

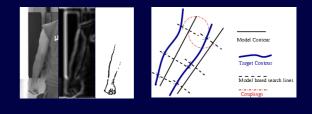
Multiple Image Features, Integrated Robustly

1. Intensity

• The model is `dressed' with the image texture under its projection (visible parts) in the previous time step

Matching cost of model-projected texture against current image (robust intensity difference)

2.Contours



Multiple probabilistic assignment integrates matching uncertainty
Weighted towards motion discontinuities (robust flow outliers)
Also accounts for higher order symmmetric model/data couplings
partially removes local, independent matching ambiguities

Cost Function Minima Caused By Incorrect Edge Assignments

Intensity + edges

> Edges only

How many local minima are there?

Thousands ! – even *without* image matching ambiguities ...

Tracking Approaches We Have Tried

- Traditional CONDENSATION
- Covariance Scaled Sampling
- · Direct search for nearby minima
- Kinematic Jump Sampling
- 'Manual' initialization already requires nontrivial optimization

Properties of Model-Image Matching Cost Function, 1

- High dimension
 - at least 30 35 d.o.f.
 - but factorial structure: limbs are quasi-independent
- Very ill-conditioned
 - depth d.o.f. often nearly unobservable
 - condition number O($1:10^4$)
- · Many many local minima
 - O(10³) kinematic minima, times image ambiguity

Properties of Model-Image Matching Cost Function, 2

- · Minima are usually well separated
 - fair random samples almost never jump between them
- But they often merge and separate
 - frequent passage through singular / critical configurations – frontoparallel limbs
 - causes mistracking!
- Minima are small, high-cost regions are large
 - random sampling with exaggerated noise almost never hits a minimum

Covariance Scaled Sampling, 1

Mistracking leaves us in the wrong minimum.

- To make particle filter trackers work for this kind of cost function, we need :
- Broad sampling to reach basins of attraction of nearby minima
 - in CONDENSATION : exaggerate the dynamical noise
 - robust / long-tailed distributions are best
- Followed by *local optimization* to reach low-cost 'cores' of minima
 - core is small in high dim. problems, so samples rarely hit it
 - CONDENSATION style reweighting will kill them before they get there

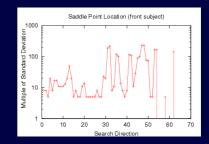
Covariance Scaled Sampling, 2

- Sample distribution should be based on *local shape* of cost function
 - the minima that cause confusion are much further in some directions than in others owing to ill-conditioning
 - in particular, kinematic flip pairs are aligned along illconditioned depth d.o.f.
- Combining these 3 properties gives Covariance Scaled Sampling
 - long-tailed, covariance shaped sampling + optimization
 - represent sample distribution as robust mixture model

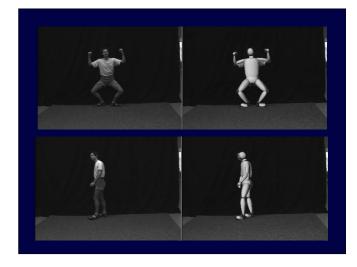
Direct Search for Nearby Minima

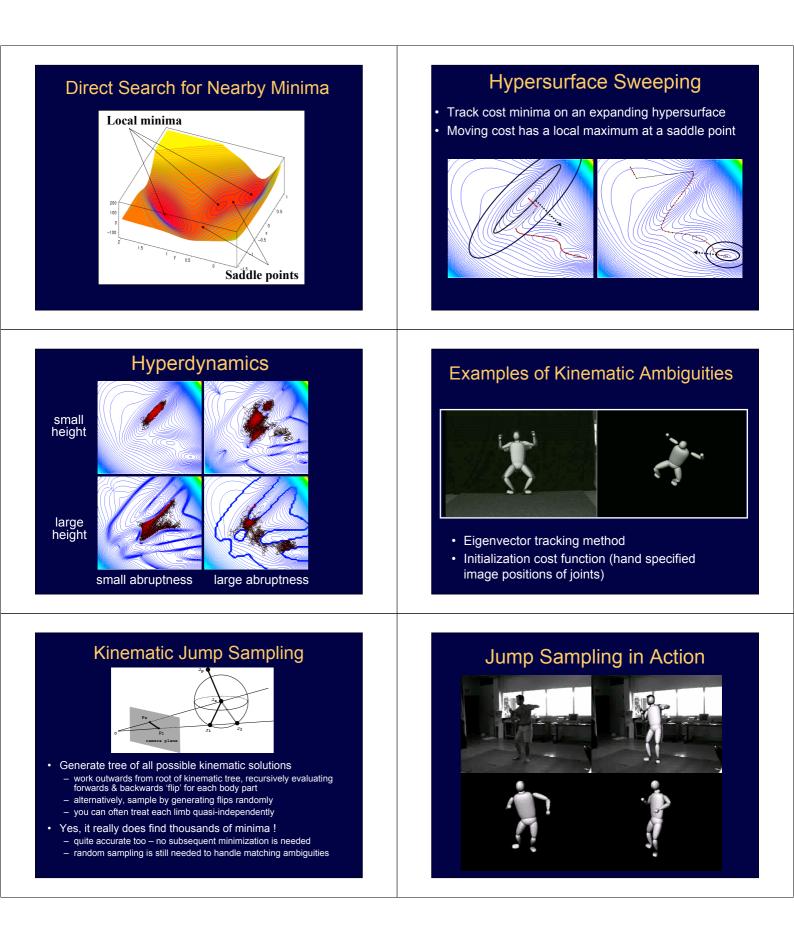
- Instead of sampling randomly, directly locate nearby cost basins by finding the 'mountain passes' that lead to them
 - i.e. find the saddle point at the top of the path
- Numerical methods for finding saddles :
 - modified Newton optimizers : eigenvector tracking, hypersurface sweeping
 - 'hyperdynamics' : MCMC sampling in a modified cost surface that focuses samples on saddles

Statistical Separation of Minima



• Minima are usually at least O(10¹) standard deviations away.





Summary

- 3D articular human tracking from monocular video
- A hard problem owing to
 - complex model (many d.o.f., constraints, occlusions...)
 - ill-conditioning
 - many kinematic minima
 - model-image matching ambiguities
- Combine methods to overcome local minima
 explicit kinematic jumps + sample for image ambiguities
- Current state of the art
 - relative depth accuracy is 10% or 10 cm at best
 - tracking for more than 5 10 seconds is still hard
 - still very slow several minutes per frame

