
Vector Boosting for Rotation Invariant Multi-View Face Detection

Chang HUANG1, Haizhou AI1, Yuan LI1and Shihong LAO2
1 Computer Science and Technology Department, Tsinghua University, Beijing, 100084, China

2 Sensing Technology Laboratory, Omron Corporation
E-mail: ahz@mail.tsinghua.edu.cn

Abstract

In this paper, we propose a novel tree-structured

multi-view face detector (MVFD), which adopts the
coarse-to-fine strategy to divide the entire face space
into smaller and smaller subspaces. For this purpose, a
newly extended boosting algorithm named Vector
Boosting is developed to train the predictors for the
branching nodes of the tree that have
multi-components outputs as vectors. Our MVFD
covers a large range of the face space, say, +/-45°
rotation in plane (RIP) and +/-90° rotation off plane
(ROP), and achieves high accuracy and amazing speed
(about 40 ms per frame on a 320×240 video sequence)
compared with previous published works. As a result,
by simply rotating the detector 90°, 180° and 270°, a
rotation invariant (360° RIP) MVFD is implemented
that achieves real time performance (11 fps on a 320×
240 video sequence) with high accuracy.

1. Introduction

Some early works on face detection, for instance,

Rowley’s ANN method [1] and Schneiderman’s
method based on Bayesian decision rule [2], have
achieved high accuracy, but their applications are very
limited due to the tremendous computational load. The
breakthrough happened in 2001 when Viola and Jones
[3] developed their cascade detector that firstly showed
real-time performance for frontal face detection. There
have been many related works such as Xiao et al.’s
Boosting Chain [4] and Liu et al.’s Kullback-Leibler
Boosting [5]. They focused on some parts of Viola’s
framework and adopt new methods for improvements.
Moreover, to detect faces with various poses, Li
proposed a pyramid-structured MVFD [6], while Jones
and Viola used decision-tree method [7] to handle the
RIP problem. All these works benefit from the fast
Haar-like feature extraction with the integral image,
and adopt the AdaBoost algorithm to guarantee the
correct rate of classification.

However, some challenging requirements of many
complicated practical applications still can not be met
due to the ubiquitous concomitance of RIP and ROP in

real-life faces. Although this problem can be solved by
rotating the image and apply MVFD several times, it
significantly increases the computation complexity and
false alarms. So we need to develop some special
techniques to improve the efficiency of the detector.

In this paper, an efficient tree-structured MVFD is
proposed to deal with both kinds of pose changes in a
unified framework, which covers +/-45° RIP and
+/-90° ROP. It is so powerful that only such four
detectors are needed to handle the rotation invariant
MVFD problem.

The main contributions of this paper are: 1) different
from both the pyramid structure in [6] and the decision
tree in [7], a WFS (Width-First-Search) tree structure is
adopted to achieve higher performance in both speed
and accuracy; 2) to train branching nodes of the WFS
tree, the Vector Boosting algorithm is extended from
the Real AdaBoost [9] [10] [11], which achieves better
performance; 3) the piece-wise function, which is
implemented with Look Up Table (LUT) method, is
suggested to approximate complex distributions and
give confidence-rated hypothesis as the weak classifier.

The rest of this paper is organized as follow: Section
2 presents the WFS tree structure; Section 3 introduces
the Vector Boosting algorithm; Section 4 proposes the
powerful piece-wise function; Section 5 deals with the
optimization problem of the weak learner in Vector
Boosting; Section 6 gives the results of a series of
experiments, and Section 7 comes to the conclusions.

2. WFS Tree-Structured Detector

In recent years, Viola and Jones’s framework on
face detection has been proved very successful and
efficient. For the MVFD, the most straightforward way
of extending their framework is to train different
cascades individually for each view and then use them
as a whole like figure 1(a). The work in [8] has proved
that even this simple method does have rather good
performance in dealing with this complicated problem.
Anyway there still remains a large capacity to improve
through a better structure.

One approach is the pyramid structure [6] that
adopts coarse-to-fine strategy to handle pose variance

of ROP (Figure 1(b)). Due to the similarities that exist
in different poses of faces, the pyramid method treats
them as one ensemble positive class so as to improve
the efficiency of extracted features. However, the
neglect of their intrinsic diversities makes the pyramid
method have no discrimination in different poses. As a
result, a sample that has passed the parent node has to
be sent to all its child nodes (See figure 1(b)), which
considerably slows down the decision-making process.

On the contrary, another approach, the decision tree
method [7], puts emphasis upon the diversities between
different poses and the tree works as a pose estimator.
With the imperative judgments made by the decision
tree, it significantly reduces the time spent on pose
estimation. However the results are somewhat unstable
that makes its generalization ability not so well.

Branching node

Figure 2. The Structure of the WFS Tree

As a matter of fact, there are two main tasks for
MVFD problem: one is to distinguish between faces
and non-faces; the other is to identify the pose of a face.
The first task needs to reject non-faces as quickly as
possible, so it is inclined to find the similarities of faces
of different poses so as to separate them from non faces,
while the latter task focuses on the diversities between
different poses. The conflict between the two tasks
really leads to the dilemma that either treating all faces
as a single class (as in the pyramid method) or different
individually separated classes (as in the decision tree
method) is unsatisfactory for MVFD problem. Hence
we propose a WFS tree structure to balance these two
aspects so as to enhance the detector in both accuracy
and speed.

Covering the face space with +/-45° RIP and +/-90°
ROP, the proposed detector tree adopts the coarse to

fine strategy to divide the entire face space into smaller
and smaller subspaces as shown in figure 2. The root
node that covers the largest space is partitioned into left
profile, frontal and right profile views in the second
layer; to describe the ROP more accurately, full-profile
and half-profile views are defined in the coming layer;
finally in the fourth layer, each view is split into three
categories according to their different RIP.

Our tree-structured detector will not make exclusive
selection of the path for a sample like the decision tree
method. Instead, each branching node computes a
determinative vector G(x) for the decision which child
nodes the sample should be sent to. For example, in the
root branching node of figure 2, a sample making G(x)
= (1, 1, 0) means it may be a left profile face or a
frontal one but can not be a right profile one, so in the
second layer, it will be sent to the left node and the
middle node but not the right one. Another sample that
makes G(x) = (0, 0, 0) is thought of outlying from any
child node and will be rejected immediately. To browse
all active nodes in the tree, the Width-First-Search
strategy is adopted, and its pseudo code is given below.

0. (Input) Given a sample x and the constructed
 tree detector T.
1. (Initialization) Set the node list L empty; push the
 root node of T into L; empty the output list O.
2. (WFS procedure)
 While L is not empty, do

 Pop the first node d from L.
 Calculate the determinative vector G(d)(x),

where () () ()
1() (),..., ()d d d

ng g⎡ ⎤= ⎣ ⎦G x x x
 For t=1,…,n:

 If () () 1d
tg =x

 Get the t-th child node si of d
 If si is a leaf node
 Push li, the label of si, into the list O.
 Else
 Push si into the list L.
 End if
 End if
 End for
 End do
3. (Output) Output all labels in the list O for sample x.

(b) Pyramid (c) Tree(a) Parallel Cascades

Figure 1. Different structures of MVFD

Figure 3. Width-First-Search in the detector tree

In fact, the WFS tree method does not try to give
quick pose estimation like [7] which amounts to loss in
accuracy, nor simply merges different poses without
consideration of their in-class differences like [6]
which amounts to loss in speed. Hence, the WFS tree
can outperform them by means of paying attention to
both diversities and similarities between various poses
that guarantees both high accuracy and faster speed.

From the discussion above, it is obvious that the
branching node plays an important role in the WFS tree.
To support this new technique, in the next section, a
newly extended version of the Real AdaBoost in [9]
that is named Vector Boosting will be introduced. With
its help, the branching nodes are trained for the
required determinative vector G(x) fast and accurately.

3. Vector Boosting

The Vector Boosting is proposed as an extended
version of the Real AdaBoost in which both its weak
learner and its final output are vectors rather than
scalars. The original inspiration of Vector Boosting is
drawn from the multi-class multi-label (MCML)
version of the Real AdaBoost [9], which assigns a set
of labels for each sample and decomposes the original
problem into k orthogonal binary ones. The major
problem of this algorithm is that for each binary
classification problem, a sample is regarded as either
positive or negative. However in many complicated
cases, it is not tenable since some samples are neither
positive nor negative for certain binary classification
problems of which they are independent, which makes
the MCML version of Real AdaBoost inapplicable.
Take the root node of the WFS tree in figure 2 for
example. A frontal face sample that makes the
determinative vector G(x) = (*, +1, *) be acceptable (*
can be either +1 or -1), i.e., the first (i.e. for left profile
face) and the third (i.e. for right profile face) binary
classifications are independent of frontal face samples.

Once a complicated classification problem is
decomposed into a set of binary ones, Vector Boosting
will deal with them in a unified framework by means of
a shared output space of multi-components vector.
Each binary problem has its own “interested” direction
in this output space that is denoted as its projection
vector. In this way, different binary problems are not
necessarily independent (with orthogonal projection
vectors); they could also be correlated (with non-
orthogonal projection vectors) in general.

Let 1 1 1{(, ,), , (, ,)}m m mS y y= x v x v… be a sequence of
training samples where xi belongs to an instance space
χ, vi belongs to a finite k-dimensional projection vector

set Ω and the label yi =±1 (i.e. positive or negative).
We present the pseudo code of a generalized version of
k-dimensional Vector Boosting in figure 4, which deals
with n binary classification problems synchronously.

For a classification problem that has been decomposed
into n binary ones, given:
 (1) Projection vector set 1{ ,..., }, k

n iΩ = ∈ω ω ω \
 (2) Sample set 1 1 1{(, ,), , (, ,)}m m mS y y= x v x v… ,
 where χ∈x , ∈ Ωv and its label 1y = ± .

 Initialize the sample distribution D1(i)=1/m,
 For t = 1,…,T

 Under current distribution, train a weak classifier
 ht(x) : kχ →R . (weak learner)

 Update the sample distribution
[]

1
() exp ())

()
(t i i t i

t
t

D i y
D i

Z+
−

=
h xv i , (1)

where Zt is the normalization factor so as to keep
Di+1 as a probability distribution.

 The final output space is
1

() ()
T

t
t =

=∑H x h x (2)

 The confidence space is () ()=F x AH x . (3)
where the transformation matrix [1,...,]t

n=A ω ω .
 The final strong classifier is

()() ()sign= −G x F x B . (4)
B is the threshold vector whose default value is zero.
Figure 4. A generalized version of Vector Boosting

It is configured in figure 4 to handle a complicated
problem in a k-dimensional output space, which has
been decomposed into n binary ones. In the same way
of Real AdaBoost, the weak learner is called repeatedly
under the updated distribution to form a highly accurate
classifier. It should be mentioned that in the kernel
update rule (equation 1), the margin of a sample xi with
its label y and projection vector vi is defined as
yi(vi·h(xi)) due to the vectorization of the output. Thus,
the orthogonal component of a weak classifier’s output
makes no contribution to the updating of the sample’s
weight. In this way, Vector Boosting increases the
weights of samples that have been wrongly classified
according to the projection vector (in its “interested”
direction) and decrease those with correct predictions.

The final output is the linear combination of all
trained weak classifiers (equation 2). To calculate the
confidences for each binary problem, a n×k matrix A
is employed to transform the k-dimensional output
space into n-dimensional confidence space (equation 3),
which is made up of all n projection vectors in set Ω.
Each dimension of the confidence space corresponds to
a certain binary problem. Finally, the strong classifier

with Boolean outputs is got with the threshold vector B
(equation 4).

Practically in our experiments, we still decompose
the complicated classification problem into several
orthogonal binary ones for simplification but maintain
the independences between various face poses. For
example, when training the root branching node in
figure 2, we collect three face sets, which are left
profile, frontal and right profile, assign their projection
vectors as (1, 0, 0), (0, 1, 0), (0, 0, 1) respectively, and
label them positive (i.e. yi= +1). After that, prepare
another three non-face sets with the same projection
vectors but label them negative (i.e. yi= -1). These three
binary problems appear to be trained independently,
but share the selected features so as to outperform the
individually training methods such as the work in [8].
Figure 5 draws the results of three classes in the output
space H(x), where H(x, 1) is the dimension for left
profile view and H(x, 3) is for right profile view. (The
frontal view and its corresponding projection vector are
omitted here for clarity). It is true that both left profile
and right profile faces can be well separated from the
non faces in this 2-D space with their own projection
vectors ω1 and ω3.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

H(x,1)

H
(x

,3
)

Right profile

Left profile
Non-face

ω 1

ω 3

Figure 5. Distributions of 3 classes in the output space

It is easy to see that when n = k = 1 and ω1 (the only
projection vector in Ω) is a unit vector, Vector
Boosting is exactly the same as Real AdaBoost. In fact,
due to the consistency in updating rule (equation 1),
Vector Boosting keeps the same training error bound as
Real AdaBoost, that is,

 training error Perror≤∏Zt. (5)
Its proof can be found in Appendix A.

In the next two sections, the design of the weak
classifier and its optimization method for Vector
Boosting are described.

4. Piece-wise Functions

In Viola and Jones’ cascade detector [3], they use

integral image method to fast calculate the Haar-like
feature f(x), on which a weak classifier h(x) is defined
as a threshold-type function with Boolean output as

shown in figure 7(a). It can be formally expressed as
h(x) = sign[f(x)-b], where b is a threshold. Although it
is simple and easy to train, it is not able to take full
advantage of information from the extracted feature.
For example, as shown in the left of figure 6, the
positive and negative samples can be well classified by
a proper threshold. However, it cannot describe their
divergences accurately enough due to its coarse
granularity. In addition, during the updating process of
the AdaBoost algorithm, their divergences diminishes
continually (e.g. the right diagram of figure 6 shows
the distributions on a Haar-like feature selected in the
fifth round), which largely weakens the discrimination
power of the threshold-type function, and sometimes
even hampers the convergence of the algorithm (e.g. in
the latter layer of the cascade when the face and
non-face patterns are very similar). In conclusion, the
coarse granularity of the threshold-type weak classifier
greatly impedes the improvement of the speed and
accuracy of the detector.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
en

si
ty

Feature Value

Positive
Negative

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
en

si
ty

Feature Value

Positive
Negative

Figure 6. Distributions on Haar-like features

A more efficient design for weak classifiers, the
piece-wise function illustrated in figure 7(b), divides
the feature space into many bins with equal width and
output a constant value for each bin. The piece-wise
function is able to approximate various distributions
more accurately without the constraint of Boolean
output, which is essentially a symmetrical equidistant
sampling process. It also meets the very requirements
of the weak learner in Real AdaBoost since it is really a
natural way of domain partition referred in [9].
Besides, as the piece-wise function can be efficiently
implemented with Look Up Table (LUT), it does not
bring in more computational load compared with the
threshold-type function (only a multiplication is needed
to convert feature value to the index of LUT), but it
significantly enhances the capability of the weak
classifier by means of real-valued outputs.

According to “There is no free lunch” theorem, it is
very important to choose suitable granularity for a
piece-wise function. The finer the granularity is, the
more accurately the function can estimate (lower
training error), but the more sensitive it will be to the
noise and the size of training set (higher structural risk).
Empirically, it is strongly suggested that in the first
several layers, the granularity can be a little finer so as

to make the training converge as fast as possible, while
in the latter layers, it should be coarser to make the
classification results robust.

b f(x)

h(x)

0

1

f(x)
(a) Threshold-type function (b) Piece-wise function

jbin

h(x) cj

Figure 7. Two types of Weak Classifier

5. The Optimization of Weak Learner

Reviewing equation 3, on the basis of that the

training error in Vector Boosting is bounded by the
product of all normalization factors, the objective of
weak learner is just to minimize this factor of current
round if adopting greedy strategy. Suppose a weak
classifier (; ,)θ µh x is characterized by two parameters:
θ specifies its Haar-like feature and µ specifies its
piece-wise function. Following Viola’s exhaustive
search method in [3], we enumerate a finite redundant
Haar-like feature set and optimize a piece-wise
function for each feature so as to obtain the most
discriminating one. Then the only unsolved problem in
weak learner is how to get the optimal piece-wise
function µ.

A piece-wise function is configured by two parts:
one is the division of feature space, the other is the
constant for each division (i.e. bin). For simplification,
the first one is fixed for each feature empirically, and
the last one, the output constant for each bin, can be
optimized as follows.

Suppose samples 1 1 1{(, ,), , (, ,)}m m mS y y= x v x v… is
under the distribution of Dt(i). On a certain feature f(x),
they can be grouped into many bins with the predefined
division of piece-wise function. Denote them as:

,{(,) | }j i i i i jS y bin= ∈x v x , where j is the bin index.
Let cj be the constant output for the j-th bin, and then

we can get the normalization factor
()() exp ()

j

t t i i j
j S

Z D i y= −∑∑ v ci (6)

For group k (bin k), the training loss is
()() () exp ()

k

k k t i i k
S

loss D i y= −∑c v ci , (7)

It is not difficult to verify that this loss function is
convex with its independent variable ck. Hence, each cj
can be easily optimized with a proper optimization
algorithm such as Newton-Step method.

The weak learner procedure can be summarized in
the following pseudo code.
Given: Sample set 1 1 1{(, ,), , (, ,)}m m mS y y= x v x v… ,
 finite feature set { (;)}, 1k kP f k nθ= ≤ ≤x ,
 and the current distribution Dt(i).

 For k = 1, … , n (each feature)
 Group all samples into different bins

 ,{(,) | }, 1j i i i i jS y bin j p= ∈ ≤ ≤x v x
 For j=1, … , p (each bin)

♦ Using Newton-step method to compute

 ()* arg min ()exp ()
k k

k t i i k
S

D i y
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠
∑

c
c v ci (8)

 Create weak classifier (; ,)k kθ µh x based on *{ }kc ,
and use equation 5 to calculate its corresponding
normalization factor Zt(θk, µk).

 Return the optimal weak classifier
 ()*

(; ,)
(; ,) arg min (,)

k k

t t k kZ
θ µ

θ µ θ µ=
h x

h x (9)

Figure 8. Weak learner with piece-wise function

In summary, the novel contributions of our MVFD
include the WFS tree, the Vector Boosting algorithm
and the weak classifiers based on piece-wise function.
And our MVFD still benefits from Viola et al’s cascade
framework [3] and adopts some other techniques such
as the nested weak classifiers in [8].

6. Experiments

To construct a WFS tree shown in figure 2, we first

divide all faces into 5 categories according to left-right
ROP, and then continue to split each category into 3
views, each of which takes charge of 30° RIP. Besides,
each view covers [-30°, +30°] up-down ROP for
robustness. Consequently, our WFS tree covers 180°
left-right ROP, 60° up-right ROP and 90° RIP.

The training process of the WFS tree is as follow
 Given: the false positive rate f and the detection rate

d for each node; the expected overall false positive
rate F for all views; the positive sample set P and
the negative sample set N.

 Let current node E = the root node of the tree
 (Training procedure of the node E)

 From P and N, collect samples that have passed
all E’s parent nodes, forming two training set p
and n with proper size. (Bootstrap)

 With p and n, use the Vector Boosting to train a
strong classifier G(x) until the required detection
rate d and the false positive rate f are achieved.

 Evaluate current overall false positive rate Fcur.
 If Fcur>F

♦ For each of E’s child nodes Echild, let
E=Echild and recursively call the training
procedure of the node E.

 Else
♦ Return current node E.

Figure 9. The training procedure of the WFS tree

We collected and labeled approximately 75000 face
samples, including 30000 frontal ones, 25000 half
profile ones and 20000 profile ones. Finally the WFS
tree MVFD is composed of 204 nodes in 16 layers,
totally including 7081 weak classifiers.

 (a) frontal (b) half profile (c) full profile

Figure 10. Some training samples

6.1 Multi-View Face Detection Test

To give an overall evaluation, we test our MVFD on

the CMU profile set, which consists of 208 images with
441 faces. Some of the detection results are shown in
figure 12. In table 1 and figure 11, the results are
compared with some previous published works, that is,
Schneiderman’s Bayesian decision rule method [2] and
the Wu’s individual cascade method [8]. Other related
works such as Viola’s decision tree [7] and Stan Z Li’s
pyramid method [6] are not compared due to they did
not give full testing results on this set (Viola gave a
ROC curve on the non-upright test set but not the CMU
profile set).

In order to trade off between detection rate and false
alarm, we use a control parameter that correspondingly
adjusts the threshold vector B of each node to give the
whole ROC curve. According to table 1 and figure 11,
our WFS tree achieves the best performance among
these three methods.

On a Pentium 4, 2.8GHz PC, scaling the scanning
window from 24×24 to 256×256 with scale ratio
1.25, our MVFD takes only about 40 ms on the
detection of a 320×240 image. Compared with Wu’s
individual cascade method [8] that reported 80ms, the

consumed time is reduced by a half. The significant
improvement is due to the WFS tree structure and the
efficient training algorithm: Vector Boosting.

0 100 200 300 400 500 600 700
0.75

0.8

0.85

0.9

0.95

1

False Alarm

D
et

ec
tio

n
R

at
e

Schneiderman's

Our WFS Tree
Wu's

Figure 11. ROC curves on CMU profile set

Figure 12. MVFD results on CMU profile set

6.2 Rotation Invariant MVFD Test

Since our MVFD covers +/-45° RIP, we simply
rotate it by 90°, 180° and 270° to construct three
detectors so as to fully cover 360° RIP, and they work
together to deal with the rotation invariant problem.
Also on a Pentium 4, 2.8Ghz PC, its speed is about 11
fps on a 320×240 video sequence, which is about 1.5
times faster than the method [8] (250ms per frame). It
is not strange that the time consumed by 4 detectors is
less than 4 times of one detector, because some time is
spent on the integral image that needs only be

Table 1. MVFD results on CMU profile face test set. (Totally 208 images, 441 faces)
False Alarm

Method 8 12 16 34 48 72 91 109 181 221 415 470 700

WFS tree 83.0% 88.0% 89.6% 92.3% 95.7%
[8] 79.4% 84.8% 87.8% 89.8% 91.3%

Schneiderman 75.2% - 85.5% - - 92.7%

computed once.
Since so far there are no standard testing sets for this

extremely challenging problem, we just show some
detection results in figure 13.

Figure 13. Rotation invariant MVFD results

6.3 Comparison with the Pyramid Structure

We have argued in section 2 that the WFS tree

structure outperforms the pyramid structure for MVFD.
Here we give a comparison experiment under the same
condition to verify this argument and give some further
analysis. In this experiment, with the same training
samples, the same Haar-like feature set, the same type
of weak classifiers (piece-wise functions), we train the
root node shown in figure 2, which divides the coarsest
view into three finer ones.

As explained in section 2 and 3, the WFS tree
method considers these three categories independently
and outputs a 3-dimensional vector as the final
prediction. This contrasts with the pyramid method in
which faces from different views are merged into an
ensemble positive class and only scalar result is output.
We recorded the convergences of both methods, which
are shown in figure 14, where x-axis denotes the
number of adopted weak classifiers, while y-axis
denotes the error rate with the default threshold B = 0.

According to this experiment, the WFS tree method
converges faster than the pyramid method. Exactly, to
achieve the same error rate, the WFS method needs
only about two thirds of weak classifiers that required
by the pyramid method, which means the consumed
time in the root node can be reduced by one third if
adopting the WFS tree method.

0 2 4 6 8 10 12
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Number of Weak Classifer

Er
ro

r R
at

e

WFS Tree

Pyramid

0 2 4 6 8 10 12
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of Weak Classifier

Er
ro

r R
at

e

Pyramid

WFS Tree

(a) Error rates on training set (b) Error rates on test set
Figure 14. WFS Tree vs. Pyramid

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

Feature Value

D
en

si
ty

Left Profile

Non-Faces
Right Profile

f(x)

h3(x)

f(x)

h1(x)

(b) (c)

(d) (e)

h(x)

(a)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

Feature Value

D
en

si
ty

Merged
 Faces

Non-Faces

Figure 15. In-class differences have different affects

on the Vector Boosting and Real AdaBoost

As a matter of fact, it is the Vector Boosting that
results in such encouraging improvement. See figure 15
for example. Part (a) is a Haar-like feature selected in
the second round by the Vector Boosting. For the WFS
tree method, part (b) draws distributions of three
classes on this feature: left profile, right profile and non
faces (frontal faces are omitted again for clarity). The
distribution of left profile faces is opposite to that of
right profile faces since the feature in (a) is left-right
symmetric. Both face categories can be well separated
from non faces with the optimal vector weak classifier
h(x) shown in part (d), in which h(x,1) and h(x,3) are
its two corresponding components. On the contrary, if
adopting the pyramid method, left and right profile
faces are merged into a single positive class, whose
distribution on the same feature is very similar with
that of non-faces (See part (c)). Consequently, the
optimal weak classifier h(x) with Real AdaBoost in

part (e) is rather weak, which hardly provides
evidences for the classification.

To sum up, the in-class differences between various
poses can have significant bad effects on the decision
made by scalar hypothesis that is trained by Real
AdaBoost, but they have less effect on the
vectorization one trained by Vector Boosting since the
Vector Boosting takes into consideration of both
between-class and in-class differences.

7. Conclusion

In this paper, we propose a WFS tree structure
detector for the MVFD problem. In order to construct
the WFS tree detector efficiently, two techniques are
developed: 1) the Vector Boosting is derived from the
Real AdaBoost to train branching nodes of WFS tree; 2)
a piece-wise function is used to approximate
complicated distributions. As far as we know,
compared with previous published methods for MVFD
problem, our WFS tree structure method achieves
significant improvements in both speed and accuracy,
and four such WFS tree-structured detectors worked
together as a whole have made up of a rotation
invariant MVFD that has achieved real-time
performance for this extremely challenging problem
the first time in the world.

Furthermore, the Vector Boosting algorithm
configured in this paper can be regarded as a unified
framework for the AdaBoost family, in which by
means of properly predefined projection vectors it
works exactly as the classical AdaBoost algorithm.
Although it is developed for the MVFD problem, it
could be applied to other complicated classification
problems too.

8. Acknowledgements

This work is supported mainly by a grant from

OMRON Corporation. It is also supported in part by
National Science Foundation of China under grant
No.60332010.

9. Reference

[1] H. A. Rowley, “Neural Network-based Human Face

Detection”, Ph.D. thesis, Carnegie Mellon University,
May 1999.

[2] H. Schneiderman and T. Kanade, “A Statistical Method
for 3D Object Detection Applied to Faces and Cars”.
CVPR 2000.

[3] P. Viola, M. Jones, “Rapid Object Detection using a
Boosted Cascade of Simple Features”, CVPR 2001.

[4] Rong Xiao, Long Zhu, Hongjiang Zhang, Boosting
Chain Learning for Object Detection, ICCV 2003.

[5] C.Liu and H. Y. Shum, “Kullback-Leibler Boosting”,
CVPR 2003.

[6] S. Z. Li, L. Zhu, Z. Q. Zhang, et al., “Statistical Learn-
ing of Multi-View Face Detection”. ECCV 2002.

[7] Jones and Viola, “Fast Multi-view Face Detection”.
MERL-TR2003-96, July 2003.

[8] Bo Wu, Haizhou Ai, Chang Huang, and Shihong Lao,
Fast rotation invariant multi-view face detection based
on real adaboost, FG 2004.

[9] R. E. Schapire and Y. Singer, “Improved Boosting
Algorithms Using Confidence-rated Predictions”, Ma-
chine Learning, 37, 1999, 297-336.

[10] Y. Freund and R. E. Schapire, “Experiments with a New
Boosting Algorithm”. In Proc. of the 13-th Conf. on
Machine Learning, Morgan Kaufmann, 1996, 148-156.

[11] R.E. Schapire, Y. Freund, P. Bartlett and W.S. Lee,
“Boosting the margin: A new explanation for the
effectiveness of voting methods”, The Annals of
Statistics, 26(5), 1998, 1651–1686.

Appendix A: Training Error Bound of the
Vector Boosting

Reviewing Section 4, for a sample xi, we only
concern about its corresponding binary output, so the
training error is:

a b
1

1 (,)
m

error i i
i

P y j
m =

= ≠∑ G x , (10)

where j is the index of xi’s corresponding projection
vector, and G(xi, j) is the concerned binary output.

Assume the threshold vector B is zero as the default
value, and then (,) (())i i iG j sign=x v F xi .

Since a b ()(,) exp (())i i i i iy G j y≠ ≤ −x v F xi , plug it
into equation (8), we get:

()
1

1 exp (())
m

error i i i
i

P y
m =

≤ −∑ v F xi (11)

With the retrospection of the update rule in the

Vector Boosting (equation 1), since
1

() ()
t

i j i
j =

=∑F x h x ,

a sample’s training loss can be rewritten as:

() ()
1

1
1

1 1exp (()) exp (())

 ()

t

i i i i i j i
j

t

t j
j

y y
m m

D i Z

=

+
=

− = −

=

∏

∏

v F x v h xi i
 (12)

Now use (10) to substitute the right hand side of (9)
and give the required results that

1
1 1 1

()
t tm

error t j j
i j j

P D i Z Z+
= = =

≤ =∑ ∏ ∏ , (13)

The last equation is satisfied as 1
1

() 1
m

t
i

D i+
=

=∑ , which is

the final probability distribution.

