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Abstract

The aim of salient point detection is to find distinctive events
in images. Salient features are generally determined from
the local differential structure of images. They focus on the
shape saliency of the local neighborhood. The majority of
these detectors is luminance based which has the disadvan-
tage that the distinctiveness of the local color information is
completely ignored. To fully exploit the possibilities of color
image salient point detection, color distinctiveness should
be taken into account next to shape distinctiveness.

In this paper color distinctiveness is explicitly incorpo-
rated into the design of saliency detection. The algorithm,
called color saliency boosting, is based on an analysis of
the statistics of color image derivatives. Isosalient color
derivatives can be closely approximated by ellipsoidal sur-
faces in color derivative space. Based on this remarkable
statistical finding, isosalient derivatives are transformed by
color boosting to have equal impact on the saliency. Color
saliency boosting is designed as a generic method easily
adaptable to existing feature detectors. Results show that
substantial improvements in information content are ac-
quired by targeting color salient features. Further, the gen-
erality of the method is illustrated by applying color boost-
ing to multiple existing saliency methods.

1 Introduction

Indexing objects and object categories as a collection of
salient points has been successfully applied to image match-
ing, content-based retrieval, learning and recognition [2],
[10], [11], [14], [16], [19]. Salient points are local fea-
tures in the image which exhibit geometrical structure, such
as T-junctions, corners, and symmetry points. The aim of
salient point detection is to represent objects more concisely
and robust to varying viewing conditions, such as changes
due to zooming, rotation, and illumination changes. Appli-
cations based on salient points are generally composed of
three phases: 1. a feature detection phase locating the fea-

tures. 2. an extraction phase in which local descriptions are
extracted at the detected locations and 3. a matching phase
in which the extracted descriptors are matched against a
database of descriptors. In this paper, the focus is to im-
prove the salient point detection phase.

Although the majority of image data is in color format
nowadays, most salient point detectors are still luminance
based. They typically focus on shape saliency rather than
color saliency [9], [20]. They focus on corners without dis-
tinguishing low-salient black-and-white corners from high-
salient red-green corners. Only recently color information
has been incorporated in the detection phase. Montesinos
et al. [12] propose an extension of the luminance Harris
corner detector to color [4]. Heidemann [5] incorporates
color into the generalized symmetry transform proposed by
Reisfeld et al. [13]. Both methods achieve a performance
gain for near isoluminant events. However, since the lu-
minance axis remains the major axes of color variation in
the RGB-cube, results do not differ greatly from luminance
based feature detection. Itti et al. [6] use color contrast as
a clue for salience. Their method is based on a zero-order
signal (normalized red, green , blue, yellow). It is however
not easily extendable to differential-based features.

For the evaluation of salient point detectors Schmid et
al. [15] proposed two criteria: 1. repeatability, salient
point detection should be stable under the varying view-
ing conditions, such as geometrical changes and photomet-
ric changes. 2. distinctiveness, salient points should fo-
cus on events with a low probability of occurrence. Most
salient point detectors are designed according to these cri-
teria. They focus on two dimensional structures, such as
corners, which are stable and distinctive at the same time.
Although color is believed to play an important role in at-
tributing saliency [7], the explicit incorporation of color dis-
tinctiveness into the design of salient points detectors has,
to our knowledge, not been done.

A remarkable phenomenon appears when studying the
statistics of color image derivatives. In histograms of color
derivatives, points of equal frequency form regular struc-
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tures. The derivatives play two roles in salient point de-
tection. Firstly, they are input to the saliency function,
which based on local derivatives probes for salient struc-
tures. Secondly, they are part of the extracted local features,
on which the distinctiveness of the salient point detector is
based. This double role, together with the statistical find-
ing described above, leads to the following question: How
can we exploit the regularity of the distinctiveness of color
image derivatives to improve salient feature detection ?

In this paper we aim to incorporate color distinctiveness
into salient point detection. The extension should be general
and hence be easy to incorporate in existing salient point
detectors. For a color image, with values f = (R,G,B)T ,
salient points are the maxima of the saliency map, which
compares the derivative vectors in a neighborhood fixed by
scale σ,

s = Hσ (fx, fy) (1)

where H is the saliency function and the subscript indi-
cates differentiation with respect to the parameter. This
type of saliency maps include [1], [4], [5], [9]. The im-
pact of a derivative vector on the outcome of the local
salience depends on its vector norm, |fx|. Hence, vectors
with equal norm have an equal impact on the local saliency.
Rather than deriving saliency from the vector norm, the
challenge is to adapt the saliency function in order that vec-
tors with equal color distinctiveness have equal impact on
the saliency function.

2 Color Distinctiveness

The efficiency of salient point detection depends on the dis-
tinctiveness of the extracted salient points. At the salient
points’ positions, local neighborhoods are extracted and de-
scribed by local image descriptors. The distinctiveness of
the descriptor defines the conciseness of the representation
and the discriminative power of the salient points. The dis-
tinctiveness is measured by its information content [15].

For luminance-based descriptors, the information con-
tent is measured by looking at the distinctiveness of the dif-
ferential invariants described by the local 2-jet [8] at the
detected points [14]. Montesinos et al. [12] argue that due
to the extra information available in color images the color
1-jet is sufficient for local structure description. The color
1-jet descriptor is given by

v =
(

R G B Rx Gx Bx Ry Gy By

)T
.

(2)
The information content of this color descriptor also pro-
vides an indication of the information content of more com-
plex local color descriptors such as color differential invari-
ant descriptors, since these complex descriptors are com-
puted from the elements of Eq. 2.

From information theory it is known that the information
content of an event is dependent on its frequency or proba-
bility. Rare events are more informative. The dependency
of the information content on its probability is given by

I (v) = − log (p (v)) (3)

where p (v) is the probability of the descriptor v. The infor-
mation content of the descriptor, given by Eq. 2, is approx-
imated by assuming independent probabilities of the zeroth
order signal and the first order derivatives

p (v) = p (f) p (fx) p (fy) (4)

To improve the information content of the salient point de-
tector, defined by Eq. 1, the probability of the derivatives,
p (fx), should be small.

We can now restate the aim of this paper in a more pre-
cise manner. The aim is to find a transformation g : �3 →
�3 for which holds that

p (fx) = p
(
f
′
x

)
↔ |g (fx)| =

∣∣∣g
(
f
′
x

)∣∣∣ . (5)

This implies that vectors with equal information content
have equal impact on the saliency function. The transfor-
mation, attained by the function g, is called color saliency
boosting. Similar equations hold for p (fy). Once a color
boosting function g has been found, the color boosted
saliency can be computed with

s = Hσ (g (fx) , g (fy)) , (6)

After color boosting the saliency map is based on the orien-
tations and the information content of the derivatives. Gra-
dient strength has been replaced by information content,
thereby aiming for points with higher information content.

From Eq. 5 color boosting function g can be found by
analyzing the probabilities of the derivatives. The channels
of fx, {Rx, Gx, Bx} are correlated due to the physics of
the world. Photometric events in the world, such as shad-
ing, shadows, and reflection of the light source in specular-
ities influence RGB values in a well defined manner [17].
Before investigating the statistics of color derivatives, the
derivatives need to be transformed to a color space which is
uncorrelated with respect to these photometric events.

3 Physics-Based Decorrelation

Here we describe three color coordinate transformations
which partition RGB-space differently. The transformation
are derived from photometric invariance theory [17]. Pho-
tometric invariance theory allows us to distinguish between
various photometric causes for features in the image, such
as shadows, shading, specularities and object reflectance



changes. The theory is based on the dichromatic reflection
model introduced by Shafer [17]. Geusebroek et al. [3]
extended the photometric reflection theory to differential-
based operations. Recently, the quasi-invariant derivatives
are proposed to improve noise characteristics [18]. Here
we use the color transformations to decorrelate the spatial
derivative, fx, into axes which are photometrically variant
and photometrically invariant.

3.1 Spherical Color Spaces

The spherical color transformation is given by:



θ
ϕ
r


 =




arctan(G
R )

arcsin
( √

R2+G2√
R2+G2+B2

)

r =
√

R2 + G2 + B2


 . (7)

The spatial derivatives are transformed to the spherical co-
ordinate system by:

S (fx) = fs
x =




r sinϕ θx

rϕx

rx


 . (8)

The scale factors follow from the Jacobian of the transfor-
mation. They ensure that the norm of the derivative remains
constant under transformation, hence |fx| = |fs

x|. In the
spherical coordinate system the derivative vector is a sum-
mation of a shadow-shading variant part, Sx = (0, 0, rx)T

and a shadow-shading quasi-invariant part, given by Sc
x =

(r sinϕ θx, r ϕx, 0)T .

3.2 Opponent Color Spaces

The opponent color space is given by:



o1
o2
o3


 =




R−G√
2

R+G−2B√
6

R+G+B√
3


 . (9)

For this the following transformation of the derivatives fol-
lows:

O (fx) = fo
x =




o1x

o2x

o3x


 . (10)

The opponent color space decorrelates the derivative with
respect to specular changes. The derivative is divided into
a specular variant part, Ox = (0, 0, o3x)T , and a specular
quasi-invariant part Oc

x = (o1x, o2x, 0)T .

3.3 Hue-Saturation-Intensity Color Spaces

The well known hue-saturation-intensity is given by


h
s
i


 =




arctan
(

o1
o2

)
√

o12 + o22

o3


 . (11)

The transformation into the hsi-space decorrelates the
derivative with respect to specular, shadow and shading
variations. It is given by

H (fx) = fh
x =




s hx

sx

ix


 . (12)

The shadow-shading-specular variant is given by Hx =
(0, 0, ix)T and the shadow-shading-specular quasi-invariant
by Hc

x = (s hx, sx, 0)T .
Since the length of a vector is not changed by coordi-

nate transformations, the norm of the derivative remains the
same in all three representations |fx| = |f c

x| = |fo
x | =

∣∣fh
x

∣∣.
For both the opponent color space and the hue-saturation-
intensity color space, the photometrically variant direction
is given by the L1 norm of the intensity. For the spherical
coordinate system the photometric variant is equal to the L2
norm of the intensity.

In conclusion, three color spaces are discussed which
decorrelate the color spaces with respect to various phys-
ical events. In the decorrelated color spaces often occurring
physical variations, such as intensity changes, will only in-
fluence the photometric variant axes. In the next section the
statistics of color image derivatives are examined in these
physically decorrelated color spaces.

4 Statistics of Color Images

As discussed in Section 2 the information content of a de-
scriptor depends on the probability of the derivatives, see
Eq. 3 and Eq. 4. In this section we investigate the statistics
of color derivatives in the decorrelated color spaces pro-
posed in Section 3. From these statistics, we aim to find
a mathematical description of surfaces of equal probability,
so called isosalient surfaces. Since a description of these
surfaces leads to the solution of Eq. 5.

The statistics of color images are computed for the Corel
database, which consists of 40,000 images after the exclu-
sion of black and white images. In Fig. 1 the distributions of
the first order derivatives, fx, are given for the various color
coordinate systems described in section 3 (HSI has been
left out due to space considerations). The isosalient surfaces
show a remarkably simple structure, approximately similar
to an ellipsoid. For all three color spaces, the third coordi-
nate coincides with the axis of maximum variation (i.e. the
intensity). For the opponent and the spherical coordinate
system, the first and second coordinate are rotated, with ro-
tation matrix Rφ, so that the first coordinate coincides with
the axis of minimum variation

(
r sin ϕ̃ θ̃x, rϕ̃x

)T

= Rφ (r sin ϕθx, rϕx)T

(õ1x, õ2x)T = Rφ (o1x, o2x)T
.

(13)
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Figure 1: The histograms of the distribution of the transformed derivatives of the Corel image database in respectively the
(a) RGB coordinates, (b) the opponent coordinates and (c) the spherical coordinates. The three planes correspond with the
isosalient surfaces which contain (from dark to light) respectively 90%, 99%, 99.9%t of the total number of pixels.

The tilde indicates the color space transformation with the
aligned axes. Similarly, the aligned transformations are
given by S̃ (fx) = f s̃

x and Õ (fx) = f õ
x .

After alignment of the axes isosalient surfaces of the
derivative histograms can be approximated by ellipsoids

(
αh1

x

)2
+

(
βh2

x

)2
+

(
γh3

x

)2
= R2 (14)

where hx = h (fx) =
(
h1

x, h2
x, h3

x

)T
and h is one of the

color transformations S̃, Õ, or H .

5 Boosting Color Saliency

We now return to our goal, that is to incorporate color dis-
tinctiveness into salient point detection. Or mathematically,
to find the transformation for which vectors with equal in-
formation content have equal impact on the saliency func-
tion. In the previous section we saw that derivatives of equal
saliency form an ellipsoid. Since Eq. 14 is equal to

(
αh1

x

)2
+

(
βh2

x

)2
+

(
γh3

x

)2
= |Λh (fx)|2 (15)

the following holds

p (fx) = p
(
f
′
x

)
↔ |Λh (fx)| =

∣∣∣ΛT h
(
f
′
x

)∣∣∣ . (16)

where Λ is a 3x3 diagonal matrix with Λ11 = α, Λ22 = β,
and Λ33 = γ. Λ is restricted to Λ2

11+Λ2
22+Λ2

33 = 1. Eq. 16
satisfies the requirement which was imposed by Eq. 5, and
hence the desired color saliency boosting function is

g (fx) = Λh (fx) , (17)

where h is one of the color transformations S̃, Õ, or H . By
a rotation of the color axes followed by a rescaling of the

axis, the oriented isosalient ellipsoids are transformed into
spheres, and thus vectors of equal saliency are transformed
into vectors of equal length.

5.1 Influence of Color Saliency Boosting on
Repeatability

In the introduction two criteria for salient point detection
were described, namely distinctiveness and repeatability.
The color boosting algorithm is designed to focus on color
distinctiveness, while adopting the geometrical characteris-
tics of the operator to which it is applied. In this section we
examine the influence of color boosting on the repeatability.
By boosting the color saliency an anisotropic transforma-
tion is carried out. This will reduce the signal-to-noise ra-
tio negatively. For isotropic uncorrelated noise, ε, the mea-
sured derivative f̂x can be written as

f̂x = fx + ε (18)

and after color saliency boosting

g
(
f̂x

)
= g (fx) + Λε (19)

Note that isotropic noise remains unchanged under the or-
thogonal curvilinear transformations. Assume the worst
case in which fx only has signal in the photometric variant
direction, then the noise can be written as

|g (fx)|
|Λε| ≈ Λ33 |fx|

Λ11 |ε| . (20)

Hence, the signal-to-noise ratio reduces by Λ11
Λ33

, which will
negatively influence repeatability to geometrical and photo-
metrical changes.



fx |fx|1 f s̃
x S̃c

x f õ
x Õc

x fh
x Hc

x

Λ11 0.577 1 0.851 0.856 0.850 0.851 0.858 1

Λ22 0.577 - 0.515 0.518 0.524 0.525 0.509 0

Λ33 0.577 - 0.099 0 0.065 0 0.066 0

Table 1: The diagonal entries of Λ for the Corel data set
computed for Gaussian derivatives with σ = 1.

6 Experiments and Illustrations

Color saliency boosting is tested on: information content
and repeatability. The salient points based on color saliency
boosting (f s̃

x , f õ
x , fh

x ) are compared to luminance (|fx|1),
RGB gradient (fx), and the quasi-invariant-based salient
point detectors (S̃c

x, Õc
x, Hc

x). The generality of the ap-
proach is illustrated by applying color boosting to several
existing feature detectors.

6.1 Initialization

Experiments are performed on a subset of 1000 randomly
chosen images from the Corel data set. Before color
saliency boosting can be applied, the Λ-parameters (Eq.15)
have to be initialized by fitting ellipses to the histogram of
the data set. First the axes of the opponent and the spher-
ical transformation are aligned by Eq. 13. Next, the axes
of the ellipsoid are derived by fitting the isosaliency surface
which contains 99 percent of the pixels of the histogram of
the Corel data set. Changing this parameter to 99.9 or 99.99
percent changes matrix Λ only slightly. The results for the
various transformations are summarized in Table 1. The re-
lation between the axes in the various color spaces clearly
confirms the dominance of the luminance axis in the RGB-
cube, since Λ33, the multiplication-factor of the luminance
axis, is much smaller than the color-axes multiplication fac-
tors, Λ11 and Λ22.

We have chosen the Harris point detector [4] to test color
boosting in experiment 6.2 and 6.3. It is computed with

Hσ (fx, fy) = fx · fx fy · fy−fx · fy2−k
(
fx · fx + fy · fy

)2

(21)
by substituting fx and fy by g (fx) and g (fy). The bar .̄
indicates convolution with a Gaussian filter and the dot in-
dicates the inner product. We applied Gaussian derivatives
of σ = 1 and computed the Harris detector response with a
Gaussian of σ = 3.

6.2 Color Distinctiveness

Here we examine if color boosting improves the color dis-
tinctiveness of the Harris detector. In [15], the Harris detec-
tor has already been shown to outperform other detectors
both on ’shape’ distinctiveness and repeatability. The color
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Table 2: The information content of salient point detectors.
Measured in 1. information content and 2. the percentage of
images for which a substantial decrease (−5%) or increase
(+5%) of the information content occurs. The experiment
is performed with both 20 or 100 salient points per image.

distinctiveness of salient point detectors is described by the
information content of the descriptors extracted at the loca-
tions of the salient points. From the combination of Eq. 3
and Eq. 4, it follows that the total information is computed
by summing the information of the zeroth and first order
part,

I (v) = I (f) + I (fx) + I (fy) . (22)

The information content of the parts is computed from the
normalized histograms with

I (f) = −
∑

i

pi log (pi) (23)

where pi are the probabilities of the bins of the histogram
of f .

The results for 20 and 100 salient points per image are
shown in Table 2. Next to the absolute information con-
tent we have also computed the relative information gain
with respect to the information content of the color gradi-
ent based Harris detector. For this purpose the information
content on a single image is defined as

I = −
n∑

j=1

log (p (vj)) (24)

where j = 1, 2, ...n and n is the number of salient points
in the image. Here p (vj) is computed from the global his-
tograms, which allows comparison of the results per image.
The information content change is considered substantially
for a 5 percent increase or decrease.

The highest information content is obtained with f õ
x ,

which is the color saliency boosted version of the opponent
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Figure 2: (a) and (c) Corel input images. (b) and (d) results of Harris detector (red dots) and the Harris detector with color
boosting (yellow dots). The red dots mainly coincide with black and white events, while the yellow dots are focussed on
colorful points.

derivatives. The boosting results in an increase of 7% (20.
to 21.4 in the case of 100 points) to 14% (20.4 to 23.2 in
the case of 20 points) of the information content compared
to the color gradient based detector. On the images of the
Corel set this resulted in a substantial increase on 22% to
63% of the images. The advantage of color boosting di-
minishes when increasing the number of salient points per
image. This is caused by the limited number of color clues
in many of the images, which is especially visible for the
results of the photometric quasi-invariants, S̃c

x, Õc
x, or Hc

x.
These detectors discard all intensity information, which in
the case of 100 salient points per image results in many im-
ages with a substantial decrease in information content. Fi-
nally, it is noteworthy to see how small the difference is be-
tween luminance and RGB-based Harris detection. Since
the intensity direction also dominates the RGB derivatives,
using RGB-gradient instead of luminance-based Harris de-
tection only results in a substantial increase in information
content in 1% of the images.

In Fig. 2 results of the RGB-gradient based and color
boosted Harris detector are depicted. From a color informa-
tion point of view, the RGB-gradient based method does a
poor job. Most of the salient points have a black and white
local neighborhood, with a low color saliency. The salient
points after color boosting focus on more distinctive points,
such as the colorful flowers and the plumage of the peacock.

6.3 Repeatability

Repeatability measures the stability with respect to vary-
ing viewing conditions. As indicated in section 5.1 color
saliency boosting reduces the signal-to-noise ratio. Re-
peatability with respect to geometrical changes, scaling, and
affine transformations are considered a property of the de-
tector and will not be considered here.

The loss of repeatability caused by color saliency boost-

method 20 points 100 points

fx 88 84

|fx|1 88 83

S̃c
x 53 42

f s̃
x 62 54

Õc
x 46 34

f õ
x 51 41

Hc
x 35 25

fh
x 52 42

Table 3: The percentage of Harris points which remain de-
tected after adding Gaussian uncorrelated noise.

ing is examined by adding uniform, uncorrelated Gaussian
noise of σ = 10. This yields a good indication of loss in
signal-to-noise, which in its turn will influence results of
repeatability under other variations, such as zooming, illu-
mination changes, and geometrical changes. Repeatability
is measured by comparing the Harris points detected in the
noisy image to the points in the noise-free images. The
results in Fig. 3a correspond to the expectation made by
Eq. 20, namely the larger the difference between Λ11 and
Λ33, the poorer the repeatability.

6.4 Illustrations Generality

Color saliency boosting can be applied on all function
which can be written as a function of the local derivatives.
Here we apply it to two different feature detectors. First the
focus point detector which was originally proposed by Reis-
feld et al. [13] and recently extended to color by Heidemann
[5]. The detector focuses on the center of locally symmetric
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Figure 3: Respectively, the input image, RGB-gradient based saliency map, the color boosted saliency map and the results
with red dots (lines) for the gradient-based method and yellow dots for the salient points after color saliency boosting.
(a),(b),(c),(d) Results for the focus points, (e),(f),(g),(h) for the symmetry points.

structures. On the first row of Fig. 3 the results of the focus
point detector are shown. Fig. 3b shows the saliency map as
proposed in [5]. In Fig. 3c the result after saliency boosting
is depicted. Although focus point detection is already an
extension from luminance to color, black-and-white transi-
tion still dominate the result. Only after boosting the color
saliency, the less interesting black-and-white structures in
the image are ignored and most of the red Chinese signs
are found. Similar difference in performance is obtained
by applying color boosting to the linear symmetry detector
proposed by Bigün [1]. This detector focuses on corner and
junction like structures. The RGB gradient based method
focuses mainly on black-and-white events while the more
salient signboards are found only after color saliency boost-
ing.

7 Conclusions

In this paper color distinctiveness is explicitly incorporated
in the design of salient point detectors. The method, called
color saliency boosting, can be incorporated into existing
detectors which are mostly focused on shape distinctive-
ness. Saliency boosting is based upon an analysis of the
statistics of color image derivatives. Isosalient derivatives
form ellipsoids in the color derivative histograms. This fact
is exploited to adapt derivatives in such a way that equal
saliency implies equal impact on the saliency map. Exper-
iments show that color saliency boosting substantially in-
creases the information content of the detected points. A

substantial information content increase is obtained on up
to 20% to 60% of the Corel images. Further, the generality
of the method is illustrated by applying color boosting to
various existing salient point detectors.
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