200 250 300 350 400 0% 50 100 150 200 250 300 350 400
Time Time
(b) Pure observation model on test set (e) Pure observation model on test set
30 250
—— Tracking results for left hip angle —— Tracking results for torso angle
) - - - True value of this angle oy 2001 — - - True value of this angle
20r : | 13
z | £ 1sof
£ 1op <
D ! = 100
S y =
f=s
£ o S 5or ? y
[} 7
= «© 7
2_10 = O
© £
i=3 & 50
= _20 3
B S -100}
3 5~ o
-30 S 1501 |
L
_40 H H H H H H H H _200 H H H H H H H H
50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time Time
(c) Joint regression model on test set (f) Joint regression model on test set
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Fig. 14. Sample tracking results on a spiral walking test sequence. (a) Variation of the left hip-angle parameter, as predicted by a pure dynamical model
initialized at¢ = {0, 1}, (b) Estimated values of this angle from regression on observations aleneq(initialization or temporal information), (c) Results

from our novel joint regressor, obtained by combining dynamical and state+observation based regression models. (d,e,f) Similar plots for the overall body
rotation angle. Note that this angle wraps aroun@6i°, i.e. 0 ~ 6 £ 360°.

wards using the dynamical tracker, the initialization lead tone type in nature. Firstly, there exist instances where any
successful tracking iB4% of the cases. The failures were3D pose in a continuous range seems to explain the given
the ‘glitches’, where the observation model gave completedylhouette observation quite wel,g estimating out-of-plane
incorrect initializations. rotations where the limb length signal is not strong enough to
estimate the angle accurately. Here one would desire a broad
VI. RESOLVING AMBIGUITIES USING A MIXTURE OF distribution in 3D pose space as the output from a single
EXPERTS silhouette. Other cases of ambiguity arise due to kinematic
In this section, we discuss an alternative approach to dealimgping (c.f. [24]) or label-ambiguities (disambiguating the
with mUItlpIe pOSSibIe solutions in the 3D pose eStimatiO[éft and r|ght arms/|egs)_ In such cases, there is typ|ca||y
problem. We extend our single image regression framewogkfinite discrete set of probable solutions — often only 2
from section IV to amixture of regressors (often known as &r 4, but sometimes more. To deal with both of the above

mixture of experts [14]). Such a model enables the regressogises, we model the conditional densifi|z) as a mixture
output more than one possible solution from a single silhouefie Gaussians:

— in general a multimodal probability densify(x|z). We
describe the formulation of our mixture model and show how
it can be used in a multiple hypothesis probabilistic tracking
framework to achieve smooth reconstruction tracks free from
glitches.

K
p(x|z) = > m N (Ri, Ax) (11)
k=1
wherex, is computed by learning a regressgr= Ay, f(z)+
A. Probabilistic pose from static images bj, within each mixture component, and, (a diagonal
A close analysis of the nature of ambiguities in theovariance matrix in our case) is estimated from residual
silhouette-to-pose problem indicates that they are of more thamors.r; are the gating probabilities of the regressors. Setting
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Fig. 16. 3D poses reconstructed from a test video sequence (obtained from www.nada-ktfdseg/data.html). The presence of shadows and holes in the
extracted silhouettes demonstrates the robustness of our shape descriptors — however, a weak or noisy observation signal sometimes causes failure to trac
accuratelyE.g att = 8, 14, the pose estimates are dominated by the dynamical predictions, which do ensure smooth and natural motion but may cause slight

mistracking of some parameters.
(2) =S m M)
k=1 @ (b)
Z hIN YAf
Ky = = T = T
Az + by, ALY, ARSpAL 4+ Ay
(12)

To avoid overfitting, we constrain the descriptor covari-
ance matrixX to be diagonal, thereby drastically reduc-
ing the number of parameters to be estimated in ou
model. The gating probabilities are given hy,(z) = (c) (d)
%|2k|7167%(z72k)—r2};1(z72k).

The parameters are learned using a standard Expectati
Maximization (EM) algorithm. We initialize the class centers
quality of separation between ambiguous cases). Results sh
that most of the ambiguities are resolved and the regressors in-(e) )
deed learn separate models for the multiple possible solutions
that come from different regions of the pose space. Figure #ig. 17. Multiple possible 3D pose estimates obtained from individual
shows the two most high|y Weighted modes of the distributi(ﬁ-ijho_uet@es using a mi_xture of regressors. The two most likely modes of_the
in 3D pose obtained by using a mixture of 8 regressors o tribution are shown in each case, and generally capture the two most evident
also present in some of the remaining 6 modes of the outpllft easible solutions are obtained in the other modes.

The associated probabilities of these modes are given by
the gating probabilitiest;, of the regressors used for thea single ‘correct’ solution, we rank the various modes obtained
reconstruction. We find that these gating probabilities typicallyy the regressors according to th@jrestimated probabilities
give a good idea of the true number of ambiguous solutiong, and(ii) their accuracies obtained by comparison with the
in the given case, but they do not always select the corregbund truth. We find that in 30-35% of the cases, the solution

and gating probabilities by clustering in tlkespace alone in
order to separate points that have simidaralues but different

- . onstruction possibilities, illustrating cases of forward-backward ambiguity
some sample silhouettes. These two solutions usually captyg), kinematic flipping of the legs (c) and interchanging labels between the
solution from among the generated possibilities. To get d@mat is estimated as being mdiely is actually incorrect —
idea of the number of cases where the system cannot chobsemost of these correspond to cases that are truly ambiguous

f(z) = =z simplifies the problem to learning a mixture of
linear regressors. The model is learned by fitting a mixtur
of Gaussians to the joint probability density™,x")":

x values. (Includingz in the initial clustering decreased the
the principal ambiguities, but valid reconstructions are oftéwo legs (d,e). (f) shows an example where the first solution is a misestimate
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hip angle

— and the correct solution is usually amongst the few most 30 e
probable ones. I = True value of this angle
Using a mixture model scheme in place of a single regressor : ‘
allows most of the instances of compromised solutions from
the single regressor to be resolved into several solutions
capturing the different 3D possibilitie®. compare figures
9(e) and 17(e)). This gives the method the capability of
accurately estimating possible 3D poses from single images
— even in the cases of ambiguity — by outputing several

Left hip angle (in degrees)

|
IS
o

50 100 150 200 250 300 350 400

. . . . o]
possible solutions whenever they exist. Below we describe how Time
to use these multiple possible solution sets across a sequence 250 ‘°rs°Ta”f_'e - :

. . . — racking results for torso angle
of silhouettes to allow smooth tracking free from glitches. 200 ~ - True value of this angle |

B. Condensation based tracking

The multimodal likelihoods obtained in the previous section
can be used in a tracker that combines the modes across
time to estimate a temporally coherent maximum likelihood
trajectory of 3D poses. This is demonstrated by implementing ‘
a CONDENSATION [13] based tracking algorithm that uses o 50 100 150 gl_éi?ne 250 800 380 400
the output density of our mixture model to assign likelihoods
to its particles. We work with the assumption that state _ _ o _

18. Tracking results with a particle filter on a spiral walk test sequence

information from the current observation is independent gtgng the mixture of regressors output as an observation mdst) left hip
state information from the dynamics: angle paramete(Right) torso heading angle.

Torso heading angle (in degrees)

p(Xt | Zi, Xi—1,...) OC P(X¢ \Zt)P(Xt \thla . ) (13)

The pose reconstruction ambiguity is reflected in the fact thedse jointly on image observations and previous pose; and
the likelihood p(x¢|z;) is typically multimodal. It is often using a mixture of regressors in a multiple hypothesis tracking
obtained by using Bayes’ rule to invert to the many-to-onscheme. Both of these produce stable, temporally consistent
generative modep(z;|x;), but we continue to work in our tracking. Our mixture of regressors scheme has the capability
discriminative tracking framework and hence yge&;|z;) as to reconstruct 3D human pose accurately from a single image,
opposed top(z|x;). The dynamical model from section V-giving multiple possible poses whenever they exist.
A.lis used to generate an estimate of the 3D pose d|Str|bUt|0rOur kerne“zed RVM regressors retaln 0n|y abmat_ 20%
p(x¢|X¢—1,...). Sampleg(x;) from this distribution are then of their training examples in the regression based tracking, thus
assigned weightp(x{z) by the observation model density agjiving a large effective reduction in storage space compared
given in (11). to nearest neighbour methods, which must retain the whole
Figure 18 shows tracking results obtained on our spirghining database. Our methods show promising results, being

walk test set using GNDENSATION with 2000 particles. In gpout three times more accurate than the current state of the
general, the method tracks through the correct modes 4t [22].

the observation density. Smooth tracks are produced, with
the maximum likelihood reconstructions usually being moreuture work: We plan to investigate the extension of our
accurate than any of the 8 individual modes of the multimodedgression based system to cover a wider class of human

regressor output alone. motions and also add structured representations to our model
for dealing with greater variability in the 54 dimensional
VII. DI1SCUSSIONS ANDCONCLUSIONS output space. On the vision side, we would like to include

We have presented a method that recovers 3D human bé@yer features, such as internal edges in addition to silhouette
pose from monocular silhouettes by direct nonlinear regressigpundaries to reduce susceptibility to poor image segmenta-
of joint angles against histogram-of-shape-context silhouettan-
shape descriptors. Neither a 3D body model nor labelledOur linear RVMs directly select relevant features in the
image positions of body parts are needed, making the mettiBtige descriptor space. This property may be useful for
easily adaptable to different people, appearances and repentifying better feature sets, not only for pose recovery and
sentations of 3D human body pose. The regression is ddf@cking, but also for human detection tasks.
in either linear or kernel space, using either ridge regression
or Relevance Vector Machines. The main advantage of RVMs
is that they allow sparse sets of highly relevant features or ACKNOWLEDGMENTS
training examples to be selected for the regression. We have
proposed two ways of overcoming the intrinsic ambiguity of This work was supported by the European Union projects
the pose-from-monocular-observations problem: regressing VIBES and LAVA, and the research network PASCAL.
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Fig. 19. 3D poses reconstructed from another test video sequence (obtained from http://mocap.cs.cmu.edu/). In this sequence the subject walks towards the
camera causing a scale change by a factor2f (The images and silhouettes have been normalized in scale here for display purposes). Our scale invariant
silhouette representation allows the algorithm to process a silhouette independent of its size or location in the image without disturbing the 3D pose recovery.
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