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Goal: track human body motion in monocular
video and estimate 3D joint motion

Why Monocular ?

 Movies, archival footage

« Tracking / interpretation of actions & gestures (HCI)
* Resynthesis, e.g. change point of view or actor

* How do humans do this so well?

Why is 3D-from-monocular hard?

Depth ambiguities

Image 'ma.tphing Violations of
ambiguities physical constraints

Overall Modelling Approach

1. Generative Human Model e

— Complex, kinematics, geometry,
photometry

— Predicts images or descriptors

2. Model-image matching cost function

— Associates model predictions to
image features

— Robust, probabilistically motivated

3. Tracking by search / optimization

— Discovers well supported
configurations of matching cost

Human Body Model

* Explicit 3D model allows high-
level interpretation

+ 30-35 d.o.f. articular ‘skeleton’

* ‘Flesh’ of superquadric
ellipsoids with tapering &
bending

* Model — image projection
maps points on ‘skin’ through
* kinematic chain

* camera matrix
* occlusion (z buffer)

Anthropometric prior
* left/right symmetry
* bias towards default human

Accurate kinematic model
« clavicle (shoulder), torso (twist)

« robust prior stabilizes complex
joints

Body part interpenetration
« repulsive inter-part potentials

Anatomical joint limits
* hard bounds in parameter space




Multiple Image Features, Integrated
Robustly

» Multiple probabilistic assignment integrates matching uncertainty
1. Intensity + Weighted towards motion discontinuities (robust flow outliers)

« The model is "dressed’ with the image texture under its » Also accounts for higher order symmmetric model/data couplings

projection (visible parts) in the previous time step - partially removes local, independent matching ambiguities

» Matching cost of model-projected texture against current
image (robust intensity difference)

Cost Function Minima Caused
By Incorrect Edge Assignments _ How many

_ local minima
Intensity

vedges | & | IR I KI K| K N are there?

Thousands ! —
even without
image matching
ambiguities ...

Properties of Model-Image Matching
Cost Function, 1
High dimension

—at least 30 — 35 d.o.f.
— but factorial structure: limbs are quasi-independent

Tracking Approaches We Have Tried

Traditional CONDENSATION
Covariance Scaled Sampling

Direct search for nearby minima Very ill-conditioned

Kinematic Jump Sampling — depth d.o.f. often nearly unobservable

— condition number O( 1: 104 )

‘Manual’ initialization — already requires Many many local minima

nontrivial optimization — O( 103) kinematic minima, times image ambiguity




Properties of Model-Image Matching
Cost Function, 2

* Minima are usually well separated

— fair random samples almost never jump between
them

But they often merge and separate

— frequent passage through singular / critical
configurations — frontoparallel limbs

— causes mistracking!
Minima are small, high-cost regions are large

—random sampling with exaggerated noise almost
never hits a minimum

Covariance Scaled Sampling, 1
Mistracking leaves us in the wrong minimum.

To make particle filter trackers work for this kind of cost
function, we need :

* Broad sampling to reach basins of attraction of
nearby minima
— in CONDENSATION : exaggerate the dynamical noise
— robust / long-tailed distributions are best

* Followed by local optimization to reach low-cost
‘cores’ of minima
— core is small in high dim. problems, so samples rarely hit it

— CONDENSATION style reweighting will kill them before
they get there

Covariance Scaled Sampling, 2

» Sample distribution should be based on local shape
of cost function

— the minima that cause confusion are much further in some
directions than in others owing to ill-conditioning

— in particular, kinematic flip pairs are aligned along ill-
conditioned depth d.o.f.

+ Combining these 3 properties gives Covariance
Scaled Sampling

— long-tailed, covariance shaped sampling + optimization

— represent sample distribution as robust mixture model

Statistical Separation of Minima

Saddle Poirt Location (front subject)
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Multiple of Standard Deviation

« Minima are usually at least O(10") standard
deviations away.

Direct Search for Nearby Minima

Instead of sampling randomly, directly locate
nearby cost basins by finding the ‘mountain
passes’ that lead to them

—i.e. find the saddle point at the top of the path
Numerical methods for finding saddles :

— modified Newton optimizers : eigenvector tracking,
hypersurface sweeping

— ‘hyperdynamics’ : MCMC sampling in a modified
cost surface that focuses samples on saddles




Direct Search for Nearby Minima Hypersurface Sweeping

» Track cost minima on an expanding hypersurface
* Moving cost has a local maximum at a saddle point

Local minim

large

height « Eigenvector tracking method

* Initialization cost function (hand specified

small abruptness  large abruptness image positions of joints)

Kinematic Jump Sampling Jump Sampling in Action

» Generate tree of all possible kinematic solutions

— work outwards from root of kinematic tree, recursively evaluating
forwards & backwards ‘flip’ for each body part

— alternatively, sample by generating flips randomly
— you can often treat each limb quasi-independently

* Yes, it really does find thousands of minima !
— quite accurate too — no subsequent minimization is needed
— random sampling is still needed to handle matching ambiguities




Summary

+ 3D articular human tracking from monocular video

* A hard problem owing to
— complex model (many d.o.f., constraints, occlusions...)
— ill-conditioning
— many kinematic minima
— model-image matching ambiguities
» Combine methods to overcome local minima
— explicit kinematic jumps + sample for image ambiguities

+ Current state of the art
— relative depth accuracy is 10% or 10 cm at best
— tracking for more than 5 — 10 seconds is still hard
— still very slow — several minutes per frame




