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Abstract 

 
In this paper, we propose a novel tree-structured 

multi-view face detector (MVFD), which adopts the 
coarse-to-fine strategy to divide the entire face space 
into smaller and smaller subspaces. For this purpose, a 
newly extended boosting algorithm named Vector 
Boosting is developed to train the predictors for the 
branching nodes of the tree that have 
multi-components outputs as vectors. Our MVFD 
covers a large range of the face space, say, +/-45° 
rotation in plane (RIP) and +/-90° rotation off plane 
(ROP), and achieves high accuracy and amazing speed 
(about 40 ms per frame on a 320×240 video sequence) 
compared with previous published works. As a result, 
by simply rotating the detector 90°, 180° and 270°, a 
rotation invariant (360° RIP) MVFD is implemented 
that achieves real time performance (11 fps on a 320×
240 video sequence) with high accuracy. 

 
1. Introduction 

 
Some early works on face detection, for instance, 

Rowley’s ANN method [1] and Schneiderman’s 
method based on Bayesian decision rule [2], have 
achieved high accuracy, but their applications are very 
limited due to the tremendous computational load. The 
breakthrough happened in 2001 when Viola and Jones 
[3] developed their cascade detector that firstly showed 
real-time performance for frontal face detection. There 
have been many related works such as Xiao et al.’s 
Boosting Chain [4] and Liu et al.’s Kullback-Leibler 
Boosting [5]. They focused on some parts of Viola’s 
framework and adopt new methods for improvements. 
Moreover, to detect faces with various poses, Li 
proposed a pyramid-structured MVFD [6], while Jones 
and Viola used decision-tree method [7] to handle the 
RIP problem. All these works benefit from the fast 
Haar-like feature extraction with the integral image, 
and adopt the AdaBoost algorithm to guarantee the 
correct rate of classification. 

However, some challenging requirements of many 
complicated practical applications still can not be met 
due to the ubiquitous concomitance of RIP and ROP in 

real-life faces. Although this problem can be solved by 
rotating the image and apply MVFD several times, it 
significantly increases the computation complexity and 
false alarms. So we need to develop some special 
techniques to improve the efficiency of the detector. 

In this paper, an efficient tree-structured MVFD is 
proposed to deal with both kinds of pose changes in a 
unified framework, which covers +/-45° RIP and 
+/-90° ROP. It is so powerful that only such four 
detectors are needed to handle the rotation invariant 
MVFD problem. 

The main contributions of this paper are: 1) different 
from both the pyramid structure in [6] and the decision 
tree in [7], a WFS (Width-First-Search) tree structure is 
adopted to achieve higher performance in both speed 
and accuracy; 2) to train branching nodes of the WFS 
tree, the Vector Boosting algorithm is extended from 
the Real AdaBoost [9] [10] [11], which achieves better 
performance; 3) the piece-wise function, which is 
implemented with Look Up Table (LUT) method, is 
suggested to approximate complex distributions and 
give confidence-rated hypothesis as the weak classifier. 

The rest of this paper is organized as follow: Section 
2 presents the WFS tree structure; Section 3 introduces 
the Vector Boosting algorithm; Section 4 proposes the 
powerful piece-wise function; Section 5 deals with the 
optimization problem of the weak learner in Vector 
Boosting; Section 6 gives the results of a series of 
experiments, and Section 7 comes to the conclusions. 

 
2. WFS Tree-Structured Detector 
 

In recent years, Viola and Jones’s framework on 
face detection has been proved very successful and 
efficient. For the MVFD, the most straightforward way 
of extending their framework is to train different 
cascades individually for each view and then use them 
as a whole like figure 1(a). The work in [8] has proved 
that even this simple method does have rather good 
performance in dealing with this complicated problem. 
Anyway there still remains a large capacity to improve 
through a better structure. 

One approach is the pyramid structure [6] that 
adopts coarse-to-fine strategy to handle pose variance 



of ROP (Figure 1(b)). Due to the similarities that exist 
in different poses of faces, the pyramid method treats 
them as one ensemble positive class so as to improve 
the efficiency of extracted features. However, the 
neglect of their intrinsic diversities makes the pyramid 
method have no discrimination in different poses. As a 
result, a sample that has passed the parent node has to 
be sent to all its child nodes (See figure 1(b)), which 
considerably slows down the decision-making process. 

On the contrary, another approach, the decision tree 
method [7], puts emphasis upon the diversities between 
different poses and the tree works as a pose estimator. 
With the imperative judgments made by the decision 
tree, it significantly reduces the time spent on pose 
estimation. However the results are somewhat unstable 
that makes its generalization ability not so well. 

Branching node

 
Figure 2. The Structure of the WFS Tree 

As a matter of fact, there are two main tasks for 
MVFD problem: one is to distinguish between faces 
and non-faces; the other is to identify the pose of a face. 
The first task needs to reject non-faces as quickly as 
possible, so it is inclined to find the similarities of faces 
of different poses so as to separate them from non faces, 
while the latter task focuses on the diversities between 
different poses. The conflict between the two tasks 
really leads to the dilemma that either treating all faces 
as a single class (as in the pyramid method) or different 
individually separated classes (as in the decision tree 
method) is unsatisfactory for MVFD problem. Hence 
we propose a WFS tree structure to balance these two 
aspects so as to enhance the detector in both accuracy 
and speed. 

Covering the face space with +/-45° RIP and +/-90° 
ROP, the proposed detector tree adopts the coarse to 

fine strategy to divide the entire face space into smaller 
and smaller subspaces as shown in figure 2. The root 
node that covers the largest space is partitioned into left 
profile, frontal and right profile views in the second 
layer; to describe the ROP more accurately, full-profile 
and half-profile views are defined in the coming layer; 
finally in the fourth layer, each view is split into three 
categories according to their different RIP. 

Our tree-structured detector will not make exclusive 
selection of the path for a sample like the decision tree 
method. Instead, each branching node computes a 
determinative vector G(x) for the decision which child 
nodes the sample should be sent to. For example, in the 
root branching node of figure 2, a sample making G(x) 
= (1, 1, 0) means it may be a left profile face or a 
frontal one but can not be a right profile one, so in the 
second layer, it will be sent to the left node and the 
middle node but not the right one. Another sample that 
makes G(x) = (0, 0, 0) is thought of outlying from any 
child node and will be rejected immediately. To browse 
all active nodes in the tree, the Width-First-Search 
strategy is adopted, and its pseudo code is given below. 

0. (Input) Given a sample x and the constructed  
 tree detector T. 
1. (Initialization) Set the node list L empty; push the 
 root node of T into L; empty the output list O. 
2. (WFS procedure) 
 While L is not empty, do 

 Pop the first node d from L. 
 Calculate the determinative vector G(d)(x), 

where ( ) ( ) ( )
1( ) ( ),..., ( )d d d

ng g⎡ ⎤= ⎣ ⎦G x x x  
 For t=1,…,n: 

    If ( ) ( ) 1d
tg =x  

      Get the t-th child node si of d 
      If si is a leaf node 
     Push li, the label of si, into the list O. 
         Else  
     Push si into the list L. 
      End if 
    End if 
  End for 
 End do 
3. (Output) Output all labels in the list O for sample x. 

(b) Pyramid (c) Tree(a) Parallel Cascades

Figure 1. Different structures of MVFD 



Figure 3. Width-First-Search in the detector tree 

In fact, the WFS tree method does not try to give 
quick pose estimation like [7] which amounts to loss in 
accuracy, nor simply merges different poses without 
consideration of their in-class differences like [6] 
which amounts to loss in speed. Hence, the WFS tree 
can outperform them by means of paying attention to 
both diversities and similarities between various poses 
that guarantees both high accuracy and faster speed. 

From the discussion above, it is obvious that the 
branching node plays an important role in the WFS tree. 
To support this new technique, in the next section, a 
newly extended version of the Real AdaBoost in [9] 
that is named Vector Boosting will be introduced. With 
its help, the branching nodes are trained for the 
required determinative vector G(x) fast and accurately. 

 
3. Vector Boosting 
 

The Vector Boosting is proposed as an extended 
version of the Real AdaBoost in which both its weak 
learner and its final output are vectors rather than 
scalars. The original inspiration of Vector Boosting is 
drawn from the multi-class multi-label (MCML) 
version of the Real AdaBoost [9], which assigns a set 
of labels for each sample and decomposes the original 
problem into k orthogonal binary ones. The major 
problem of this algorithm is that for each binary 
classification problem, a sample is regarded as either 
positive or negative. However in many complicated 
cases, it is not tenable since some samples are neither 
positive nor negative for certain binary classification 
problems of which they are independent, which makes 
the MCML version of Real AdaBoost inapplicable. 
Take the root node of the WFS tree in figure 2 for 
example. A frontal face sample that makes the 
determinative vector G(x) = (*, +1, *) be acceptable (* 
can be either +1 or -1), i.e., the first (i.e. for left profile 
face) and the third (i.e. for right profile face) binary 
classifications are independent of frontal face samples. 

Once a complicated classification problem is 
decomposed into a set of binary ones, Vector Boosting 
will deal with them in a unified framework by means of 
a shared output space of multi-components vector. 
Each binary problem has its own “interested” direction 
in this output space that is denoted as its projection 
vector. In this way, different binary problems are not 
necessarily independent (with orthogonal projection 
vectors); they could also be correlated (with non- 
orthogonal projection vectors) in general. 

Let 1 1 1{( , , ), , ( , , )}m m mS y y= x v x v… be a sequence of 
training samples where xi belongs to an instance space 
χ, vi belongs to a finite k-dimensional projection vector 

set Ω and the label yi =±1 (i.e. positive or negative). 
We present the pseudo code of a generalized version of 
k-dimensional Vector Boosting in figure 4, which deals 
with n binary classification problems synchronously. 

For a classification problem that has been decomposed 
into n binary ones, given: 
   (1) Projection vector set 1{ ,..., }, k

n iΩ = ∈ω ω ω \  
   (2) Sample set 1 1 1{( , , ), , ( , , )}m m mS y y= x v x v… , 
      where χ∈x , ∈ Ωv and its label 1y = ± . 

 Initialize the sample distribution D1(i)=1/m,  
 For t = 1,…,T  

 Under current distribution, train a weak classifier 
       ht(x) : kχ →R .      (weak learner) 

 Update the sample distribution 
[ ]

1
( ) exp ( ))

( )
(t i i t i

t
t

D i y
D i

Z+
−

=
h xv i ,        (1) 

where Zt is the normalization factor so as to keep 
Di+1 as a probability distribution. 

 The final output space is
1

( ) ( )
T

t
t =

=∑H x h x       (2) 

 The confidence space is ( ) ( )=F x AH x .  (3) 
where the transformation matrix [ 1,..., ]t

n=A ω ω . 
 The final strong classifier is 

( )( ) ( )sign= −G x F x B .              (4) 
B is the threshold vector whose default value is zero. 
Figure 4. A generalized version of Vector Boosting 

It is configured in figure 4 to handle a complicated 
problem in a k-dimensional output space, which has 
been decomposed into n binary ones. In the same way 
of Real AdaBoost, the weak learner is called repeatedly 
under the updated distribution to form a highly accurate 
classifier. It should be mentioned that in the kernel 
update rule (equation 1), the margin of a sample xi with 
its label y and projection vector vi is defined as 
yi(vi·h(xi)) due to the vectorization of the output. Thus, 
the orthogonal component of a weak classifier’s output 
makes no contribution to the updating of the sample’s 
weight. In this way, Vector Boosting increases the 
weights of samples that have been wrongly classified 
according to the projection vector (in its “interested” 
direction) and decrease those with correct predictions. 

The final output is the linear combination of all 
trained weak classifiers (equation 2). To calculate the 
confidences for each binary problem, a n×k matrix A 
is employed to transform the k-dimensional output 
space into n-dimensional confidence space (equation 3), 
which is made up of all n projection vectors in set Ω. 
Each dimension of the confidence space corresponds to 
a certain binary problem. Finally, the strong classifier 



with Boolean outputs is got with the threshold vector B 
(equation 4). 

Practically in our experiments, we still decompose 
the complicated classification problem into several 
orthogonal binary ones for simplification but maintain 
the independences between various face poses. For 
example, when training the root branching node in 
figure 2, we collect three face sets, which are left 
profile, frontal and right profile, assign their projection 
vectors as (1, 0, 0), (0, 1, 0), (0, 0, 1) respectively, and 
label them positive (i.e. yi= +1). After that, prepare 
another three non-face sets with the same projection 
vectors but label them negative (i.e. yi= -1). These three 
binary problems appear to be trained independently, 
but share the selected features so as to outperform the 
individually training methods such as the work in [8]. 
Figure 5 draws the results of three classes in the output 
space H(x), where H(x, 1) is the dimension for left 
profile view and H(x, 3) is for right profile view. (The 
frontal view and its corresponding projection vector are 
omitted here for clarity). It is true that both left profile 
and right profile faces can be well separated from the 
non faces in this 2-D space with their own projection 
vectors ω1 and ω3. 
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Figure 5. Distributions of 3 classes in the output space 

It is easy to see that when n = k = 1 and ω1 (the only 
projection vector in Ω) is a unit vector, Vector 
Boosting is exactly the same as Real AdaBoost. In fact, 
due to the consistency in updating rule (equation 1), 
Vector Boosting keeps the same training error bound as 
Real AdaBoost, that is, 

  training error Perror≤∏Zt.           (5) 
Its proof can be found in Appendix A. 

In the next two sections, the design of the weak 
classifier and its optimization method for Vector 
Boosting are described. 

 
4. Piece-wise Functions 

 
In Viola and Jones’ cascade detector [3], they use 

integral image method to fast calculate the Haar-like 
feature f(x), on which a weak classifier h(x) is defined 
as a threshold-type function with Boolean output as 

shown in figure 7(a). It can be formally expressed as 
h(x) = sign[f(x)-b], where b is a threshold. Although it 
is simple and easy to train, it is not able to take full 
advantage of information from the extracted feature. 
For example, as shown in the left of figure 6, the 
positive and negative samples can be well classified by 
a proper threshold. However, it cannot describe their 
divergences accurately enough due to its coarse 
granularity. In addition, during the updating process of 
the AdaBoost algorithm, their divergences diminishes 
continually (e.g. the right diagram of figure 6 shows 
the distributions on a Haar-like feature selected in the 
fifth round), which largely weakens the discrimination 
power of the threshold-type function, and sometimes 
even hampers the convergence of the algorithm (e.g. in 
the latter layer of the cascade when the face and 
non-face patterns are very similar). In conclusion, the 
coarse granularity of the threshold-type weak classifier 
greatly impedes the improvement of the speed and 
accuracy of the detector. 
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Figure 6. Distributions on Haar-like features 

A more efficient design for weak classifiers, the 
piece-wise function illustrated in figure 7(b), divides 
the feature space into many bins with equal width and 
output a constant value for each bin. The piece-wise 
function is able to approximate various distributions 
more accurately without the constraint of Boolean 
output, which is essentially a symmetrical equidistant 
sampling process. It also meets the very requirements 
of the weak learner in Real AdaBoost since it is really a 
natural way of domain partition referred in [9]. 
Besides, as the piece-wise function can be efficiently 
implemented with Look Up Table (LUT), it does not 
bring in more computational load compared with the 
threshold-type function (only a multiplication is needed 
to convert feature value to the index of LUT), but it 
significantly enhances the capability of the weak 
classifier by means of real-valued outputs. 

According to “There is no free lunch” theorem, it is 
very important to choose suitable granularity for a 
piece-wise function. The finer the granularity is, the 
more accurately the function can estimate (lower 
training error), but the more sensitive it will be to the 
noise and the size of training set (higher structural risk). 
Empirically, it is strongly suggested that in the first 
several layers, the granularity can be a little finer so as 



to make the training converge as fast as possible, while 
in the latter layers, it should be coarser to make the 
classification results robust. 

b f(x)
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jbin

h(x) cj

 
Figure 7. Two types of Weak Classifier 

 
5. The Optimization of Weak Learner 

 
Reviewing equation 3, on the basis of that the 

training error in Vector Boosting is bounded by the 
product of all normalization factors, the objective of 
weak learner is just to minimize this factor of current 
round if adopting greedy strategy. Suppose a weak 
classifier ( ; , )θ µh x is characterized by two parameters: 
θ specifies its Haar-like feature and µ specifies its 
piece-wise function. Following Viola’s exhaustive 
search method in [3], we enumerate a finite redundant 
Haar-like feature set and optimize a piece-wise 
function for each feature so as to obtain the most 
discriminating one. Then the only unsolved problem in 
weak learner is how to get the optimal piece-wise 
function µ. 

A piece-wise function is configured by two parts: 
one is the division of feature space, the other is the 
constant for each division (i.e. bin). For simplification, 
the first one is fixed for each feature empirically, and 
the last one, the output constant for each bin, can be 
optimized as follows. 

Suppose samples 1 1 1{( , , ), , ( , , )}m m mS y y= x v x v… is 
under the distribution of Dt(i). On a certain feature f(x), 
they can be grouped into many bins with the predefined 
division of piece-wise function. Denote them as: 

,{( , ) | }j i i i i jS y bin= ∈x v x , where j is the bin index.  
Let cj be the constant output for the j-th bin, and then 

we can get the normalization factor 
( )( ) exp ( )

j

t t i i j
j S

Z D i y= −∑∑ v ci             (6) 

For group k (bin k), the training loss is 
( )( ) ( ) exp ( )

k

k k t i i k
S

loss D i y= −∑c v ci ,         (7) 

It is not difficult to verify that this loss function is 
convex with its independent variable ck. Hence, each cj 
can be easily optimized with a proper optimization 
algorithm such as Newton-Step method. 

The weak learner procedure can be summarized in 
the following pseudo code. 
Given: Sample set 1 1 1{( , , ), , ( , , )}m m mS y y= x v x v… , 
      finite feature set { ( ; )},  1k kP f k nθ= ≤ ≤x , 
      and the current distribution Dt(i). 

 For k = 1, … , n  (each feature) 
 Group all samples into different bins 

   ,{( , ) | },  1j i i i i jS y bin j p= ∈ ≤ ≤x v x  
 For j=1, … , p  (each bin) 

♦ Using Newton-step method to compute 

   ( )* arg min ( )exp ( )
k k

k t i i k
S

D i y
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠
∑

c
c v ci   (8) 

 Create weak classifier ( ; , )k kθ µh x based on *{ }kc , 
and use equation 5 to calculate its corresponding 
normalization factor Zt(θk, µk). 

 Return the optimal weak classifier 
 ( )*

( ; , )
( ; , ) arg min ( , )

k k

t t k kZ
θ µ

θ µ θ µ=
h x

h x          (9) 

Figure 8. Weak learner with piece-wise function 

In summary, the novel contributions of our MVFD 
include the WFS tree, the Vector Boosting algorithm 
and the weak classifiers based on piece-wise function. 
And our MVFD still benefits from Viola et al’s cascade 
framework [3] and adopts some other techniques such 
as the nested weak classifiers in [8]. 

 
6. Experiments 

 
To construct a WFS tree shown in figure 2, we first 

divide all faces into 5 categories according to left-right 
ROP, and then continue to split each category into 3 
views, each of which takes charge of 30° RIP. Besides, 
each view covers [-30°, +30°] up-down ROP for 
robustness. Consequently, our WFS tree covers 180° 
left-right ROP, 60° up-right ROP and 90° RIP. 

The training process of the WFS tree is as follow 
 Given: the false positive rate f and the detection rate 

d for each node; the expected overall false positive 
rate F for all views; the positive sample set P and 
the negative sample set N. 

 Let current node E = the root node of the tree 
 (Training procedure of the node E) 

 From P and N, collect samples that have passed 
all E’s parent nodes, forming two training set p 
and n with proper size. (Bootstrap) 

 With p and n, use the Vector Boosting to train a 
strong classifier G(x) until the required detection 
rate d and the false positive rate f are achieved. 

 Evaluate current overall false positive rate Fcur. 
 If Fcur>F 



♦ For each of E’s child nodes Echild, let 
E=Echild and recursively call the training 
procedure of the node E. 

 Else 
♦ Return current node E. 

Figure 9. The training procedure of the WFS tree 

We collected and labeled approximately 75000 face 
samples, including 30000 frontal ones, 25000 half 
profile ones and 20000 profile ones. Finally the WFS 
tree MVFD is composed of 204 nodes in 16 layers, 
totally including 7081 weak classifiers. 

 

 
  (a) frontal     (b) half profile    (c) full profile 

Figure 10. Some training samples 

 
6.1 Multi-View Face Detection Test 

 
To give an overall evaluation, we test our MVFD on 

the CMU profile set, which consists of 208 images with 
441 faces. Some of the detection results are shown in 
figure 12. In table 1 and figure 11, the results are 
compared with some previous published works, that is, 
Schneiderman’s Bayesian decision rule method [2] and 
the Wu’s individual cascade method [8]. Other related 
works such as Viola’s decision tree [7] and Stan Z Li’s 
pyramid method [6] are not compared due to they did 
not give full testing results on this set (Viola gave a 
ROC curve on the non-upright test set but not the CMU 
profile set). 

In order to trade off between detection rate and false 
alarm, we use a control parameter that correspondingly 
adjusts the threshold vector B of each node to give the 
whole ROC curve. According to table 1 and figure 11, 
our WFS tree achieves the best performance among 
these three methods. 

On a Pentium 4, 2.8GHz PC, scaling the scanning 
window from 24×24 to 256×256 with scale ratio 
1.25, our MVFD takes only about 40 ms on the 
detection of a 320×240 image. Compared with Wu’s 
individual cascade method [8] that reported 80ms, the 

consumed time is reduced by a half. The significant 
improvement is due to the WFS tree structure and the 
efficient training algorithm: Vector Boosting. 
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Figure 11. ROC curves on CMU profile set 

  
Figure 12. MVFD results on CMU profile set 

 
6.2 Rotation Invariant MVFD Test 
 

Since our MVFD covers +/-45° RIP, we simply 
rotate it by 90°, 180° and 270° to construct three 
detectors so as to fully cover 360° RIP, and they work 
together to deal with the rotation invariant problem. 
Also on a Pentium 4, 2.8Ghz PC, its speed is about 11 
fps on a 320×240 video sequence, which is about 1.5 
times faster than the method [8] (250ms per frame). It 
is not strange that the time consumed by 4 detectors is 
less than 4 times of one detector, because some time is 
spent on the integral image that needs only be 

Table 1. MVFD results on CMU profile face test set. (Totally 208 images, 441 faces) 
False Alarm 

Method      8 12 16 34 48 72 91 109 181 221 415 470 700

WFS tree   83.0%  88.0% 89.6%   92.3%   95.7%  
[8] 79.4%   84.8%    87.8%  89.8% 91.3%   

Schneiderman  75.2%   -  85.5%  -   - 92.7%



computed once. 
Since so far there are no standard testing sets for this 

extremely challenging problem, we just show some 
detection results in figure 13. 

 
Figure 13. Rotation invariant MVFD results 

 
6.3 Comparison with the Pyramid Structure 

 
We have argued in section 2 that the WFS tree 

structure outperforms the pyramid structure for MVFD. 
Here we give a comparison experiment under the same 
condition to verify this argument and give some further 
analysis. In this experiment, with the same training 
samples, the same Haar-like feature set, the same type 
of weak classifiers (piece-wise functions), we train the 
root node shown in figure 2, which divides the coarsest 
view into three finer ones. 

As explained in section 2 and 3, the WFS tree 
method considers these three categories independently 
and outputs a 3-dimensional vector as the final 
prediction. This contrasts with the pyramid method in 
which faces from different views are merged into an 
ensemble positive class and only scalar result is output. 
We recorded the convergences of both methods, which 
are shown in figure 14, where x-axis denotes the 
number of adopted weak classifiers, while y-axis 
denotes the error rate with the default threshold B = 0. 

According to this experiment, the WFS tree method 
converges faster than the pyramid method. Exactly, to 
achieve the same error rate, the WFS method needs 
only about two thirds of weak classifiers that required 
by the pyramid method, which means the consumed 
time in the root node can be reduced by one third if 
adopting the WFS tree method. 
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(a) Error rates on training set (b) Error rates on test set 
Figure 14. WFS Tree vs. Pyramid 
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Figure 15. In-class differences have different affects 

on the Vector Boosting and Real AdaBoost 
 

As a matter of fact, it is the Vector Boosting that 
results in such encouraging improvement. See figure 15 
for example. Part (a) is a Haar-like feature selected in 
the second round by the Vector Boosting. For the WFS 
tree method, part (b) draws distributions of three 
classes on this feature: left profile, right profile and non 
faces (frontal faces are omitted again for clarity). The 
distribution of left profile faces is opposite to that of 
right profile faces since the feature in (a) is left-right 
symmetric. Both face categories can be well separated 
from non faces with the optimal vector weak classifier 
h(x) shown in part (d), in which h(x,1) and h(x,3) are 
its two corresponding components. On the contrary, if 
adopting the pyramid method, left and right profile 
faces are merged into a single positive class, whose 
distribution on the same feature is very similar with 
that of non-faces (See part (c)). Consequently, the 
optimal weak classifier h(x) with Real AdaBoost in 



part (e) is rather weak, which hardly provides 
evidences for the classification. 

To sum up, the in-class differences between various 
poses can have significant bad effects on the decision 
made by scalar hypothesis that is trained by Real 
AdaBoost, but they have less effect on the 
vectorization one trained by Vector Boosting since the 
Vector Boosting takes into consideration of both 
between-class and in-class differences. 

 
7. Conclusion 
 

In this paper, we propose a WFS tree structure 
detector for the MVFD problem. In order to construct 
the WFS tree detector efficiently, two techniques are 
developed: 1) the Vector Boosting is derived from the 
Real AdaBoost to train branching nodes of WFS tree; 2) 
a piece-wise function is used to approximate 
complicated distributions. As far as we know, 
compared with previous published methods for MVFD 
problem, our WFS tree structure method achieves 
significant improvements in both speed and accuracy, 
and four such WFS tree-structured detectors worked 
together as a whole have made up of a rotation 
invariant MVFD that has achieved real-time 
performance for this extremely challenging problem 
the first time in the world. 

Furthermore, the Vector Boosting algorithm 
configured in this paper can be regarded as a unified 
framework for the AdaBoost family, in which by 
means of properly predefined projection vectors it 
works exactly as the classical AdaBoost algorithm. 
Although it is developed for the MVFD problem, it 
could be applied to other complicated classification 
problems too. 
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Appendix A: Training Error Bound of the 
Vector Boosting 
 

Reviewing Section 4, for a sample xi, we only 
concern about its corresponding binary output, so the 
training error is: 

a b
1

1 ( , )
m

error i i
i

P y j
m =

= ≠∑ G x ,        (10) 

where j is the index of xi’s corresponding projection 
vector, and G(xi, j) is the concerned binary output. 

Assume the threshold vector B is zero as the default 
value, and then ( , ) ( ( ))i i iG j sign=x v F xi . 

Since a b ( )( , ) exp ( ( ))i i i i iy G j y≠ ≤ −x v F xi , plug it 
into equation (8), we get: 

( )
1

1 exp ( ( ))
m

error i i i
i

P y
m =

≤ −∑ v F xi        (11) 

With the retrospection of the update rule in the 

Vector Boosting (equation 1), since
1

( ) ( )
t

i j i
j =

=∑F x h x , 

a sample’s training loss can be rewritten as: 

( ) ( )
1

1
1

1 1exp ( ( )) exp ( ( ))

                                  ( )

t

i i i i i j i
j

t

t j
j

y y
m m

D i Z

=

+
=

− = −

=

∏

∏

v F x v h xi i
 (12) 

Now use (10) to substitute the right hand side of (9) 
and give the required results that 

1
1 1 1

( )
t tm

error t j j
i j j

P D i Z Z+
= = =

≤ =∑ ∏ ∏ ,           (13) 

The last equation is satisfied as 1
1

( ) 1
m

t
i

D i+
=

=∑ , which is 

the final probability distribution. 


