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Local Part Based Category Recognition

Extract distinctive local features , link them by loose geometric
constraints

• Local features ⇒ robustness to occlusions / appearance / varia-

tions outside feature support.

• Loose geometry ⇒ flexible shape to allow for within-class varia-

tion, changes of viewpoint,



Families of Approaches

• Bag of features: no geometry, just vote using feature appear-

ances.

• Feature based matching: rigid feature sets under similarity, affine,

etc., transformations.

• Network / constellation: multiply interconnected networks over a

few salient features/parts.

• Multiscale trees: coarse to fine networks with regular branching

at each scale, dense image features (pixels, filters)

• Our model: many features (100’s); tree structure linked to coher-

ent object parts not scale; rapid training (100’s of images per minute

in Matlab).



Hierarchical Spatial Model

• Object / part / sub-part hierarchy, leaves are local image features

— below we use just 3 layers: object / part / feature

• Each child has an uncertain relative position & scaling relative to

its parent — in general a PDF over some class of geometric trans-

formations

• Soft assignment of children to parents allows re-adoption during

training, but most children have just one dominant parent



Graphical Structure
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Flexibility under Viewpoint Changes



Image Features

• Correspondence is based on local invariant features

— in the below experiments, SIFT over scale invariant Harris points

• Our image measurements are tests for the presence of a local fea-

ture matching the given appearance class in the given image region

• For each feature class k, we select the single most probable im-

age feature, and use just these assigned features in the subsequent

processing.

• A feature may be chosen by several classes (rare owing to locality).

• Robustness — poor matches are essentially ignored.



Density Model for Feature Class k

The probability density model for features of class k is:

pk(x, a | . . .) = (1− πk) pbackground

+ πk N (a|āk,Σak
)

∑
parts p

τpkN (x|xp + d̄xpk,Σdxpk
)

• a, x = appearance, position/scale of feature

• πk = probability of feature being from object not background

• Each model part p has:

— a distribution for the feature’s position/scale relative to the part

centre xp

— a (sparse) prior probability τkp = p(p|k) for the feature to belong

to the part.



Fitting a Model Instance to an Image

• Given the instantiated model and the above image correspondence

method, fitting is standard Expectation-Maximization.

• In test images, we adjust just the image instance parameters (part

positions,...)

• During training, we adjust both instance and model parameters



Instantiating a Model Instance

Instantiation uses a Hough-like voting method. (Some of the experi-

ments use an earlier image-alignment based method).

1 For each part p, each image feature f votes into a position/scale

pyramid for p’s centre xp, using f ’s appearance probability w.r.t. p:∑
feature class k

τpk

wk
N (af |āk,Σak

)N (xf |xp + d̄xpk,Σdxpk
)

• To suppress common background features and enhance rarer ob-

ject ones, we divide the vote by the total number of features assigned

to class k : wk =
∑

f N (af |āk,Σak
).

• For speed, we actually use hard assignments f → k and k → p.



2 Work up spatial tree combining part pyramids into superpart ones:

smooth(
∑

subparts p

f(spatial offsetp(pyramidp)))

— f(x) = log(1 + x) makes it harder for high peaks in outlier

subparts to dominate the valid contributions of the other parts.

3 Maxima in the top-level pyramid give potential object centres.

4 Work back down the tree assigning part positions. If there is a

good part pyramid maximum near the expected part position, use it.

Otherwise use the default part offset.



Training — Model Initialization

We heuristically rank the training images according to their expected

quality as training examples (see below), and use just the best image

to estimate the initial model parameters.

1 For each feature in the initial image, initialize a feature class k

centred at its position and appearance.

2 Cluster the features into P spatial groups (initial “parts”, but some

will be background). Cluster centres→ part centres; median feature

scale → part scale; relative feature positions/scales → feature off-

sets; feature-part assignment → τ matrix.

3 Propagate the centres up tree by averaging subpart positions/scales

(one vote per subpart).



Notes on Model Initialization

• Step 1 could be improved: some classes will be background junk

and we will miss some informative features from other images

• Some feature classes may have the same appearance: this allows

for (small numbers of) repeated features (wheels, eyes. . . )

• We could also try initializing from 2nd, 3rd, . . . image, but so far

this hasn’t been necessary.

• Trying to initialize from averages of several images gives much

worse results.



Ranking the Training Images

1 Use K-means to cluster the features from all (positive) training

images into ∼ 500 classes

— each image has a 500-D signature S (vector of class counts)

2 Select the ∼ 30 “most informative” feature classes, and rank

images by the number of these classes that they contain (Sc 6= 0)



Feature Selection for Ranking

Supervised method

Train a logistic discriminant (RVM, LASSO, linear SVM. . . ) to predict

the± class from the binarized signature vector (S 6= 0). Choose the

features with the highest weights.

• This works fine but requires negative images. . .

Unsupervised Method

For each feature, count the number of images in which it occurs ex-

actly once (alternatively, 1–2 times). Choose the ∼ 30 features with

the highest counts.

• This selects distinctive features representing unique object parts

(background features seldom occur exactly once per image). It fails

for objects dominated by repetitive texture.



Training Initialization — Motorbikes



Test Set Fits — Motorbikes / 4 Parts



Test Set Fits — Motorbikes / 1 Part



Test Set Fits — Aeroplanes / 4 Parts



Training Initialization — Faces



Training Set Fits — Faces / 4 Parts



Number of Parts and Feature Classes
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Summary

• Loose part / sub-part hierarchy learns flexible part assemblies.

• Geometrically weaker than constellation model, but handles 100’s

of features.

• Image features are existence tests for invariant local features.

• Soft assignments allow subparts to be re-parented during learning.

• Training and testing are rapid (< 1 second/image).

In progress

• Poisson field model for feature assignment under texture.



Confusion Matrices — Likelihood based
Classification

3 parts models
err.rate plane bike bkgd leaves
bike 1.66
bkgd 1.4 0.0
leaves 3.31 0.0 2.15
faces 1.10 0.0 0.0 6.45

one-part model
plane bike bkgd leaves
2.0
2.79 0.0
4.97 0.0 8.6
2.3 1.0 0.9 12.9


