

Joint Feature Distributions for Image Correspondence

Bill Triggs, CNRS-INRIA, Grenoble, France — www.inrialpes.fr/movi/people/Triggs

Contributions

Joint Feature Distributions

• Given a population of 3D features **f** and probabilistic projection models $\mathbf{p}(\mathbf{x}_i | \mathbf{f})$ for their images $\mathbf{x}_1, ..., \mathbf{x}_m$, the *Joint Feature Distribution (JFD*) of the image features is:

 $\mathbf{p}(\mathbf{x}_1,...,\mathbf{x}_m) \ \equiv \ \int \mathbf{p}(\mathbf{x}_1,...,\mathbf{x}_m \mid \mathbf{f}) \ \mathbf{p}(\mathbf{f}) \ \mathbf{df} = \int \mathbf{p}(\mathbf{x}_1 \mid \mathbf{f}) \ ... \ \mathbf{p}(\mathbf{x}_m \mid \mathbf{f}) \ \mathbf{p}(\mathbf{f}) \ \mathbf{df}$

• Even if the 3D population $\mathbf{p}(\mathbf{f})$ is broad, *the JFD remains highly correlated* — it still encodes precise location information from the feature projections $\mathbf{p}(\mathbf{x}_i | \mathbf{f})$.

• The JFD can be estimated and used as a matching tool — its conditional distributions (CFD's) $\mathbf{p}(\mathbf{x}_1 | \mathbf{x}_2, ..., \mathbf{x}_m)$ define probabilistic correspondence search regions.

Estimation algorithm — "epipolar" JFD model

• Uses homogeneous representation of Gaussians - see paper for details.

 \blacksquare As in linear fundamental matrix estimation, build data matrix M with columns $(1, x, y, x', y', xx', xy', yx', yy')^{\top}$ — the tensor product of the homogeneous coordinates of the training correspondences.

2 Regularize and invert 9×9 homogeneous scatter matrix $\mathsf{M}\mathsf{M}^{\mathsf{T}}$ to get the homogeneous information (inverse covariance) of the Gaussian JFD model: $W = (\mathsf{M}\mathsf{M}^{\mathsf{T}} + \epsilon)^{-1}$. **3** To condition on an observed feature \mathbf{x} , treat W as a tensor $W_{AB A'B'}$ and contract against $\mathbf{x} \mathbf{x}^{\mathsf{T}}$ to get the 3×3 homogeneous information A of the conditional distribution for \mathbf{x}' , the correspondent of \mathbf{x} : $\mathsf{A}_{A'B'} \equiv W_{AB A'B'} \mathbf{x}^{A} \mathbf{x}^{B}$

 $\label{eq:statistically accurate error weighting: A \rightarrow \mu A$ with $\mu \sim 1/(A_{11} + A_{22})$ (see paper).

Other affine & perspective Gaussian JFD models are similar:

Dombine training coordinates into direct sum (affine case) or tensor product (perspective case) "joint image" vectors, and estimate a Gaussian-like scatter model for the vectors.

2 Condition on given measurements to find Gaussian-like search regions for their correspondents in other images — conditioning uses Schur complement (affine model), tensor contraction (perspective model).

• To probabilize "lines-through-point" matching constraints (homographic, trifocal...), use *dual scatter matrices* to represent "uniform distributions of lines" through the given point.

Numerical Experiments — Epipolar JFD search region

Tensor Joint Image Representation

• A new way to view multi-image geometric matching constraints, gives the theoretical dation for the tensored-Gaussian JFD approach.

 In tensor product representations, matching constraints become linear — represent v & image entities by their Veronese & Segré varieties from algebraic geometry.

Acknowledgements Partly supported by European Union FET-Open project VIBES.

[] Joint Feature Distributions (JFD's) — a general probabilistic framework for inter-image feature matching.

• JFD's are joint probability distributions of positions of corresponding features across several images.

• *Probabilistic conditioning* on observed feature positions gives conditional distributions for their correspondents in other images

 \Rightarrow tight probabilistic correspondence-search regions.

• JFD's are *probabilistic characterizations of populations of training features*, not rigid geometric constraints — given suitable parametric forms, they can model geometric constraints, non-rigid motion, distortion...

2 Simplest example: *Gaussian-like JFD models* that generalize & probabilize affine & projective multi-image matching constraints.

• Unlike matching constraints, Gaussian JFD correspondence models are stable & accurate even for degenerate geometries

— no model selection is needed (c.f. epipolar vs. homographic for small translations, near-planar scenes...)

— Gaussian JFD's can be viewed as algebraic variants of *Bayesian* model averaging over geometric matching constraints.

• Many other parametric forms are possible, *e.g.* for clustered data use mixtures of Gaussian subpopulation JFD's...

Conclusions

[] The 2 image "epipolar" JFD is especially simple & effective — it should become a standard matching model.

2 ≥ 3 image JFD models with the index structure of matching constraints are also useful. More general ones exist but are less efficient.
3 For good results near epipoles use statistically-based error weighting — as in matching constraints, algebraic weighting underweights errors near epipoles.

Analogies between JFD's and Matching Tensors

Entity	Matching Constraint Approach	Joint Distribution Approach
3D camera geometry	Camera projection mapping, ma-	Conditional feature projection dis-
	trices $P_i: \mathbf{f} \to \mathbf{x}_i = P_i \mathbf{f}$	tributions $\mathbf{p}(\mathbf{x}_i \mathbf{f})$
Image signature of	Multi-image matching tensors	Joint Feature Distributions
camera geometry	T_{ijk}	$\mathbf{p}(\mathbf{x},,\mathbf{z})$
Inter-image feature	Tensor based feature transfer $x \simeq$	Conditional Feature Distributions
transfer	$T_{ijk} \cdot y \cdot \cdot z$	$\mathbf{p}(\boldsymbol{x} \mid \boldsymbol{y},, \boldsymbol{z})$
Inter-image feature	Geometric matching constraints	Probability that features corre-
correspondence	$T_{ij\ldots k} \cdot \mathbf{x} \cdot \ldots \cdot \mathbf{z} = 0$	spond, $\mathbf{p}(\mathbf{x},,\mathbf{z})$, or $\mathbf{p}(\mathbf{x} \mid \mathbf{y},,\mathbf{z})$
Scene reconstruction	Ray intersection, tensor-based re-	Posterior 3D feature probability
	construction	$\mathbf{p}(\mathbf{f} \mathbf{x},, \mathbf{z})$