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Chapter 1

In tro duction

When asked about the importance of color, Picassoin one of his blue yearsexclaimed:
\Colors are only symbols. Reality is to be found in luminance alone." His message
seemsto be taken to heart by the computer vision community. In generalthe rst
thing to do, whentrying to interpret the content of images,when looking for objects,
persons,textures, or at a smaller scalefor edges,ridges, and corners, is to discard
color. In fact, coloris seenassuper uous in aworld which canbe very well understood
by consideringluminance alone. This is re ected in the fact that the majority of the
current existing computer vision applications is solely basedon luminance.

When asking a personwho becamecolorblind later in life, about the importance
of color. He will answer that he sometimeswrongly identi es objects where there are
only shadaws presert. When driving the car he suddenly brakesto stop for a shadov
blocking the road [61]. Next to that, he sometimesencourters problemsdistinguishing
between objects, e.g. mistaking ketchup for jam, and mustard for mayonnaise[61].
These confusionscausedby color blindness surely point out the importance of color
in interpreting the visible world.

Two major advantages of using color vision are revealed from the previous ex-
ample. First, color provides extra information which allows the distinction between
various physical causesfor color variations in the world, suc as changesdue to shad-
ows, light sourcere ections, and object re ectance variations. This helpsto quickly
identify the black object on the road as a shadav. Next to this, color is an impor-
tant discriminativ e property of objects, allowing us to distinguish between mustard
and mayonnaise. This thesis explores these aspects of color, proposing theory and
techniquesto improve the usefulnessof color for computer vision.

1.1 Color in Computer Vision

1.1.1 From Luminance to Color

From a mathematical viewpoint the extension from luminance to color signals is
an extension from scalar-signalsto vector-signals. This change is accompaniedby
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Figure 1.1: (a) Exampleimage and (b) linear smaothed version of exampleimage. (c)
Red channel, (d) green channeland (e) blue channel of exampleimage (see also color
plate C.1).

seweral mathematical obstacles. Straightforward application of existing luminance-
basedoperators on the separate color channels, and subsequeh combination of the
results, fails due to undesiredartifacts [1].

For example,smoothing a color imagewith a Gaussian Iter blurs the edgeswhich
is also common for luminance based smoothing. In color imageslinear smoothing
introduces new chromaticities. An example is given in Fig. 1.1 where, after linear
smoothing, the color purple appears between the blue and red region. These new
chromaticities are visually unacceptableand new techniquesare required for the task
of color image enhancemenh

To prevent the introduction of new chromaticities, non-linear operations are re-
quired. In contrast to luminance valuesthere is no natural ordering for vector values,
meaning that there is no generally acceptedmethod to say that one vector is larger
than another. Therefore, new algorithms are required for the computation of known
non-linear operators suc as the median, local and global mode [1], [59], [73], [84].
A framework in which these non-linear operators are elegarily brought together is
the Imprecision Spaceof Grin [22], alsoknown aslocally orderlessimagesby Koen-
derink [41], [84]. Apart from the spatial scale,de ning the size of the spatial extent
of a measuremen the tonal scaleis intro duced describingits extent along the inten-
sity axis. As a consequencepoints are no longer described by a single value, but by
a local histogram instead. Extension of this framework to color, although straight-
forward, is practically unusable due to the computational complexity causedby the
high-dimensionality of such color histograms. Since the operations basedon the lo-
cal histograms remain desiredfor color images,e cien t algorithms are neededwhich
prevent the actual computation of the local color histograms.

A secondmathematical hurdle in the extension from luminance to color-based
operations is how to conmbine the di erential structure of color images. Combining
the derivativeswith a simple addition of the separatechannelsresults in cancellation
in the caseof opposing vectors [11]. This is illustrated in Fig. 1.1c,d,e. For the
blue-red and cyan-yellow edgein Fig. 1.1 the vectors in the red and blue channel
point in opposite directions and a summation will result in a zero edge response,
while an edgeis obviously presen. Also for more complex local features, such as
cornersand T-junctions, the combination of the channelsposesproblems. Applying a
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(b)

Figure 1.2: (a) Exampleimage, (b) human sene sgmentation and (c) standard com-
puter edge detection (see also color plate C.2).

corner detector to the separatechannelsresultsin a single detected cornerin the blue
channel. However, there is no evidencefor the cross-mints with the circle in any of
the separatechannels. Hence,a combination of corner information from the separate
channels might fail. New methods are required to combine the di erential structure
of color imagesin a principled way.

1.1.2 Photometric Information

There are sewral causesof color value composition in images, including shadaws,
shading, specularity and material edges.In Fig. 1.2, an example of a real-world scene
is given, together with a human segmetation (groundtruth) [50]. Furthermore, in
Fig. 1.2cthe result of a standard edge detection algorithm is given. The algorithm
returns more edgesthan the human segmemation. The problem is how to measurethe
importance of edges.An important indicator may be derived from the physical cause
of an edge. Is the edgecausedby a shadav, shading, highlight, or a object re ectance
changein the scene?The human segmetation discardsall scenencidental edgessuch
as the shading of the peppers and the specularities. Hence, for sceneinterpretation
it is important to distinguish betweenthe various causesof featuresin images.

The dichromatic re ection model, introduced to computer vision by Shafer [66],
provides a physical model which identi es how photometric changesin uence RGB-
values. Basedon this model, others provided methods for segmetation, classi cation,
and recognition which are independen of sceneincidental events. These methods fo-
cussedon zeroth order photometric invariance [18], [20], [38], [52)], [71]. The e ect of
the dichromatic model on higher order, di eren tial-based algorithms remained unex-
plored for long.

Di eren tial photometric invariance is investigated by Geusebrak et al. [16]. The
drawbadks of photometric invariance theory, loss of discriminative power and dete-
rioration of noise characteristics [69], are inherited by the dierential photometric
operations. To improve performance,the impact of the instabilit y of photometric in-
variants can be diminished through a noisepropagation analysisof the invariants [19].
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(b)

Figure 1.3: (a) Example image, and (b) results of a standard salient point detector
(see also color plate C.3).

However, a drawbad is that proper noise estimation is required which is not always
available. Hence, methods are required to compute robust photometric invariants
without a-priori knowledge of the noise characteristics.

1.1.3 Color Distinctiv eness

Describing objects in the world asa set of saliert points is currently usedwith success
in object recognition, matching and retrieval [47], [63], [65], [85]. The distinctiveness
of the selectedsalient points is of critical importance for the applicability of the
method. It de nes the concisenes®f the represenation and the discriminativ e power
of the local features.

For example,in Fig. 1.3, a picture of two brightly colored parrots on a dull badck-
ground is depicted. In Fig. 1.3b the most prominent cornerscomputed by the Harris
saliert point detector are depicted [27]. Only four out of the twenty points correspond
to the saliert parrots. And, none of the points focus on the bright red-yellow transi-
tion which immediately attracts the eye. The weaknessof the saliert point detector
is mainly in its disregard of color information.

Although the majority of image data is in color format nowadays only little work
has beendonein incorporating color into saliert point detection and evaluation [29),
[33]. One of the reasonsluminance-basedmethods remain much usedis becausethe
lack of signi cant improvemert with respectto luminance basedmethods. This canbe
explained by the important obsenation that the majority of di erential variation in
color imagesis along the luminance axis. A drawback of the succesof the luminance
represenation, is that when looking for rare everts, the axis of major variation is of
much lessimportance. For the computation of the distinctiv e points in the image,
the focus should be on rare events. For theseeverts the axesof relatively little varia-
tion becomeindispensable,and hencefor saliert point detection color information is
crucial.
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1.2 Objectiv es and Approac h

In this thesis, we aim to improve the three aspects of color vision discussedabove.
From the above discussionwe arrive at the following three objectives:

1. From Luminance to Color: Extend luminance-basedalgorithms to color in
a mathematically soundway. One consequencés that colorimage enhancemenh
methods do not intro duce new chromaticities. A secondimplication is that for
di eren tial-based algorithms the derivativesof the separatechannelsshould be
combined without loss of derivative information.

In chapter 2, an image enhancemeh method for color imagesis proposedwhich is
basedon the minimization of a robust error norm [9], [32]. Interpreting color image
enhancemenh as a robust estimation problem reducesthe introduction of unwanted
new chromaticities. In the caseof a zeroth order local model, the method is proven to
be equalto nding the local mode in a histogram. Howewer, it hasthe advantage that
the histogram is never computed. Higher order local models allow for more complex
local structures, and therefore yield better image enhancemen results.

The problem of opposing vectors, which occurs for all color image edges,only
occurs for a particular class of luminance images. Namely, for oriented patterns,
which are patterns with onedominant orientation, such as ngerprin t data and seismic
images[37]. These patterns are characterized by their high frequency nature. The
local di erential structure consistsof quickly succeedingvalleys and ridges, with local
gradients pointing in opposing directions. Existing operations fail on these images
since they are designedfor neighborhoods which can be locally modelled as a step-
edge. To cope with the opposing vector problem new operations are needed. The
solution is found in tensor mathematics, in which opposing vectors reinforce eadh
other [6], [8], [24]. For local curvature estimation the existing method [86] also fails
for oriented patterns. In chapter 4, tensor mathematics is used to derive a local
curvature estimator for oriented patterns.

Due to the symmetry betweenthe opposing vector problem for color imagesand
oriented patterns, the operations which were proposed for oriented pattern images
are straightforwardly extendableto color images. In chapter 5, an overview of tensor-
basedfeatures|[6], [27], [44] is given and extensionsof the featuresto color imagesare
proposed.

We focuson low-level operations whenincorporating color into existing luminance-
basedalgorithms. To handle the mathematical obstaclestwo methods are proposed.
Firstly, for color image enhancemeh a method is proposedwhich prevens the intro-
duction of new chromaticities. Secondly a mathematical model is proposed which
combinesthe di erential structure of the color channels.

2. Photometric Information:  Compute photometric invariant di eren tial infor-
mation in a robust way. Here we focus on the classof applications for which
no a-priori knowledge of the noise characteristics of the acquisition systemis
available.
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In chapter 3, a new set of derivativesis proposedwhich we refer to asquasi-invariants.
These quasi-invariants share with full photometric invariants [16], [18] the property
that they are insensitive to certain photometric edges,but do not have the inherert
instabilities of full photometric invariants.

In chapter 5, a framework for color image features is proposed which couples
color tensor-basedfeatures with photometric quasi-invariants and full photometric
invariants. The applicability of the quasi-invariants is restricted to feature detection,
which is the localization of featuresin the image. For photometric invariant feature
extraction, wherelocal descriptorsare extracted from the image, full invarianceis still
required. To improve the robustnessof the full invariants, uncertainty measuresof full
invariants are derived [19]. The tensor framework elegarly allows incorporation of
uncertainty measures.A variety of local imagefeaturesis derived from this robusti ed
invariant color tensor.

3. Color Distinctiv eness: Improve the distinctiv enessof saliert point detection
algorithms by explicitly incorporating color statistics into the detector design.

In chapter 6, color distinctiv enesds explicitly incorporated into the designof di eren tial-
basedsaliencydetection [6], [27], [29]. An algorithm is proposed,which is called color
saliencyboosting. It starts from an analysisof the statistics of color imagederivatives.
Basedon this study, the saliert point detector is adapted in such a way that deriva-
tiveswith equal saliency have equalimpact on the saliencyfunction. The adaptation
is general. It is easily extendableto existing feature detectors.



Chapter 2

Least Squares and Robust
Estimation of Local Image
Structure

2.1 Intro duction

Linear scale-spaceheory of vision not only refersto the introduction of an explicit
scale-parameter,it also refersto the use of di erential operators to study the local
structure of images. The classicalway to obsene the local di eren tial image structure
is to considerall Gaussianderivativesat scales up to order N. Basically what we do is
construct the Taylor seriesexpansionof the smathed image (i.e. the image obsened
at scales). The Taylor polynomial thus is an approximation of the smoothed image
and not of the original image.

Instead of constructing a polynomial local model of the smoothed image we can
equally well construct a polynomial approximation of the unsmoothed image. Our
starting point is the image facet model as introduced by Haralick et al. [25]. His
facet model takes a polynomial function and ts it to the data obsened in a small
neighborhood in the image using a linear least squaresestimation procedure. The
image derivatives then can be calculated as the derivatives of the tted analytical
function.

Farnebad [12] generalizesthe Haralick facet model to incorporate spatial weights
in order to expressthe relative importance of the image samplesin estimating the
parametersof the polynomial function. In the classicHaralick facet model all points
in the local neighborhood are consideredequally important.

For spatial weighting the choice of the Gaussiankernelleadsto a specially e cien t
implemenrtation. Due to the fact that the derivatives of the Gaussianfunction are
given by a polynomial (determined by the order of di erentiation) times the Gaussian

Accepted for publication by the International Journal of Computer Vision [77]
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function itself, the coe cien ts in the polynomial function turn out to be a linear
combination of the Gaussianderivatives.

The least squaresestimation procedure considersall points in a local neighbor-
hood, even in the situation where the local neighborhood is on the boundary of two
regionsin an image. The regionson either side of the boundary may well be approxi-
mated with a low-order polynomial model. The regionscan be sodi erent that their
union cannot be accurately described using the same low order polynomial model.
The estimation procedurethen compromisesbetweenthe two regions: the edgewill
be smoothed.

In 2.2 we generalizethe Gaussian facet model to deal with those multi-mo del
situations. Instead of using a linear least squaresestimation procedure we will use
a robust estimation technique. A robust estimation technique will only considerthe
data points from one of the regionsand will disregardthe data from the other region
as being statistical outliers. Robust estimation of local image structure is pioneered
by Besl [5]. Our work (seealso[78]) di ers from the work of Beslin that we consider
Gaussianaperture instead of “crisp' neighborhoods in which the polynomial function
is tted. Furthermore weintroducea xed point iteration procedureto nd the robust
estimate.

In 2.3we presen a generalizationof earlier work [78], [81], [82]. We deriveiterativ e
robust estimators of local image structure and we will give some examplesranging
from a simple zero order Gaussianfacet model to a rst order facet model for color
images.

In 2.4 we describe a robust estimator for a derived image quartit y: the local ori-
entation (seealso[82)). To that end we considerthe often usedorientation estimator
basedon a eigenanalysis of the structure tensor. Robust estimation of the orienta-
tion turns out to be quite similar, the structure tensor is replacedwith a ‘robusti ed'
version in which only the points are consideredthat closely t the model (i.e. the
points that are not outliers).

2.2 Least Squares Estimation of Local Image Struc-

ture
Locally around a point x the image function f can be approximated with a linear
combination of basisfunctions ;,i= 1;:::;K:
f'= a 1+ +ak k- (2.1)
We can rewrite this asf'= awhere = (12 k)anda= (aja, ak)'. The

least squaresestimator minimizes the di erence of the imagef and the approxima-
tion 7

2
(x) = N fx+y) fly) W(y)dy (2.2)
whereW is the aperture function de ning the locality of the model tting. Note that

the optimal tting function f*diers from position to position in the image plane. We
thus have that f(y) = ( y)a(x), i.e. f(y) = ar(x) 1(y)+ + a (x) « (y).
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The optimal parameter vector a is found by projecting the function f onto the
subspacespannedby the basisfunctionsin . In this function spacethe inner product
is given by: Z

fTg H;giw = Rdf(x)g(x)W(x)dx: (2.3)

The inner product of functions f and g will also be denotedasf "g.
To derive the optimal parameter vector a we take the derivative of the error
with respect to the parameter vector a, setit equalto zero and solve for a. Writing
in terms of the inner product results in

=0 x i x a (2.4)

wheref «(y) = f(x + y) is the translated imagef ,(y) = f (x + y). The integral is
now “hidden' in the inner product of two functions. This can be rewritten as:

x)=fT f 2a" f ,+a’ T a 2.5
(x) xf x X (2.5)

Taking the derivative of with respect to a and setting this equal to 0 and solving
for a we obtain:
a= (") P =T (2.6)

where = = ( T) ! isthe dual basis. The functions in the dual basis, ~ =
= "k , arethe functions suc that the inner product Tf 4 equalsthe co-

ecient g in the approximation = a 1+ + ax k. The dual basis functions,
multiplied with the aperture function, thus are the correlation kernelsneededto cal-
culate the coe cien ts in the polynomial image approximation.

The classic Haralick facet model usesa uniform weight function W(x) = 1 for
kxkq s and W(x) = 0 elsewherej.e. a “crisp' neighborhood within an axis aligned
squareof size2s 2s.

For the secondorder polynomial basis:

— C oy oy 1y2. .12
= 1 X ¥ 3X5 Xy, 3y (2.7)
the dual basisis
~= 7 15x>  15y®. 3x . 3y. 15 4 45x%.  9xy. 15 , 45y° . (2.8)
8s?Z 167 16s%' 4s%' 4% ggh 8s6 ' 4sb' 84 86 : )

The dual basisfunctions are depicted in Fig. 2.1. The rst dual basisfunction (mul-
tiplied with the aperture function) is the correlation kernel neededto calculate the
coe cient of the constart basis function in the approximation of the local image
patch. Obsene that in the Haralick facet model, the rst dual basisfunction is not
everywherepositive. Fig. 2.1 alsoshaws the discrete dual basisfunctions, thesefollow
from a formulation of the facet model in a discrete image spaceas can be found in
the work of Haralick.

Within a scale-spaceontext the most natural choiceis to start with a polynomial
basisand a Gaussianaperture function W = G®° where G® is the Gaussianfunction
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Figure 2.1: The Haralic k Facet Mo del. From left to right, top to bottom the dual
basis functions are plotted. The shadel functions are the dual basis functions within a
2nd order facet model, the (red) stars correspnd with the discrete dual functions. The
neighlorhood was taken to be of size5 5. The sale s for the analytical kernel was
setat s = 2:42. This valueis the valueto makethe di er ence between the discrete and
analytical facet models minimal. For larger neighlorhoods N N the correspndene
becomesbetter and the analytical sale approachesN =2.

at scales. Again starting with the secondorder polynomial basisthe dual basisis a
di erent onedueto the di erence in the inner product (as a consequenc®f adi erent
aperture function):

2 2 2 2
X . X . . 2 X“. XVy. 2 .
232 2y32 ’ Yl LZ! S + 54 SZ ’ S + >SI_A . (29)

~= 5

[

Again, a dual basisfunction, multiplied with the|Gaussian|ap erture function is the
correlation kernel neededto calculate the corresponding coe cien t in the polynomial
approximation of the local image patch. For the zeroorder coe cien t the correlation

2

kernel is a Gaussianfunction multiplied with a parabola: (2 7 %)Gs(x; y).
Again we seethat the zero order coe cien t in the polynomial image approximation
requires a kernel with negative values.

The derivatives of the Gaussianfunction are equal to a polynomial function (a
Hermite polynomial depending on the derivativ e taken) times the Gaussianfunction,
we may write the correlation kernels assaiated with the dual basisfunctions in the
Gaussianfacet model as a linear combination of Gaussianderivatives. It is not hard
to prove that the zero order coe cien t in the secondorder Gaussianfacet model is
found by corvolving the imagef with the kernel:

G 35° Gy +Gj, : (2.10)

Now we easily recognizewhere the negative valuesin the kernel comefrom. The term
GS is the Gaussianscale-spacesmoothing term. The term  3s? G§, + Gjy isa
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Figure 2.2: Zero-order coecien t in the Gaussian Facet Mo del. On the rst
row, from left to right: the original image, and the zem order coe cients in the
Gaussian facet model of order 0, 2 and 6. On the second row the convolution kernel
is shownthat, convoluted with the original image, resultsin the image alove it.

well-known sharpening term: subtracting the Laplacian from the smoothed image,
sharpensthe image. The sharpening term is due to the fact that the Gaussianfacet
model approximates the original image, not the smoothed image.

It turns out that this obsenation is true for higher order facet models aswell. For
a 4th order Gaussianfacet model, the kernel to calculate the zero order coe cien t is:

+ G3

S 12 S S 14 S S .
G 1s? G§ + G5, + is' G, +2G Sy

XXXX XXy 'y

(2.11)

In Fig. 2.2 the kernelsto calculate the zero order coe cient in the Gaussianfacet
model of orders 0, 2 and 6 are depicted together with the convoluted images. Appar-
ertly the N -jet of an image obsened at scales encadesdetails of sizelessthen s, i.e.
from the N -jet obsened at scales a lot of detail can be reconstructed.

2.3 Robust Estimation of Local Image Structure

Consider again the error of the Gaussianweighted least squaresapproximation:
Z

(0= fxey) Ny Gy (212)

It is well known that this error de nition is not well suited for those situations were
we have outliers in our measuremets. In the image processingcortext statistical
outliers are not sofrequertly occurring. The e ect that makesleast squaresestimates
guestionableis that when collecting measuremets from a neighborhood in an image
these are often not well modelled using a simple (facet) model. For instance we may
model local image luminance quite well with a secondorder polynomial model but
not near edgeswhere we switch from one model instantiation to another. Suc multi-
model situations are abundant in computer vision applications and are most often
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Figure 2.3: Quadratic versus (robust) Gaussian error norm. The Gaussianerror
norm is of “sale’' m = 0:7.

due to the nature of the imaging processwhere we seeabrupt changesgoing from one
object to another object.

Multi-mo dality can be incorporated into sophisticated estimation procedures
where we not only estimate (multi-)mo del parameters but also the geometry that
separatesthe di erent regions (one for eac model). One of the oldest examplesis
perhaps Huedkels edge detector [30] in which a local image patch is described with
two regions separatedby a straight boundary. The detector estimatesthis boundary
and the parametersof the luminance distributions on ead side of the edge.

In this paper we take a lessprincipled approad. Instead of a multi-mo del approac
we stick to a simpler one-madel approach where we use a statistical robustestimator
that allows us to considerpart of the measuremets from the local neighborhood to
belong to the model we are interested in and disregard all other measuremers as
being “outliers' and therefore not relevant in estimating the model parameters.

The crux of a robust estimation procedureis to rewrite the above error measure
as: 7

(x) = " (f(x+y) fly)G(y)dy (2.13)

where is the error norm. The choice (€) = € leadsto the least squaresestimator.
Evidently measuremeis that are outliers to the “true' model are weighted heavily in
the total error measure. Reducing the in uence of the large errors leads to robust
error norms.

Writing f (y) = f (x + y) and using the local linear model f(y) = ( y)a(x) we
obtain: 7

(x) = (f « a(x)) G°dy: (2.14)
Rd

We omitted the spatial argumert y for easeof notation. In this paper the "Gaussian
error norm' is chosen:

(/=1 exp (2.15)

2m?2
The scalem in the error norm will be called the model sale to cortrast it with the
spatial scales that is usedin the spatial aperture function G*. In Fig. 2.3 the error
norm is sketched. Comparedto the quadratic error norm this norm is “clamped' at
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value 1. For e m the exact value of the error is not important any more. Gross
outliers are therefore not given the weight to in uence the estimation greatly.

The optimal model parametersare found by calculating the derivative of the error
measureand setting this equal to zero:

Z
% = gzwﬂ (f « a(x)) G® dy (2.16)
= g . 1 exp % GS dy (2.17)
= % N (f x a(x)) exp % GSdy: (2.18)
Setting this derivative equalto zero and rewriting terms we obtain:
ZR@']c O o 2m2a(X))2 G°dy =
N a(x) exp % GSdy: (2.19)

This can be rewritten as:
z z
df x G™(f a(x)) G%dy = ) a(x) G™(f a(x)) G°dy (2.20)
R R
where G™ is the Gaussianfunction at scalem. This Gaussianfunction weighs the
model distance, whereasthe Gaussianfunction G* weighsthe spatial distance.
We de ne the operator :

( "o)(y) = G™(f «(y) (y)ax) ay) (2.21)

i.e. the point wise multiplication of the function g with the model weight function.
Now ™ actsasadiagonal (matrix) operator in the function space.Using the vectorial
notation of the inner product we can write:

rTmg = T M g (2.22)

This looks like a familiar weighted linear least squaresequation that can be solved
for the value of a. It is not, because ™ is dependert on a. Solving for a can be done
using an iterated weightel least squases procedure:

a*l = T(a) tT(a)f (2.23)
Someexamplesof theserobust estimators may clarify matters. In the next subsection
we considerthe most simple of all local structure models: a locally constart model.
The resulting image operator turns out to be an iterated version of the bilateral Iter
intro duced by Tomasi and Manduchi [72)].
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Figure 2.4: Robust Estimation of Local Image Structure. On the rst row a
test image with noise addel on the left and the result of the robustestimator basel on
a zem-order facet model. On the second row the histograms of the imagesalove are
depicted. Observethat the robustestimator is capable of nding the modesof both the
distributions.

2.3.1 Zero-order Image Structure
Consider a locally constart image model with only one basisfunction:
= (1) (2.24)
i.e. the constart function. Eq.(2.23) then reducesto:
RRu fX+y)Gm(F(x+y) ap(x)) G°(y) dy .
re GM(F(x+y) ay(x)) Gs(y)dy

This is an iterated version of the bilateral Iter asintroduced by Tomasiand Man-
duchi [72]. It is alsorelated to the Iters introducedby Smith et al. [70]. The bilateral
lter thusimplemerts oneiteration of a robust estimator with initial value ad =

In previous papers[78], [81] we have analyzedrobust estimation of the zero order
local image structure. Someobsenations made are:

(2.25)

2™t (x) =

The robust estimator nds the local mode in the local luminance histogram
which is smoothed with a Gaussiankernel of scalem. The local mode that is
found is the local maximum in the smoothed histogram that is closestto the
initial value.

Bilateral ltering implements oneiteration of the robust estimator. From mean
shift analysiswe know that the rst stepin a meanshift algorithm is a large one
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Figure 2.5: Robust Estimation and Non-linear diusion. On the left the original
image of a ower. In the middle the robustestimation of the zero order local structure
and on the right the result of iteratively applying one iteration of the robustestimator,
eachtime using the image data from the previousiteration (this procedure is very much
like a non-linear di usion process).

in the direction of the optimal value. This explainsthe impressiwe results on the
bilateral Iter in reducing the noisewhile preservingthe structure of images.

The choice of an initial estimate is very important. We have found good results
using the result of a linear least squaresestimate as the initial estimate. In
certain situations however the amount of smoothing induced by the leastsquares
estimator setsthe robust estimator at a wrong starting point leading to a local
maximum in the histogram that does not correspond with the structure that
we are interested in. This situation is often occurring in casethe area of the
structure of interest is lessthen the area of the “badground' (e.g. documert
imageswhere there is more paper then ink visible). In such casesthe image
itself can be usedas an initial estimate of the zero order local structure.

The results of robust estimation of local image structure bear great resenblance
to the results of non-linear di usion. The theoretical link betweenrobust esti-
mation and non-linear di usion technigues has beenreported before (see[9]).
The main di erence with the robust estimator technique described here is that
in ead iteration of a non-linear di usion algorithm the image data resulting
from the previous iteration is used. In the robust estimator described here we
stick to the original image data and only update the parameterto be estimated.
Fig. 2.5 shows the di erences betweenthesetwo procedures.

2.3.2 Higher-order Image Structure

For the image in Fig. 2.4 the assumption of local constart image model is a correct
assumption, for most natural imagessud a model is an oversimpli cation though.
Then it is better to usea higher order model for the local image structure. We start
with a simple rst order model for 1D functions. The local basisis:

= 1 x : (2.26)



16 Chapter 2. Least Squares and Robust Estimation of Local Image Structure

0.9~

0.8 -

0.6 -

0.3

O.Zﬁ I I I
(o]

10 20 30

Figure 2.6: Robust Estimation of Local Structure in 1D functions. A “saw-
tooth' function with addel noise is shown together with the Gaussian linear least
squaes estimate, i.e. the Gaussian smathing (the thin “sinusoidal' line), the robust
estimate basal on a zem order facet model (the dashel-dotted line) and the robust
estimate basal on a rst order model (the thick dasheal line). The spatial sale is 9
and the tonal (model) sale is 0.1. The number of iterations use is 10.

This leadsto the matrix T ™ :

R o R o
RrCGT(F(x+y) a, ayG(y)dy RpgYGT(f(x+y) a, ay) G(y)dy
RYGM(f(x+y) ay aly)G(y)dy LY?G"(f(x+y) a, ayy)G(y)dy
(2.27)
andvector T Mf

R o
Ref(x+y)G"(F(x+y) a ay)Gy)dy . (2.28)
RYF(X+Y)GM(f(x+y) ay ayG3(y)dy '

The robust estimator of the local linear model is given by Eq.(2.23). Fig. 2.6 shows

a univariate “saw-tooth' signal corrupted with additive noise. Also shawvn are the

robust estimates basedon a zero order facet model and the robust estimate based

on a rst order facet model. It is obvious that a robust estimator basedon a local

constart model is not capable of reconstructing the sav tooth signal from the noisy

obsenations. Using a local rst order model leadsto a far better reconstruction.
The rst order robust facet model is easily generalizedto 2D functions:

= (00)  (0) (01 (2.29)
= 1 x X (2.30)
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Figure 2.7: Robust Estimation of Local Image Structure. On the left the
cameraman image with noise addead and on the right the robustestimation of the zero
order coe cient in a rst order facet model.

This leadsto the matrix T ™ :
0 R R R
R e GM GSdy Re YIGT Gy R g Y2GM Gody
@ R Y1G"GSdy R YEGMGSdy g y1Y.GMGSdy A (2.31)
g2 Y2GMGSdy o, y1Y2GMGSdy o, y2GMGSdy

to simplify the notation we have omitted the argumerts of the functions in the inte-
grand. For the G™-function the argumert is the model error f (x +y) agy aigy:
aoy2. The vector T ™f , equals
0 R
Rref(X+y)GM(f(Xx+y) ap anyr any2)G*(y)dy
@ R Vaf (X +Y)GM(f(X+Y) an awyr any2)GS(y)dy A: (2.32)
re Y2f (X +y)GM(f (X +y) @0 awyr aoy2)GS(y)dy

Eq.(2.23) then can be usedto calculate the new estimate of the optimal parameter
vector a'*t .

In Fig. 2.7 the robust estimation of the zeroorder coe cien t basedon a rst order
facet model is shavn. For this image the di erence with a zero order facet model
estimation can only be obsened in regions of slowly varying luminance (like in the
badground).

2.3.3 Color Image Structure

In this section we generalizethe robust facet models for scalarimagesto models for
vectorial images. The analysisis done for color imagesbut is valid for all vectorial
images.

A colorimagef = (f* f 2 f 3) at any position x hasthree color componerts f *(x),
f2(x) and f 3(x). The local model for a color image using a basis

=(1 2 K) (2.33)
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Figure 2.8: Robust Estimation of Local Structure in Color Images. On the
rst row from left to right: the "Lena' image with some noise addel to it, the zero-
order facet model basel robust estimator of the valuesand the robust estimator basel
on a rst order basel facet model. On the second row we showa detail from the image
alove (see also color plate C.4).

is chosenas:

fx+y)= A= a, a, as (2.34)
whereA = a; a, ag IistheK 3 parametermatrix. The column a; represens
the parameter vector in the approximation f{ = a; of the i-th color componert.

Each of the color componerts is thus approximated as a linear combination of K
basisfunctions. The model error is now written as:
z

q
(x) = (Ffe a)?+ (f% a2+ (f3  as)? G(y)dy: (2.35)
Rd

It is not hard to prove that in this case

@

—=0() T

@
where ™M is the “diagonal' operator that multiplies a function point wise with the
function: G™ (f1, ar)?+ (f2, ap)? + (f3, az)®> . As ™M is dependert
on the parameter matrix A we arrive at a iterated weighted least squaresestimator:

mf= T m A (2.36)

AL = (T malyy 1T maiyf. (2.37)
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Figure 2.9: Histograms of gradien t vector space. In (a) an image (64 64) is
shownwith in (b) the histogram of all gradient vectors (where darker shadesindicate
that those gradient vectors occur often in the image. In (c) a composition of two
di er ently oriented patterns is shownwith correspnding histogram in (d).

The estimation of the robust facet model for color imagesis thus almost the sameas
for scalarimages. The three color componerts are dealt with independertly, only the
error weights operator ™ is dependent on all three color componerts.

In Fig. 2.8 the robust estimators are showvn that are basedon a zero order facet
model and on a rst order facet model. Especially in the nose-regionthe rst order
model basedrobust estimator performs better then the zeroorder model basedrobust
estimator.

2.4 Robust Estimation of Orien tation

In the previous sectionswe have consideredlocal image models for the image values
(grey value and color). In this sectionwe look at robust estimation of the orientation
of image structures.

Oriented patterns are found in many imaging applications, e.g.in ngerprin t anal-
ysis, and in geo-plysical analysisof soil layers. The classicaltechnique to estimate the
orientation of the texture is to look at the set of luminance gradient vectorsin alocal
neighborhood. In an image patch showing a strip e pattern in only one orientation we
can clearly distinguish the orientation asthe line cluster in gradient spaceperpendic-
ular to the stripes(seeFig. 2.9(a-b)). A straightforward eigervector analysis of the
covariance matrix will reveal the orientation of the texture. The covariance matrix
of the gradient vectorsin an image neighborhood is often usedto estimate the local
orientation [37], [8], [46], [9]].

In casethe local neighborhood is taken from the border of two di erently oriented
patterns (seeFig. 2.9) an eigervector analysis of the covariance matrix will mix both
orientations resulting in a 'smaothing' of the orientation estimation.

In casethe regions shaving di erent textures are of sucient sizeit is possible
to usea post-processingstep to sharpen the smoothed orientation measuremets. A
classicalway of doing so is the Kuwahara-Nagaooperator [43], [56], [2]. At a cer-
tain position in an image this operator seardes for a nearby neighborhood where
the (orientation) responseis more homogeneoushen it is at the border. That re-
sponseis then used at the point of interest. In this way the neighborhoods are not
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allowed to crossthe borders of the textured regions. In [80] we have shown that the
classicKuwahara-Nagaooperator can be interpreted as a "'macroscopic'version of a
PDE image ewlution that combineslinear di usion (smoothing) with morphological
sharpening.

Again considerthe texture in Fig. 2.9(a). The histogram of the gradient vectors
in this texture patch is showvn in Fig. 2.9(b). Let v be the true orientation vector of
the patch, i.e. the unit vector perpendicular to the stripes. In an ideal image patch
every gradient vector should be parallel to the orientation v. In practice they will not
be parallel. The error of a gradiert vector g(y) obsened in a point y with respect to
the orientation v(x) of an image patch certered at location x is de ned as:

e(x;y) = kg(y)  (9(y)"v(x)v(x)k: (2.38)

The dierence g(y) (g(y)Tv(x))v(x) is the projection of g on the normal to v. The
error e(X;y) thus measuresthe perpendicular distance from the gradient vector g(y)
to the orientation vector v(x). Integrating the squarederror over all positionsy using
a soft Gaussianaperture for the neighborhood de nition we de ne the total error;

Z
(x) = (xy)G3(x y)dy: (2.39)
The error measurecan be rewritten as:
Z Z
= g'gGsdy v'(gg")vGsdy: (2.40)

where we have omitted the argumerts of the functions. Minimizing the error thusis
equivalent with maximizing: Z

v (ggT)vGsdy; (2.41)

subject to the constraint that v'v = 1. Note that v is not dependert on y so that
we have to maximize: Z

vl (gg")Gsdy v =v' Sy (2.42)

where *° is the structure tensor.
Using the method of Lagrange multipliers to maximize v’ Sv subject to the con-
straint that vTv = 1, we needto nd an extremum of

(L vTv)+ v Sv: (2.43)

Di eren tiating with respectto v (remember that dvTAv=dv = 2Av in caseA = AT)
and setting the derivative equal to zeroresults in:

v=ov (2.44)

The “best' orientation thus is an eigervector of the structure tensor. Substitution
in the quadratic form then shaws that we needthe eigervector corresponding to the
largest eigervalue.
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The least squaresorientation estimation works well in caseall gradients in the
ensenble of vectorsin animageneighborhood all belongto the sameoriented pattern.
In casethe image patch shows two oriented patterns the least squaresestimate will
mix the two orientations and give a wrong result.

A robust estimator is constructed by introducing the Gaussianerror norm once
again: 7

(x)= (e(x;y))G3(x y)dy: (2.45)

In arobust estimator large deviations from the model are not taken into accourt very

heavily. In our application large deviations from the model are probably due to the
mixing of two di erent linear textures (seeFig. 2.9(c-d)).

The error, Eq.(2.45), cannow berewritten as(we will omit the spatial argumerts):

Z q

= g'g vT(ggT)v GSdy: (2.46)

Again we usea Lagrangemultiplier to minimize subject to the constraint that v'v =

1 Z
q
% 1 viv)+ g"g vT(ggT)v GSdy = 0: (2.47)

Using Eq.(2.15) asthe error function leadsto

(Vjv= v (2.48)

where Z q
(v)= 99'G™( g"g vT(ggT)v)Gedy: (2.49)

The big di erence with the least squaresestimator is that now the matrix is de-
pendent on v (and on x aswell). Note that can be called a ‘robusti ed' structure
tensor in which the contribution of ead gradiert vector is weighted not only by its
distance to the certer point of the neighborhood, but also weighted according to its
“distance'to the orientation model. Weickert et al. [92] also intro duce a non linear
version of the structure tensor that is closein spirit to the robust structure tensor .

We proposethe following xed point iteration schemeto nd a solution. Let v!
be the orientation vector estimate after i iterations. The estimate is then updated as
the eigervector vi*! of the matrix (v') corresponding to the largest eigervalue, i.e.
we solve:

(vhvitt = yi*t: (2.50)
The proposedsciemeis a generalization of the well-known xed point scheme (also
called functional iteration) to nd a solution of the equationv = F (v).

Note that the iterative scheme does not necessarilylead to the glokal minimum
of the error. In fact often we are not even interested in that global minimum. Con-
sider for instance the situation of a point in region A (with orientation ;) that is
surrounded by many points in region B (with orientation ). It is not to dicult
to imagine a situation where the points of region B outnumber those in region A.
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Figure 2.10: Least Squares versus Robust Orien tation Estimation. In (a) a
genented noise free image is shown. The texture is made out of two regions each
di er ently oriented. In (b) the orientation eld = arctan(vp=vy) is shown that
results from the least squaes estimate. In (d) the orientation eld is shownresulting
from the robust estimation. In (c) a detail of the orientation vector elds for both
the least squases estimation (dotted lines) and the robust estimation (solid lines) are
shown.

Figure 2.11: Least Squares versus Robust Orien tation Estimation. Same
experiment as gur e 10 but with noise addel.

Neverthelesswe would like our algorithm to nd the orientation  whereasthe global
minimum would correspond with orientation . Becauseour algorithm starts in the
initial orientation estimate and then nds the local minimum nearestto the starting
point we hopefully end up in the desiredlocal minimum: orientation

The choice for an initial estimate of the orientation vector is thus crucial in a
robust estimator in casewe have an image patch showing multiple strip ed patterns.
In Fig. 2.10 and Fig. 2.11 robust estimation of orientation for a simple test image
is given. For the robust estimation we have usedthe orientation in location x that
resulted from the least squaresestimator asthe initial orientation vector in that point.
Only 5 iterations are used. For both examplesit is evidert that the robust estimation
performs much better at the border of the textured regions.



Chapter 3

Edge and Corner Detection
by Photometric
Quasi-In variants

3.1 Intro duction

Feature detection, such asedgeand corner detection, plays an important role in many
computer vision applications such asimage segmetation, object recognition and im-
age retrieval [26]. A large number of feature detectors is based on the di eren tial
structure of images[10], [27], [45. Howewer, in real-world applications there are var-
ious physical phenomenawhich trigger di erential-based features, such as shadaws,
shading, specularities, and object re ectance changes. It is important to di eren tiate
betweenthe various physical causesof a feature.

An improvemert in color understanding was the introduction of the dichromatic
re ection model by Shafer [66]. The model separatesthe re ected light into body
re ection (object color) and surfacere ection (specularities). This separation results
in the classi cation of physical everts, such as shadowvs and highlights. This is suited
for photometric invariant segmemation, object recognition, and retrieval [18], [3§],
[51]. Howewer, these methods are based on the zeroth order structure of images
and mostly involve the analysis of the RGB -values in color histograms. For the
photometric invariant theory to be applicable to di eren tial-based operations other
methods are needed.

The connection between di eren tial-based features and photometric invariance
theory is proposedby Geusebrak et al. [16]. This work provides a set of photometric
invariant derivative Iters and usesthem for invariant edgedetection. Howewer, the
non-linear transformations usedto compute photometric invariants have seeral draw-
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backs sud as instabilities and loss of discriminative power. These drawbacks limit
the applicability of operations basedon derivativesof theseinvariants. Traditionally,
the e ect of instabilities is suppresseddy ad hoc thresholding of the transformed val-
ues [28], [57]. A more elaborate approac is to apply error propagation through the
various color spacesto compensatefor the undesirede ects of instabilities and non-
linearities of the di erent photometric invariant spaces[19]. Howewer, this approac
is basedon a proper noiseestimation systemwhich is not always available in practice.

In this chapter we propose a new class of derivatives which we refer to as pho-
tometric quasi-invariants. These derivatives link derivative-basedoperations to the
theory of photometric invariance. Quasi-invariants are derived from the dichromatic
re ection model and are proven to di er from full photometric invariants by a scal-
ing factor. These quasi-invariants do not have the inherent instabilities of full pho-
tometric invariants, and from theoretical and experimental results it is shavn that
guasi-invariants have better noisecharacteristics, discriminativ e power, and intro duce
lessedgedisplacemen than full photometric invariants. The lack of full photometric
invariance limits the applicability of quasi-invariants to methods which are basedon
a single image, such as edgeand corner detection. Quasi-invariants cannot be used
for applications in which responsesbetween multiple imagesare compared, suc as
invariant object recognition.

3.2 The Dichromatic Re ection Mo del

In this section the dichromatic re ection model is discussed[66]. The dichromatic
model divides the re ection in the body (object color) and surfacere ection (specu-
larities or highlights) componert for optically inhomogeneousmaterials. Assuming a
known illuminant, ¢' = ( ; ; )T, and neutral interface re ection, the RGB vector,
f = (R;G;B)", can be seenas a weighted summation of two vectors,

f = e(mPc®+ m'c) (3.1)

in which c® is the color of the body re ectance, c¢' the color of the surfacere ectance,
mP and m' are scalarsrepresetting the corresponding magnitudes of body and surface
re ection and e is the intensity of the light source. For matte surfacesthere is no
interface re ection and the model further simpli es to

f = emPcP (3.2)

which is the well-known Lambertian re ection. For more on the validity of the pho-
tometric assumptionssee[16], [18], [66] and for calibration [19].

From the dichromatic re ection model, photometric invariants can be derived
(e.g. normalized RGB, hue). Theseinvariants have the disadvantage that they are
unstable; normalized RGB is unstable near zerointensity and hue is unde ned on the
black-white axis. The instabilities canbe avoided by analyzing the RGB valuesin the
RGB -histogram [38] [51]. That proved to be rather di cult and slow sinceyou need
a meaningful segmemation to generate a meaningful histogram, and a meaningful
histogram to get a good segmeiation.
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Figure 3.1: (a) Shadow-shadinglirection ¢°, (b) specular direction ¢', and (c) hue di-
rection b.

Instead of looking at the zeroth order structure (the RGB -values) we focus in
this chapter on the rst order structure of the image. A straightforward extension
of the photometric invariance theory to rst order Iters can be obtained by taking
the derivative of the invariants. Howewer, these Iters would inherit the undesired
instabilities of the photometric invariants. Therefore we proposean alternativ e way to
arrive at photometric derivativesby analyzing the spatial derivativ e of the dichromatic
re ection model.

The spatial derivative of the dichromatic re ection model ( Eq. 3.1) givesthe
photometric derivative structure of the image:

fu = em’c® + emP+emd c®+ eml + em' C': (3.3)

Here, the subscript indicates spatial di erentiation. Since we assumea known illu-
minant and neutral interface re ection, ¢' is independert of x. The derivative in
Eq. 3.3 is a summation of three weighted vectors, successiely causedby body re-
ectance, shading-shadev and specular change. Further, we assumethat shadows are
not signi cantly colored.

In fact, the direction of the shadaw-shading changes (Fig. 3.1a) follows from
Eg. 3.2. In the absenceof interface re ection, the direction of c” coincideswith the
direction of f = pﬁ (R; G; B)T. The hat is usedto denote unit vectors. The
shadav-shading direction is the multiplication of two scalarsdenoting two di erent
physical phenomena. First, e,mP® indicates a changein intensity which corresponds
to a shadov edge. And em? is a changein the geometry coe cien t which represers
a shading edge.

Another direction is the specular direction ¢' in which changesof the specular
geometry coe cien t mi, occur. In Fig. 3.1b, ¢' is depicted for the caseof a white
light source for which €' = #-(1;1;1)T. The specular direction is multiplied by

two factors. Firstly, em| is a change of geometric coe cien t causedby changesin
the angles between viewpoint, object and light source. Secondly the term e, m!
represerting a shadav edgeon top of a specular re ection.

Having the direction of two of the causesof an edge,we are able to construct a
third direction which is perpendicular to thesetwo vectors (Fig. 3.1c). This direction,
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named hue direction B, is computed by the outer product:

6:? ¢

: 3.4
PN (3.4)
If f and &' are parallel, we de ne b to be the zerovector. Note that the hue direction
is not equal to the direction in which changesof the body re ectance occur, €2. It is
perpendicular to the two other causesof an edge. Hence,changesin the hue direction
can only be attributed to a body re ectance change.

In conclusion,changesin the re ection manifest themselvesasedgesin the image.
There are three causedor an edgein an image: an hue change,a shadov-shadingedge
or a specular change. We indicated three directions: the shadowv-shading direction,
the specular direction and the hue direction. These directions are the same as the
directions indicated by Klink er [38] for to use of image segmemation. We use these
direction for the construction of photometric invariant spatial derivatives.

3.3 Photometric Variants and Quasi-In varian ts

In this section, the goal is to proposea new set of photometric variants and quasi-
invariants. To this end, the derivative of animage,fy = (Rx; Gyx;Bx)", is projected on
three directions found in the previous section. We will call theseprojections variants.
E.g. the projection of the derivative on the shadav-shading direction results in the
shadav-shading variant. By remaoving the variance from the derivative of the image,
we construct a complemenary set of derivativeswhich we will call quasi-invariants.

The projection of the derivative on the shadav-shading direction is called the
shadov-shading variant and is de ned as

Sx= f f F (3.5)

The dot indicates the vector inner product. The secondf indicates the direction of
the variant. The shadowv-shading variant is the part of the derivative which could be
causedby shadav or shading. Due to correlation of the hue and specular direction
with the shadawv-shading direction, part of Sy might be causedby changesin hue or
specular re ection.

What remains after subtraction of the variant is called the shadav-shading quasi-
invariant, indicated by superscript c,

St=f, S (3.6)

The quasi-invariant SS consistsof that part of the derivative which is not causedby
shadav-shading edges(Fig. 3.2b). Hence,only cortains specular and hue edges.

The samereasoning can be applied to the specular direction and results in the
specular variant and the specular quasi-invariant

O,= f, & & ;

0f=f, Oy (3.7)
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@) (b) (© (d)

Figure 3.2: Various derivatives applied to Fig. 3.4a: a) color gradient (fx), b)
shadow-shadingquasi-invariant (SS), c¢) the specular quasi-invariant (Og) , and d)
the specular-shadow-shadingquasi-invariant (Hg).

The specular quasi-invariant is insensitive to highlight edges(Fig. 3.2c).
Finally, we can construct the shadawv-shading-specular variant and quasi-invariant
by projecting the derivative on the hue direction

HS= f, b b;

3.8
Hy=1fx HE: (3.8)

H ¢ doesnot cortain specular or shadav-shading edges(Fig. 3.2d).

3.4 Relations of Quasi-In variants with Full Invari-
ants

In this section, the resenblancesand di erences are analyzedbetweenquasi-invariants
and full invariants. A geometrical relation in RGB -spacebetween the two is found
by investigating underlying color spacetransformations. Conclusionswith respect to
stability are made. With stability it is meart that small changesin the RGB -cube do
not causelarge jumps in the invariant space. Further, we discussthe characteristics
of quasi-invariants.

3.4.1 Spherical Color Space

An orthogonal transformation which has the shadov-shading direction as one of its
componerts is the spherical coordinate transformation. Transforming the RGB -color
spaceresultsin the spherical color spaceor r ' -color space. The transformations are,
r= IOR2+ G?+ B2 = jfj
- G
= arctan(g) : (3.9
R2+G?

= in p—2—t2°
arcsin P2

Sincer is pointing in the shadav-shading direction, its derivative corresppndsto Sy
RRy + GGy + BBy

Py - f. £=iSi: (3.10)

ry =
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@) (b) (© (d) () (f)

Figure 3.3: (a) Red-blue edge, with a decreasing intensity of the blue patch going in
the upward direction. Resmnse of (b) normalized RGB derivative, and (c) shadow-
shading quasi-invariant (Sg). (d) Red-blue edge, with decreasing saturation going in
the upward direction. Resmnse of (e) hue derivative (hy), and (f) specular-shadow-
shading quasi-invariant (H$) (see also color plate C.5).

The quasi-invariant St is the derivative energy in the plane perpendicular to the
shadav-shading direction. The derivative in the ' -plane is given by

isiig )7+ (rsin’ X)Z: (3.11)
=1 (%) (sin' )?

To consene the metric of RGB -spacethe angular derivativesare multiplied by their
corresponding scalefactors which follow from the sphericaltransformation. For matte
surfacesboth and ' are independert of m® (substitution of Eq. 3.2 in Eqg. 3.9).
Hence,the part under the root is a shadav-shading invariant.

By means of the spherical coordinate transformation a relation between the
quasi-invariant and the full invariant is fqhmd. The di erence between the quasi-

invariant jSj and the full invariant s, = (' X)z + (sin' x)z is the multiplication
with r which is the L2 norm for the intensity (seeEg. 3.9). In geometricalterms, the
derivative vector which remains after subtraction of the part in the shadov-shading
direction is not projected on the sphereto produce an invariant. This projection
intro ducesthe instabilit y of the full shadav-shading invariants for low intensities,

Iilm0 sy doesnot exist

rro " (3.12)

C - .

r|l!m0]SXj =0

The rst limit follows from the non existenceof the limit for both ' y and , at zero.

The secondlimit can be concluded from Ii|m0r' x = 0 and Ii'mor x = 0. Concluding,
r! rt

the multiplication of the full-invariant with jfj resolvesthe instabilit y.

An exampleof the responsesfor the shadov-shadinginvariant and quasi-invariant
is given in Fig. 3.3. In Fig. 3.3a, a synthetic image of a red-blue edgeis depicted.
The blue intensity decreaseslong the y-axis. Gaussianuncorrelated noise is added
to the RGB channels. In Fig. 3.3b the normalized RGB responseis depicted and the
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instabilit y for low intensities is clearly visible. For the shadav-shadingquasi-invariant
(Fig. 3.3c), no instabilit y occurs and the responsejust diminishes for low intensities.
Note that the instable region is particularly inconveniert becauseshadav-shading
edgestend to produce low-intensity areas.

3.4.2 Opponent Color Space

The orthonormal transformation which accompanieshe specular variant is known as

the opponert color space. For a known illuminant ¢' = ( ; ; )T it is given by
ol= pRZ—G
+ 2
_ R+ G ( %+ ?)B
02 = P o (3.13)
— @ + G+ B
03= 24 27 2
ghe relations with the variant and its complement are jOxj = 03¢ and jOgj =

012 + 022.

3.4.3 The Hue Saturation Intensity Space

As discussedin section 3.3 the shadav-shading-specular quasi-invariant is both per-

pendicular to the shadav-shadingdirection and the specular direction. An orthogonal

transformation which satis es this constraint is the hue-saturation-intensity transfor-

mation. It is actually a polar transformation on the opponert color axis ol and 02.
h= grctan 2
s= 012+ 022 : (3.14)
i =03

The changesof h occur in the hue direction and hencethe derivative in the hue-
direction is equalto the shadav-shading-specular quasi-invariant,

jHSj=s hy: (3.15)

The multiplication with the scalefactor s follows from the fact that for polar trans-
formations the angular derivative is multiplied by the radius.

The hue, h, is a well known full shadav-shading-sgecular invariant. Eqg. 3.15
provides a link betweenthe derivative of the full invariant, hy and the quasi-invariant
jHEj. A drawbadk of hueis its unde nednessfor points on the black-white axis, i.e. for
small s. Therefore the derivative of hue is unbounded. In section 3.3, we derived the
guasi-invariant as a linear projection of the spatial derivative. For these projections,
it holdsthat 0< jH§j < jfxj, and hencethe shadowv-shading specular quasi-invariant
is bounded. It should be mentioned that small changesround the grey axis, result
in large changesof the direction or 'color' of the derivative, e.g. from blue to red,
in both the quasi-invariant and the full invariant. Howewer, the advantage of the
guasi-invariant is that the norm remains bounded for these cases. For example, in
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(b) (d)
Figure 3.4: (a) Input image with superimposal two dotted lines which are plotted in
the images(c) and (d). (b) Edge classi cation result, with white object edges, black
shadowedgesand light grey specular edges. (c),(d) The derivative strengthalonglines
indicated in (a) (see also color plate C.6).

Fig. 3.3d ared-blue edgeis depicted. The blue patch becomesmore achromatic along
the y-axis. The instability for grey valuesis clearly visible in Fig. 3.3e whereasin
Fig. 3.3f the responseof the quasi-invariant remains stable.

3.4.4 Characteristics of Quasi-In varian ts

Full invariants are invariant with respectto a physical photometric parameter like for
instancethe geometricterm m® in the caseof normalized RGB . Hence,the rst order
derivativ e responseof such invariants doesnot cortain any shadov-shading variation.
Our approad determinesthe direction in the RGB -cube in which shadav-shading
edgesexhibit themselves. This direction is then usedto compute the quasi-derivative
which shareswith full invariants the property that shadav-shading edgesare ignored.
Howevwer, the quasi-invariants is not invariant with respect to my. For the shadav-
shading quasi-invariant subtraction from Eq. 3.3 of the part in the shadav-shading
direction c® results in
f,=em® c® P &b (3.16)
which is clearly not invariant for m? and e. In a similar way alsothe specular-shadav-
shading quasi-invariant can be proven to be dependert on m® and e.
The dependencyof the quasi-invariants on mP and e limits their applicability. They
cannot be used for applications where edgeresponsesare compared under di erent
circumstances, such as content basedimage retrieval. Howewer, they can be used

in applications which are basedon a single frame, such as shadov-edge insensitive
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image segmemation, shadav-shading-specularindependert corner detection and edge
classi cation.

A major advantage of the quasi-invariants is that their responseto noiseis inde-
pendert of the signal. In the caseof additive uniform noise, the noisein the quasi
invariants is also additive and uniform, sinceit is a linear projection of the derivative
of the image. This meansthat the noise distortion is constart over the image. In
section 3.4, it was showvn that the full invariants di er from the quasi-invariants by
scaling with a signal dependedfactor (the intensity or saturation). And hencetheir
noise responseis also signal depended. Typically the shadawv-shading full invariant
exhibits high noisedistortion round low intensities while the shadav-shading-specular
full invariant has high noise dependencyfor points around the achromatic axis. This
is shavn in Fig. 3.3. The uneven levels of noise throughout an image hinder further
processing.

A secondadvantage of photometric variants and quasi-invariants is that they are
expressedn the sameunits (i.e. being projections of the derivative they arein RGB -
value per pixel). This allows for a quantitativ e comparison of their responses. An
exampleis givenin Fig. 3.4. Responsesalong two lines in the image are enlargedin
Fig. 3.4c and Fig. 3.4d. The line in Fig. 3.4c crossestwo object edgesand seeral
specular edges.It nicely shows that the specular-variant almost perfectly follows the
total derivative energy for the specular edgesin the middle of the line. In Fig. 3.4d
a line is depicted which crossestwo object edgesand three shadav-shading edges.
Again the shadowv-shading variant follows the gradient for the three shading edges.A
simple classi cation schemeresults in Fig. 3.4b. Note that full-invariants cannot be
compared quartitativ ely becausethey have di erent units.

3.5 Experiments

We comparethe performanceof the quasi-invariants with the full invariants according
to the following criteria 1. stability, 2. edgedisplacemen and 3. discriminativ e power.
For the improved stability a mathematical proof is givenin chapter 3.4. Here, we will
test the invariants on edgedisplacemen and discriminativ e power.

Sincethe specular quasi-invariant is well-known, and it doesnot courterpart a full
invariant, its performanceis not investigated here. The experiments were performed
with normalized RGB, c;c,cs, l1l2l3, hue, Cw and Hw [16] [18]. The results for
the invariants c;c,c3, 11213, Cw and Hw were similar or worse than the results for
normalized RGB and hue. Therefore, we have chosennormalized RGB and hue as
exemplary for the set of invariants, and comparedthem with the quasi-invariants. Im-
plemertation details of the quasi-invariants can be found in [74]. For the experimerts
a white light source¢' = p'-(1;1;1) is used.

3.5.1 Edge Detection

First, we compare the edge detection performance of the quasi-invariants with the
invariants from literature. These results can also be seenas an indication of the
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Table 3.1: The displacement, , and the percentage of missal edges,”, for ve dif-
ferent edge detectors. Gaussian noise of standard deviation 5, and 20 was added.

loss of discrimination due to invariance. Edge detection is performed between the
1012 dierent colors from the PANTONE [58] color system. Every one of the 1012
dierent RGB-valuesis combined with all other RGB -values, resulting in a total of
N = 1012 1011=2 = 511566edgesof M = 25 pixels length. The edge position is
determined by computing the maximum responsepath of the derivative energyin a
region of 20 pixels around the actual edge. This results in an edgeestimation which
is comparedwith the actual edge. We de ne two error measures.First, the average
pixel displacemen
P . .
Xij  Xo]
fXij ;ixij  Xoj>0:5g

= N (3.17)

in which x;; is j-th edgepixel of the i-th edge. Becausethe actual edgeis located
betweentwo pixels displacemeits equalto .5 pixels are consideredas a perfect match.
The seconderror measureis the percertage of missededges,". An edgewas classi ed
missedas the variation over one edge,

o1 X 1 X
var(i) = — Xij = Xik (3.18)
M M
j=1 k
is larger than 1 pixel. For the Gaussianderivative, a scale = 1 is chosen. The

experiments were performed with uncorrelated Gaussiannoise of standard deviation
5, and 20.

The results are depicted in Table 3.1. For both cases,the shadav-shading and
shadav-shading-specular edges,the quasi-invariants substartially outperform the in-
variants. For comparison,the results without invariance basedon the RGB gradiert,
ifxj, are inserted. Obviously, the RGB gradient has the best discriminative power.
Howevwer, it will also nd many edgeswhich are causeddue to sceneincidental everts.

To provide more insight in what kind of edgeswere still detected, we computed
the averageEuclidean RGB di erence of the missededgesfor the casewith Gaussian
noise with a standard deviation of 5. With d; = jfi f;j the Euclidean distance
betweenpatch i and j. For the RGB gradient-based method, we obtained an average
distance of d = 4:6, for the shadav-shading quasi-invariant d = 86 and d = 109 for
the shadawv-shading-spgecular invariant.
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Figure 3.5: (a) Input image and corner detector results basal on (b) RGB gradient
(fx), (c) shadow-shadingjuasi-invariant (S;), and (d) shadow-shading-sgular quasi-
invariant (HS) (see also color plate C.7).

3.5.2 Photometric invariant corner detection

Derivatives basedon full photometric invariants are, due to their instability, unreli-
able input for geometrical operations such as photometric invariant corner detection,
orientation estimation, curvature estimation, etc. Quasi-invariants, on the other hand
are expectedto be more stable in combination with geometrical operations. We used
the following straightforward extension of the Harris corner detector [27] for color
images

Hf = [T, 67T, f7f,° k(7T + f71,)% (3.19)

The overline indicates a gaussianaveragingwindow. The corner detection results are
givenin Fig. 3.5. The shadav-shading quasi-invariant detector doesnot nd shadaw-
shading cornerswhereasthe shadav-shading-specular quasi-invariant alsoignoresthe
specular corners.

In Fig. 3.6, the 30 most prominent Harris cornersare detected for two real world
images(Corel gallery). The detected points can be usedas interest points for object
recognition [64]. Note that the imagesbreak seweral of the assumptionsof the dichro-
matic re ection model (Eq. 3.1). They do not have a known illuminant, nor are they
taken with a linear acquisition system. The results for the full invariants are domi-
nated by their instabilities. The shadav-shading full invariant is unstable in the low
intensity areasand consequetly nds most of the interest points in this area. The
shadav-shading specular full invariant is unstable along the whole grey axis, which
leads to false cornersin grey areas. The RGB gradient method focusseson large
RGB value changeswhich mostly coincidewith light-dark transition which are rarely
the most discriminativ e points. It is apparert that the quasi-invariants (Figs. 3.6d,h)
suppressunwanted photometric variation and focuson body re ectance changesonly.

3.6 Conclusions

In this chapter we proposed a set of quasi-invariant derivatives. These derivative
Iters are combined with derivative-basedfeature detectors to perform photometric
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Figure 3.6: (a), (e) Input images. Corner detection basel on (b) RGB gradient (fy),
(c) normalized RGB, (d) shadow-shadingquasi-invariant (Sg), (f) RGB gradient
(fx), (9) hue full invariant (hy), and (h) shadow-shadingguasi-invariant (Hg) (see
also color plate C.8).

invariant feature detection. Experiments show that they signi cantly outperform
feature detection basedon full invariants on both stability and discriminativ e power.



Chapter 4

Curv ature Estimation

In Orien ted Patterns
using Curvilinear Mo dels
applied to

Gradien t Vector Fields

4.1 Intro duction

Reliable estimation of local features in digitized imagesis of great importance for
many image processingtasks (segmettation, analysis, and classi cation). Depending
on the classof imagesunder investigation, knowledge of di erent featuresis desired.
One such class of imagesis de ned by Kass and Witkin [37] as oriented patterns:
patterns that exhibit a dominant local orientation. Examples are seismic, acoustic,
wood grain, interference patterns, and ngerprint images. Important features for
theseimagesare estimates of local anisotropy, orientation, curvature and scale.

The structure tensoryields a robust estimator for local orientation [7] [23] [37] [87]
basedon a local gradient vector eld. This estimator locally models the imagesas
translation invariant strokes. In addition to orientation estimation this method also
yields an anisotropy measureindicating the resenblance of the local areato a trans-
lation invariant model. This measurecan also be interpreted asa con dence measure
of the estimated orientation. Both a lack of smoothness(e.g. causedby noise) and
deviations from the translation invariant model (e.g. curved oriented patterns) are
responsible for a decreaseof this con dence measure. To distinguish betweenthe two

This research has been performed in the Pattern Recognition Group at the Faculty of Applied
Sciences of the Delft University of Technology and has been Published in IEEE Transactions on
Pattern Analysis and Machine Intel ligence [79]
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possiblecauses,we proposeda parabolic transformation, which optimizes the trans-
lation invariance after transformation [90]. This method yields a curvature estimate
for curved oriented patterns as a by-product. A shortcoming of this method is that
the proposedtransformation is not orthonormal and therefore it lacks consenation
of gradient energy This does not allow direct comparison of the con dence values
of dierent transformations. In this paper we proposea method to investigate the
resenblance of a local pattern of 2-D oriented pattern to a certain model function
(e.g. circular, parabolic). The model is represened by a parameterized transfor-
mation function of the isophotes. The method assuresthe consenation of gradiert
energy allowing usto compare con dence measuresof di erent transformations, and
especially of a parameterized transformation for di erent parameter values. Like in
[90], solving the parameter for best con dence yields a closed-form estimate of the
additional free parameter, e.g. local curvature. We proposetwo curvilinear models, a
parabolic and a circular model, for the characterization of curved oriented patterns.
When the resenblance betweena model and a local image s high, the corresponding
model parameters, orientation and curvature, yield a reliable description of the local
image. The method yields featureswith a corresponding con dence value. All these
estimatesare local and can be represenied as feature maps.

Estimation of the curvature in oriented patterns is not trivial. Worring [94] pre-
serted an extensive comparison between curvature estimators applied to segmered
data for which the position and ordering of points along the contour have to be known.
For noisy oriented patterns segmemation fails, making these methods useless. The
isophotes (tangential) curvature (the secondderivative along the isophotesdivided
by the gradient magnitude) is segmemation-free [86][89], but also fails on these im-
ages. There are three reasonsfor this [90]: a) the gradient is zero on ridges and in
valleys; b) Increasingthe regularization scaleof directional derivativessuppresseshe
oriented pattern and reducesthe signal-to-noiseratio; c) opposite sidesof a ridge (or
valley) yield curvatures of opposite sign, which cancelout after averaging. The only
two methods which do yield a curvature estimate for oriented patterns are either very
computationally demanding [83] or are not accompaniedby a con dence measure,
which makesthem hard to rely on [88].

The proposedmethod resenblesa method for the detection of complexsymmetries
as preseried by Bign [6][7][24]. He characterizessymmetries by (coordinate-) trans-
formation functions, which transform symmetric patterns into translation invariant
patterns. The succesof suc a transformation is determined by the con dence mea-
sure of the structure tensor applied to the transformed image. A high con dence
value is an indicator for the presenceof the corresponding symmetry. Bign's method
is an extension of the generalizedHough transform. Detection of a symmetry pat-
tern involvesaccunulation of evidenceby voting. Bign's symmetry detector requires
two orthonormal transformation functions. It measuresthe resenblance of the local
dierential eld to two perpendicular dierential elds (indicating the symmetry),
whereasour method looks at the resenblance of the local dierential eld to only
onedierential eld (represening the shape of the isophotes). This di erence allows
us to estimate model parameters by optimizing the resenblance betweenthe actual
di erential eld and a model di erential eld in a closed-formsolution, i.e., omitting
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a time consuming voting scheme. This is not possible with the symmetry method
since neither one of the two di erential elds is preferred. The requiremert for two
orthonormal transformation functions posesan unnecessarylimitation to the sym-
metries. For example, such a set of functions doesnot exist for the parabolic model
we propose,i.e. parabolic isophotesalong a linearly increasing symmetry axis. We
extend his method by noting that only the existenceof the di erential elds of the
two transformation functions is essetial.

4.2 Oriented Patterns

A oriented pattern m (x; y) can be written as a real one dimensional function g of a
model function u

m(x;y) = g(u(xy;a)): (4.1)

The model function u (x; y; a) describesthe shape of the isophotesand a contains local
isophotes parameters such as orientation and curvature. Consequetly, the gradiert
(dierential eld) of m
_ dg

rms= dur u 4.2)
is a g—g weighted version of the gradient of u. In oriented patterns we distinguish
betweentwo perpendicular orientations; along the isophotes(tangent), and along the
gradient. Note that orientation is de ned on the interval [0; i. Consequetly, vectors
in opposite directions have the sameorientation.

Consider the function f (x;y) represening a local image (window) and a model
function u(x;y;a). It is of interest to what extent f (x;y) is described by the model
function u (x; y;a). This is measuredby decomposingthe derivative energyof f (X; y)
into two cortributions, one parallel and one perpendicular to the normalized di er-
ertial eld of u(x;y;a). This resultsin the following energies

RR 2
Ef (a) = rf e dxdy

(4.3)

RR 2
E/(a) = rf (Izrulfgﬁ dx dy

where Ef (a) denotesthe t energyand E, (a) the residual energy The subscript ?
indicates a rotation of 90 of the vector and the integrals represen the averaging over
the local image. A quality measureof the t canbefound by comparingthe t energy
with the residual energy Since no a-priori knowledge exists to interpret the energy
di erence betweenthe t and the residual energy we normalize the di erence with
the total gradient energyto obtain the following quality measurec(a)

_E(@ E (@ .
c(a) = m 1 ¢ L (4.4)

The value of c(a) varies from 1 for a pattern of which the isophotes are exactly
perpendicular to those of the model function u(x;y;a) and +1 for a pattern which



38 Chapter 4. Curv ature Estimation in Orien ted Patterns Using Curvilinear Mo dels

is exactly described by the model function. The isotropic noise energyis distributed
equally betweenthe t and the residual energy

More important than the quality measurefor an arbitrary a is to know which a
maximizes the quality function c, i.e. maximizesE; and minimizes E,. The vector
a cortains model parameterswhich describe local features. Therefore optimizing the
con dence function ¢ corresponds to feature estimation. Furthermore, the quality
measurec(a) informs us about the succesf the t and can be seenasa con dence
measureof the estimated features. Besidescomparing con dence measuref the same
model function, it is also possibleto compare con dence measuresof di erent model
functions. Note that the normalization of the con dence measuresis independen of
the model function. By comparing optimized con dence functions of various models
onecan nd out which model describesthe local pattern best.

Usually the complexity of the con dence function does not allow a closed-form
solution of the optimization criterion. The straight model is an exception. In the
caseof curvilinear models, we avoid costly (iterativ e) optimization procedures by
consideringapproximate con dence functions, which do allow closed-formsolutions.

4.3 Straigh t-Orien ted Patterns

Locally, many oriented patterns can be characterized by a straight model. For such
a pattern the model function u (x; y;a) is given by

u(x;y; )= xcos + ysin (4.5)

with  the orientation perpendicular to the model isophotes. Substituting this in Eq.
(3) yields

Er()=1 f2+1f2

+3 f2 2 cos2 + 12f,f,sin2: (4.6)

A bar (:) denotesan averagedquantity and will from now on replace the integrals
responsible for averaging over a local image. The con dence valuec( ) is

1 i
— 2 2 -
c()= 7+ _y2 fg fy cos2 + 2f,f sin2 4.7)

—

c( ) can be maximized as a function of the orientation . This yields the following
(gradient-based) orientation estimator[8][23] [37][87]

2f  f
opt = % arctan ﬁ (4.8)
X y
with con dence value c( opt)

— d2 4 _ £2 22 2,
c( opt) = 7 where d*=f2 2"+ 2f f " (4.9)
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This con dence measurecanalsobeinterpreted asa measurefor translation invariance
and shows an intuitiv e dependencyto the pattern orientation opt.

d? cog( opt) Sin* ( opt)

7 = 3¢( opt) (1+ cos(2( opt)))

(4.10)
The maximum of the con dence measurec( o) reducesdue to noisein the local
imagef . For alinear pattern p distorted by additiv e uncorrelated noisen (f = p+ n)

the con dence value c( opt) is

c()=

02 02 02 kr pk®

= = : (4.11)
kr k% kr p+r nk?  kr pk2 kr pk2+ kr nk?

c( opt) =

Note that the gradient noise energy is divided equally over E; and E,. Therefore
the numerator of ¢ is una ected by noise. Noise increasesthe total gradiert energy
(denominator of c), which lowers the con dence value c( opt). Another reasonfor a
lower con dence value is a deviation betweenthe local image and the model function.
For instance when curved lines occur, then curvature will cortribute to E,. In the
next sectionwe will extend the model to include curved patterns.

4.4 Curv ed Orien ted Patterns

We presert two model functions, which locally model curved oriented patterns. A
parabolic model

2 v (4.12)

u(xy;; )= 3w

and a conceriric circle model
q
uxy;; )= 2w2 + (1 v)2 (4.13)

in which is the curvature. The Gauge coordinates v; w are obtained by
V= XC0S + ysin W= Xsin +ycos: (4.14)

Here we discussthe parabolic approximation. For the circular approximation we refer
to appendix A. Using the parabolic model function and Eqg. (3) the following energies
are obtained

2w2f2 2w fufy+f2
Ef (, ): =~ W1+ 2W2W —
) _ 2w 242 w f fy, +f2 (4.15)
Er(, )_ 1+ 2w?2

wheref, and f,, arethe derivativesin respectively the v and w direction. Finding the
curvature and orientation that maximize the con dence function requiresa seard in
; -space.In this paper we shall not further investigate this method due to its high
computational demands. Instead we proposea way to approximate the con dence
function, allowing a fast closed-formsolution.
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An approximation to the orientation  can be obtained by looking at the axis of
minimal translation invariance for parabolic and circular patterns. In the caseof a
circular pattern this is the v-axis. For a parabolic pattern it dependson the curvature
and the window size used. For small curvatures (i.e. comparedto the window size)
the minimal translation invariant axis is equalto the v-axis. Increasingthe curvature
the axis of minimal translation invariance jumps to the w-axis. Therefore an approx-
imation of the orientation neededto determine the v and w-axesin the Eq. (15) can
be computedwith Eq. (8). After substituting the orientation, the resulting equations
only depend on the curvature. Iterative maximization of the con dence function in

-spaceis still time-consuming. We proposeto approximate this maximum by using
locally adapted weighting. The weighting function of E; and E; (denoted by the bar
() ) isonits turn weighted by 1+ 2w?2 after which we normalize for this weighting.
This mathematical trick has a high resenblance to normalized corvolution [39]. It
results in

2Ww2f2 2 wWlgfy+f2
éf( ) - —W1+ 2W72 _V (4 16)
£ 2w2f2+2 wiyfy+f2 . )
r( )_ 1+ 2w2 .

A hat (*) above a quartit y indicates an approximation. Sincethe t energyE: might
be a function of the coordinate w, asis the adapted weighting function, optimization
lead to a false curvature estimate. Therefore minimization of the residual energy E,
is usedto nd the following closed-formcurvature estimate

r

— . __ 2

4w? wafV2+ w2f2+ w2 f2

A= _ : (4.17)
2w? wf,f,

The con dence measurecan now be computed in two di erent ways. The con dence
measurec(; ) hasits maximum at ( op; opt). TO avoid an iterative seard for
this optimum one can compute ¢(” 7) by substituting " and ” in Egs (15) and (4).
Note that estimates " and ~ do not have to be equal to the valuesof and that
optimize the con dence function. Howewver, computing c(’;\ N) is still expensive. A
signi cant speed-upcan be obtained by approximating the con dence measureusing
the approximate energiesof Eq. (16).

_E G ) BEG

GO E YR C

(4.18)

Again, one can avoid an iterativ e seard by substituting “and ” in Eq. (18), which
yield C(';\ M). The curvature estimator in Eq. (17) is the tangertial or isophote cur-
vature. The normal (or gradient ow line) curvature can be computed by exdchanging
the v and w coordinates in Eqgs (12) and (13).



4.5. Implemen tation 41

4.5 Implemen tation

Direct computation of the curvature and the con dence measureis a space-ariant op-
eration. This yields a high computational demand. Fortunately, Eqs (16) to (18) can
be calculatedwith global corvolutions, which canbe implemented by multiplication in
the Fourier-domain. This yields a substartial reduction in computational complexity.
The derivativesf, and f, are implemerted as regularized derivative lters.

@(xy; g)
@

with f~the Fourier transform of f and g(x;y; ) a Gaussianregularization function
of scale 4

fx f00Y) $ ity ety o (4.19)

1 - 1

90X Y; o) = 5 e *IE 08 o1ty g=e 205 G (4.20)
g

The terms of the curvature estimator and the con dence measure,Eqs (16)-(17) , are

expandedin Appendix B (the circular model is treated in appendix A). The remaining

terms xPydf [f > are corveniertly calculated as multiplications in the Fourier domain

XPYITLTs = u(pig o) fLFSS w(pig o)F fLF5 (4.21)

For the window function we choosea Gaussianof scale ,. The Fourier transform of
the lter uis

+agl 1 -
UG W) XYy 2)S s o 08 %.Qxég, 2). (4.22)

Due to the high frequency character of oriented patterns 4 should be kept small, i.e.
tuned to the frequency characteristics of the cross-sectiorof a line. Noise suppression
is accomplishedby averaging all terms by Gaussianwindow (size ), i.e. the sizeof
the curvilinear model.

4.6 Experiments

In this sectionthe proposedalgorithms are tested on synthetic and real-world images.
The feature extraction, which we presened, is basedupon nding a maximum of
the con dence measurein parameter spacec(a). The curvature of oriented patterns
correspondsto the position of the maximum in ¢c(; ). To avoid searding ; -space
the approximations " and » are proposed. With these an approximated con dence
measure€¢ and the exact con dence measurec may be computed. The goal of the
experimerts is to investigatethe performanceof theseapproximations asa function of
the curvature. Also the robustnesswith respect to the noiseis chedked. The tests are

performed on a concertric circle imagef (x;y) = sin = x2+ y2+ ' + n (seeFig. 1)
inwhichn=N 0, 2 and' a phase-termsetrandomly for every noise-realization.
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Figure 4.1: Con dence measure ¢(? 7) of circular, paratolic, and straight line models
on a noise-free pattern of concentric circles.

For the signal-to-noiseratio we use SNR = 10log h? 2 where h is the contrast
dierence and | the standard deviation of the noise. Be aware that the proposed
algorithms are basedon the gradient energy of the local image. Thus an increaseof
the pattern frequencywill usually result in a higher SNR (gradient energyvs. ltered

noisevariance) and therefore a better performance. All experiments on the conceriric
circle image are basedon 100 measuremers. Unlessmertioned otherwise the sigma
sizesare 4= 1:.0and , = 50.

46.1 Condence measure as selection criterion

The importance of choosing the right model is illustrated in Fig. 1, which shows
the con dence measuresof the circular, parabolic and the straight model applied
to a noise-freepattern of conceriric circles. It is clear that for high curvatures the
deviation of the straight and the parabolic model form the circle pattern resultsin a
signi cantly lower value of the con dence measure.

46.2 Bias of the Actual Condence Measure

To investigateto what extert the optimum of the con dence function in ; -spaceis
found, we compare the average con dence measureof the circular model applied to
curved patterns with the average con dence measureof a straight model applied to
straight pattern. Both imageshave identical signal-to-noiseratios. The con dence
measurec(; ) of a curvilinear model can be slightly higher than the con dence
measure of a straight model. This slight increaseis causedby the fact that the
curved model allows for two parametersto adjust to the noise.

The averagecon dence measurec(” ) of the circular model applied to the con-
certric circles is depicted in Fig. 2 for three SNR's (20dB, 10dB, 6dB). It clearly
shaws that for small radii the averagecon dence measurec(';\ N) decreases.This is
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causedby an increasing discrepancy between the approximated (% ~) and the opti-
mal ( opt; opt) for small radii. Note, ¢( opt; opt) doesnot decreasefor small radii.
Fig. 2b indicates the variation around the averagecon dence measurefor the straight
model. Increasingthe window size (local image) reducesthe variation in exchange of
a further decreaseof c(’;\ ~N) for small radii.

4.6.3 Appro ximation Error of the Condence Measure

In section 4 we preseried two methods for computing the con dence measure,the
actual con dence measurec(” 7) and an approximation &> 7). In Fig. 3 the rms
(root-mean-square)error due to this approximation is depicted for the circular and
the parabolic model. For both modelstheseerrors are small. Only for high curvatures
(small radii) it may be worthwhile to compute the actual con dence measure.

4.6.4 Robustness of the Curv ature Estimator

It is important to test the robustnessof the curvature estimation. In Fig. 4, the
noisesensitivity of the parabolic and circular curvature estimators are depicted. Both
modelswereapplied to the conceriric circles. The coe cien t-of-variation (CV = [/ )
of both models are similar for the middle and high SNR's, but the parabolic models
performs better for low SNR's. Considering the advantage of the circular curvature
estimator due to the exact match betweenthe model and the pattern, we show that
parabolic curvature estimator su ers lessfrom the approximations. The parabolic

1 1.0
——————
pt v SNR =20 dB
2 ® 09
SNR=20 di g 09 g v
€ @
@ ~ 1)
2 e r SNR = 10 dB E s
-l 8
E 5
8 2
o \/ SNR =6 dB
>
©
0.6 ‘ : : : 0.6
0 20 40 60 80 100 0 01 02 03
SNR=6 dB radius of curvature probability distribution

(a) (b)

Figure 4.2: (a) Averagecon dence measure c(’;\ ~) for the circular model as a function
of the radius for three dier ent SNRs (top to bottom: 20 dB, 10 dB, 6 dB). The
measure c(’;‘ M) yields a small bias for small radii. The horizontal lines indicate the
average con dence measure for the straight-line model for the correspnding SNR.
(b) Probability density functions of the con dence measures for the straight-oriented
patterns for the three di er ent SNRs (top to bottom: 20 dB, 10 dB, 6 dB).
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Figure 4.3: Rms error between the actual con dence measure and its approximation
as a functioin of the radius. (a) Approximate paralolic model applied to concentric
circle pattern of various SNR (top-to-bottom: 6dB, 10 dB, 20 dB). (b) Approximate
circular model applied to concentric circle patterns of various SNR (top-to-bottom:
6dB, 10 dB, 20 dB).

curvature estimator performs at least as well over a wide range of curvatures. Only
for high curvatures the circular model can take advantage of the exact match. In
practice, one can compute the curvature corresponding to both models. The one
with the highest con dence measureis preferred becauseits model yields a better
description of the data.

4.6.5 Application of Curvilinear Mo dels to Real-W orld Data Sets

In Fig. 5 an interference pattern, together with the curvature and con dence esti-
mation for both the parabolic and circular model, is depicted. As expected, the
parabolic model fails in the middle of the ellipses as indicated by an abrupt drop
of the con dence measure. The circular con dence measurehardly decreasedor the
circlesat the top and the bottom of the image. For the atter ellipseson the left and
the right the mismatch betweenthe model and the pattern is slightly larger. In the
di erence image betweenthe circular and parabolic con dence measures the lighter
areasindicate a better description of the circular model whereasin the darker areas
the parabolic model yields a better t. The slightly darker lines denote an almost
perfect parabolic line pattern.

The estimated local curvature of a ngerprint and a CT cross-sectionof a tree-
trunk are depicted in Fig. 6. Both curvilinear models produced similar results. The
dark lines in the logarithmically stretched curvature imagesdenote locally straight
patterns. Both peaksin the ngerprin ts curvature correspond to important minutia
for ngerprin t recognition [35] [49]. The curvature estimation can be usedto improve
(to prevert jumping the rails) the ridge tracking [35], which is already basedon orien-
tation estimation. The high con dence measures(white areasin con dence images)
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Figure 4.4: Curvature estimators using curvilinear models: black line = paratolic
model, gray line = circular model. (a), (b) and (c) Coe cicient-of-variation (CV) for
the paratolic and circular model-tased curvature estimators for di er ent SNR (20 dB,
10 dB, 6 dB). (d) Bias of paralolic and circular model based curvature estimators
(SNR = 10 dB) (thick gray line indicates the noise-free bias of curvature using the
paralolic model).

indicate a perfect t of the model and a reliable curvature estimate.

4.7 Conclusions

In this paper we present a method to comparea local image with a model function.

A quality measureindicates the resenblance betweenthe local image and the model
function. Feature extraction is obtained by optimization of the quality function asa
function of the parameters,which represen the feature. The quality function is inter-

preted asa con dence measurefor the measuredfeatures. We proposetwo curvilinear

modelsto describe curved oriented patterns. To avoid seardiing ; -spacewe propose
closed-form solution for approximations to the actual parameters of the curvilinear
models " and *. Instead of the exact con dence measurec(’;\ ) an approximation

&(* 7) can be computed resulting in a huge reduction in computational demand. We
demonstrate that these approximations yield good results for almost all curvatures.
Only for the highest curvatures one might decideto compute c(’;\ A) , or (even more
computationally demanding) to iterate in ; -spacefor ¢( opt; opt)-
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Figure 4.5: (a) Interference pattern of vibrating plate. The superimposed circle denotes
the size of the curvilinear model. (b) and (c) Con dence measures for, respectively,

the circular and paratolic model (range [0; 1]) computed with ¢ = 1.0 and , =

5:0. (d) Dier encein con dence measure between circular and paralolic model (range
[ 0:50:5]). (e),(f) Estimated curvatures” for respectively the circular and paratolic
model (log stretchal).

4.8 App endix A

q
For a concertric circle model, u(x;y; ; )= 2w2+ (1 v)?,the t and residual
energiesare
— 22 2w (1 v )fyfy+ 2w2f2
Ef ( ) - @ _v)r, 7 VITYY W
T v)Z+ 2w
E _ @ v)fz+2w (1 v )Ffyfu+ 2w2f2 (4-23)
r ( ) - T v)Z+ 2w?

To obtain a closed-form solution for the curvature and the con dence measure,the
local energiesare computedinsidea  2w?+ (1 v )? -weighted space-ariant win-
dow. This yields

B o= Z(vafZz+2vwi fy+w2f2)+2 (CviZ wiyfw)+fZ A 2408 +C

f 1 2 v+ 2(vZ+w?) 1+D 2 424
- 2(vZi2 2vwl,fy +w2f2)+2 ( viZ+wi fy)+f2 £ 2.0F 4+ (4.24)
r— 1+D 2

1 2 v+ 2(vZ+w?)
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Figure 4.6: (a) Fingerprint image. (b) CT image of trunk. (c),(d) The estimated
curvature ” using paratolic model (log stretch) at ¢ = 1:0and , = 5:0. (e) and (f)

The con dence measure of the paratolic model (range[0; 1]).

with v = 0. The minimization of the residual energy yields an approximation of the

curvature q

E GD 4F2D + ( E + GD)?
2FD '

N —

The terms of E; and E, are expandedwith Eq. (14) and

fy = fycos + fysin fw= fyxsin +fycos:

This results in

S A= x2f2+ 2xyfyfy + y2f2

% B=  xfZ+yff, cos xfyf, +yfZ2 sin
C=1fZco¢ + 2f,f,cos sin + f2Zsin?
D=22
E=x2fg 2xyfyfy +y2f2

§F= yixf, xf2 cos + xff, yfZ sin
G

y
cog 2f«fy cos sin + f2sin?

(4.25)

(4.26)

(4.27)
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The averagedterms can be computed as global corvolutions (see section on Imple-
mentation). The approximated con dence function is computed with

2(A E)+2 (B F)+(C G).
2(A+E)+2 (B+F)+ (C+G)’

(4.28)

4.9 App endix B

The terms for the parabolic con dence measure(Eqg (16)) and curvature estimator
(Eq. (17)) are
8

+y2f,fy co$ sin + x2f2+ Axyf,f, + y2f2 cog sin®

xyf2Z cos sin® + x2fZsin® + y2f Zcod

wifZ= 2 xyfZ y2f,f, co$ sin + xZf2 dxyf,f, +y2fZ cog sin?
+2 x2ffy,  2xyf2 cos sin® +x2fZsin® + y2fZcod
wfyfy = yfifycos +  xf,f, W cog sin
+ W yfxf, cos sin® + xf,f, sin®
w2 =

DN

I (4.29)
for f2 and f 2 seeterm C and G in appendix A.



Chapter 5

Robust Photometric Invariant
Features from the Color
Tensor

5.1 Intro duction

Di eren tial-based features such as edges,corners, and saliert points, are used abun-
dantly in a variety of applications such as matching, object recognition, and object
tracking [26], [64], [67]. We distinguish betweenfeature detection and feature extrac-
tion. Feature detection aimsat nding the position of featuresin the images,whereas
for feature extraction, a position in the imagesis described by a set of features, which
characterize the local neighborhood. Although the majority of imagesis recordedin
color format nowadays, computer vision researd is still mostly restricted restricted to
luminance-basedfeature detection and extraction. In this chapter we focus on color
information to detect and extract features.

In the basicapproach to colorimagesthe gradient is computed from the derivatives
of the separate channels. The derivatives of a single edge can point in opposing
directions for the separatechannels. DiZenzo [11] arguesthat a simple summation of
the derivativesignoresthe correlation betweenthe channels. This also happens by
corverting the colorimageto luminancevalues. In the caseof isoluminanceof adjacert
color regionsit will lead to cancellation of the edge. As a solution to the opposing
vector problem, DiZenzo proposesthe color tensor for color gradient computation.

The sameproblem as occurs for color image derivatives, exists for oriented pat-
terns (e.g. ngerprin t images). Due to the high frequencynature of oriented patterns
opposing derivative vectors occur in a small neighborhood. The samesolution which
was found for color image features, is usedto compute featuresfor oriented patterns.
Kassand Witkin [37] derived orientation estimation from the structure tensor. Adap-
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tations of the tensorleadto a variety of features, such ascircle detectorsand curvature
estimation [6], [8], [24], [79]. Lee and Medioni [44] apply the structure tensor within
the context of perceptual grouping.

A stepforward in the understanding of color imageswas made by the dichromatic
re ection model by Shafer[66]. The model describeshow photometric changes,such
as shadavs and specularities, a ect the RGB-values. On the basis of this model,
others provided algorithms invariant to various photometric events suc as shadovs
and specularities [17], [38]. The extensionto di erential photometric invariance was
investigated by Geusebrek et al. [16]. In chapter 3 we introduced the photometric
quasi-invariants which are a set of photometric invariant derivativeswith better noise
and stability characteristics comparedto existing photometric invariants. Combining
photometric quasi-invariants with derivative basedfeature detectorsleadsto features
which canidentify various physical causese.g. shadov cornersand object corners. A
drawbadk of the quasi-invariants is that they canonly be applied for feature detection.
In the caseof feature extraction, where the values of multiple frames are compared,
full invariance is necessary

We proposea framework to combine the di erential based-featureswith the pho-
tometric invariance theory. The framework is designedaccording to the following
criteria: 1. features must target the photometric variation neededfor their applica-
tion. To achieve that accidertal physical everts, such as shadavs and specularities,
will not in uence results. 2. featuresmust be robust againstnoiseand should not con-
tain instabilities. Especially for the photometric invariant featuresinstabilities must
be dissolwed. 3. physically meaningful features should be independert of the acciden-
tal choice of the color coordinate frame. Next to satisfying the criteria the framework
should alsobe generally applicable to existing features. To meetthesecriteria we start
from the obsenation that tensorsare well-suited to combine rst order derivativesfor
color images. The rst cortribution is a novel framework that combinestensor-based
featureswith photometric derivativesfor photometric invariant feature detection and
extraction. The secondcortribution is that for feature extraction applications, for
which quasi-invariants are unsuited, we proposea new uncertainty measurewhich ro-
busti es the feature extraction. The third cortribution is that the proposedfeatures
are proven to be invariant with respect to color coordinate transformations.

The chapter is organizedasfollows. In section2, the prerequisitesfor color feature
detection from tensorsare discussed.In section3, an uncertainty measureis proposed.
Basedon this uncertainty measurerobust photometric feature extraction is derived.
In section 4, a overview of tensor-basedfeaturesis given. Section 5, provides se\eral
experiments and section 6 cortains the concluding remarks.

5.2 Tensor-Based Features for Color Images

The extension of di eren tial-based operations to color imagescan be donein various
ways. The main challengeto color feature detection is how to transform the 3D-color
di erential structure to arepresenation of the presenceof a feature. In this sectionwe
ensurethat the transformation agreeswith the criteria mentioned in the intro duction.
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(b)

Figure 5.1: (a) The subspce of measured light in the Hilbert space of possible spec-
tra. (b) The RGB coordinate systemand an alternative orthonormal color coordinate
systemwhich spans the same subspce (see also color plate C.9).

In section 5.2.1 the invariance with respect to color coordinate transformation is
discussed.In section5.2.2the transformation is written in tensor mathematics which
links it with a set of tensor based features, thereby ensuring generality. In section
5.2.3the photometric invariance of the transformation is discussed.

5.2.1 Invariance to Color Coordinate Transformations

From a physical point of view only featuresmake sensewhich are invariant to rotation
of the coordinate axes. This starting point has beenapplied in the designof image
geometry features, resulting in, for example, gradient and Laplace operators [14]. For
the designof physically meaningful color featuresnot only the invariance with respect
to spatial coordinate changesis desired but also the invariance with respect to color
coordinate systemsrotations. Featuresbasedon di erent measuremeh deviceswhich
measurethe samespectral spaceshould yield the sameresults.

For color images, values are represenied in the RGB coordinate system. In fact,
the in nite-dimensional Hilb ert spaceis sampledwith three probeswhich results in
the red, greenand blue channels (seeFig. 5.1). For operations on the color coordi-
nate systemto be physically meaningful they should be independert of orthonormal
transformation of the three axesin Hilbert space. An example of an orthonormal
color coordinate system is the opponert color space(seeFig. 5.1b). The opponert
color spacespansthe samesubspaceas the subspacede ned by the RGB -axesand
henceboth subspacesshould yield the samefeatures.

5.2.2 The Color Tensor

Simply summing di erential structure of various color channels may result in can-
cellation even when evidert structure exists in the image [11]. Rather than adding
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the direction information (de ned on [0;2 i) of the channels,it is more appropriate
to sum the orientation information (de ned on [0; i). Sud a method is provided
by tensor mathematics for which vectorsin opposite directions reinforce one another.
Tensorsdescribe the local orientation rather than the direction. More precisely the
tensor of a vector and its 180 rotated courterpart vector are equal. It is for that
reasonthat we usethe tensor as a basisfor color feature detection.

Given an imagef , the structure tensor is given by [8]

_f2 ff, .
G = Foll (5.1)

wherethe subscripts indicate spatial derivativesand the bar (:) indicates convolution
with a Gaussian Iter. Note that there are two scalesinvolved in the computation
of the structure tensor. Firstly, the scale at which the derivatives are computed
and secondlythe tensor-scalewhich is the scaleat which the spatial derivatives are
averaged. The structure tensor describesthe local di eren tial structure of images,and
is suited to nd featuressud as edgesand corners[6], [11], [24]. For a multichannel

imagef = f1;f2; 6" T the structure tensor is given by

—h

x B fx fy

G =
y Ix Ty fy

(5.2)

—h

In the casethat f = (R;G;B), Eq. 5.2 is the color tensor. For derivativeswhich are
accompaniedwith a weighting function, wy and wy, which appoint a weight to every
measuremen in f, and fy, the structure tensor is de ned by

1
Wff_xfx wy wy fy fy
_ w2 Wx Wy X .
G= %) Wiy, T Wil fy - (5.3)
W, Wy W2

y

In section5.2.1, we discussedthat physically meaningful features should be invariant
with respect to rotation of the color coordinates axes. The elemerts of the tensor are
known to be invariant under rotation and translation of the spatial axes. To prove
the invariant, we usethe fact that @@Rf = Rf 4, whereR is a rotation operator,

(Rf )" Rfy = fTRTRf, = I f,: (5.4)
y X y x 'y

where we have rewritten the inner product accordingto f f = fTf

5.2.3 Photometric Invariant Deriv ativ es

A good motivation for using color imagesis that photometric information can be
exploited to understand the physical nature of features. For example, pixels can be
classi ed asbeing from the samecolor but having di erent intensitieswhich is possibly
causedby a shadow or shadingchangein the image. Further, pixelsdi erences canalso
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indicate specular re ection. For many applications it is important to distinguish the
sceneincidental information from material edges. When color imagesare corverted
to luminance this photometric information is lost [18].

The incorporation of photometric invariance in Eq. 5.2 can be obtained by using
invariant derivativesto compute the structure tensor. In chapter 3 we derive pho-
tometric quasi-invariant derivatives and full invariant derivatives. Quasi-invariants
dier from full invariants by the fact that they are variant with respect to a physical
parameter. Full invariants can be computed from quasi-invariants by the normaliza-
tion with a signal dependert scalar. The quasi-invariants have the advantage that
they do not exhibit the instabilities commonto full photometric invariants. However
the applicability of the quasi-invariants is restricted to photometric invariant feature
detection. For feature extraction full photometric invariance is desired.

The dichromatic model divides the re ection in the interface (specular) and body
(diuse) re ection componert for optically inhomogeneousnaterials [66]. We assume
white illumination, i.e. smooth spectrum of nearly equal energy at all wavelengths,
and neutral interface re ection. For the validity of the photometric assumptionssee
[16], [66]. The RGB vector, f = (R;G;B)", can be seenas a weighted summation of
two vectors,

f = e(mPc®+ m'c); (5.5)

in which c® is the color of the body re ectance, ¢' the color of the interface re ectance
(i.e. specularities or highlights), mP and m' are scalarsrepresering the corresponding
magnitudes of re ection and e is the intensity of the light source. For matte surfaces
there is no interface re ection and the model further simpli es to

f = em’c®: (5.6)

The photometric derivative structure of the image can be computed by computing
the spatial derivative of Eq. 5.5

f, = em’c® + (gmP+ emP)cP+ em! + eem' c': (5.7)

The spatial derivative is a summation of three weighted vectors, successiely caused
by body re ectance, shading-shadav and specular changes. From Eq. 5.6 it follows
that for matte surfacesthe shadav-shading direction is parallel to the RGB vector,
fiico. The specular direction follows from the assumptionthat the color of the light
sourceis known.

For matte surfaces(i.e. m' = 0), the projection of the spatial derivative on the
shadov-shading axis yields the shadav-shading variant containing all energy which
could be explained by changesdueto shadav and shading. Subtraction of the shadaw-
shading variant Sy from the total derivative fy results in the shadav-shading quasi-
invariant:

Sx
Sx

fu £ f= em® 2 f + gmP+em? b f

(5.8)
fk, Sx=emb c®& o f ¢
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which doesnot corntain derivative energy causedby shadavs and shading. The hat,
(™, denotesunit vectors. The full shadav-shading invariant results from normalizing
the quasi-invariant S¢ by the intensity magnitude jf]

b
_ Sy _ em b b4 .

T T embjey > &

(5.9)

which is invariant for m®.

For the construction of the shadav-shading-sgecular quasi-invariant, we intro-
duce the hue-direction which is perpendicular to the light sourcedirection ¢' and the
shadaw-shading direction f:

f oo
= —— 5.10
o (5.10)
Projection of the derivative, fy, on the hue direction results in the shadav-shading-
specular quasi-invariant:

HS= f, 6 b=em® ¢ B + emP+em? c° b : (5.11)

The secondpart of this equation is zero if we assumethat shadawv-shading changes
do not occur within a specularity, sincethen eitner emP+em? =0or c® b =

(f b) = 0. Subtraction of the quasi-invariant H ¢ from the spatial derivative f results
in the shadawv-shading-specular variant Hy:

Hy=1fx HY: (5.12)

The full shadav-shading invariant is computed by dividing the quasi-invariant by
the saturation. The saturation is equal to the norm of the color-vector, f, after the
projection on the plane perpendicular to the light sourcedirection (which is equal to
subtraction of the part in the light sourcedirection)

HS emP® b

= c® B (5.13)

"= o] enPije (&P €) 0]

The expressionh, is invariant for both m' and m®.

By projecting the local spatial derivative on three photometric axis in the RGB
cube we have derived the photometric quasi-invariants. These can be combined with
the structure tensor of Eq. 5.18 for photometric quasi-invariant feature detection. As
discussedin section5.2.1 we would like featuresto be independert of the accidertal
choice of the color coordinate frame. As a consequencea rotation of the color co-
ordinates should result in the samerotation of the quasi-invariant derivatives. For
example, for the shadon-shading quasi-variant Sy this can be proven by

Rf 'Rt RFf = £fRTR? RFf =R /f f=RS,: (5.14)

Similar proofs hold for the other photometric variants and quasi-invariants. The
invariance with respect to color coordinate transformation of the shadow-shading full
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invariants follow from the fact that jRf j = jfj. For the shadav-shading-specular full-
invariant, the invariance is proven by the fact that the inner product between two
vectors remains the same under rotations, and therefore Rf Rf Re¢' R¢' =
R f f ¢ € . Sincethe elemers of the structure tensor are also invariant for
color coordinate transformations (seekEq 5.4) the combination of the quasi-invariants
and the structure tensor into a quasi-invariant structure tensor is also invariant for
color coordinate transformations.

5.3 Robust Full Photometric Invariance

In section 5.2.3 the quasi- and full invariant derivatives are described. The quasi-
invariants outperform the full-in variants on discriminativ e power and are more robust
to noise (see chapter 3). Howevwer, the quasi-invariants are not suited for applica-
tions which require feature extraction. These applications compare the photometric
invariant values between various images and need full photometric invariance (see
Table 5.1). A disadvantage of full photometric invariants is that they are unstable in
certain areasof the RGB-cube. E.g. the invariants for shadav-shadingand speculari-
ties are unstable nearthe gray axis. Theseinstabilities greatly reducethe applicability
of the invariant derivativesfor which a small deviation of the original pixel color value
may result in a large deviation of the invariant derivative. In this section, we propose
a measurewhich describesthe uncertainty of the photometric invariant derivatives,
thereby allowing for robust full photometric invariant feature detection.

We will rst derive the uncertainty for the shadav-shading full invariant from its
relation to the quasi-invariant. We assumeadditive uncorrelated uniform Gaussian
noise. Due to the high-passnature of di erentiation we assumethe noise of the zero
order signal (jfj) to be negligible comparedto the noiseon the rst order signal (S3).
In section 5.2.3, the quasi-invariant has been derived by a linear projection of the
derivative fy on the plane perpendicular to the shadav-shading direction. Therefore,
uniform noisein fyx will result in uniform noisein SS. The noisein the full invariant
can be written as
_St U S :

jf] ifi o fi
The uncertainty of the measuremeh of s, dependson the magnitude of jfj. For small
jfj the error increasesproportionally. Therefore we proposeto weight the full shadow-
shadinginvariant with the function w = jfj to robustify the color tensor-basedon the
chromatic invariant. For shadawv-shading invariance examplesof the equations used
to compute the color tensor are given in Table 5.1.

For the shadov-shading-specular invariant, the weighting function should be pro-

portional with the saturation, since
Cc C
Her _Hey, (5.16)
IE) s 18

Sx

(5.15)

X:

This leadsus to proposew = jsj asthe weighting function of the hue derivative fy
seeFig. 5.2). On place where there is an edge, the saturation drops, and with the
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Table 5.1: Applicability of the di er ent invariants for feature detection and extraction.

saturation the certainty of the hue measuremen The quasi-invariant (seeFig. 5.2d),
which is equal to the weighted hue, is more stable than the full invariant derivative
due to the incorporation of the certainty in the measuremets. With the derived
weighting function we can compute the robust photometric invariant tensor (Eq. 5.3).

The uncertainties of the full-in variant by ways of error-propagation have alsobeen
investigated by Stokman and Gewers[19]. Our assumption of uniform noise in the
RGB channelstogether with the choice of invariants basedon orthogonal color space
transformations leadsto a simpli cation of the uncertainty measure. It alsoconnects
with the intuitiv e notion that the uncertainty of the hue is dependedon the saturation
and the uncertainty of the chromaticity (shadowv-shadinginvariant) with the intensity.

5.4 Color Tensor-Based Features

In this section we show the generality of the proposedmethod by summing features
which can be derived from the color tensor. In section 5.2.3 and in section 5.3 we
described how to compute invariant derivatives. Dependert on the task at hand
we proposedto use either quasi-invariants for detection or robust full invariants for
extraction. The featuresin this chapter will be derived for gx. By replacing the inner

(a) (b) (c) (d)

Figure 5.2: (a) test image (b) hue derivative (c) saturation (d) quasi-invariant (see
also color plate C.10).
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product of gx by one of the following

(

)
C C C C
fx fx; S§ sg;sL_ZSX;Hg Hg;HX_T_ZHX : (5.17)
fj jsj

—

the acquired photometric invariant featuresare attained. In section5.4.1we describe
features derived from the eigervalues of the tensor. In section 5.4.2 features which
are derived from an adapted version of the structure tensor and in section 5.4.3 we
describe color optical o w.

5.4.1 Eigenvalue-Based Features

Eigenvalue analysis of the tensor leadsto two eigervalueswhich are de ned by

q
O Ox+ 0y Oy + (O Ox Ty 0y)° + (20< Gy)°
q (5.18)

O Ox+ 0y 0y (0xOx Ty 0y)°+ (20< Gy)°

l:

N

N[

2:

The direction of ; indicates the prominent local orientation

20x Oy

= Zarctan ———X —
Ox Ox Oy Oy

(5.19)

The 's canbe conmbined to give the following local descriptors:
1+ » describesthe total local derivative energy
1 is the derivative energyin the most prominent direction.

1 2 describesthe line-energy (see[62]). The derivative energyin the promi-
nernt orientation is corrected for the energy cortributed by the noise ».

> describesthe amount of derivative energy perpendicular to the prominent
local orientation which is usedto selectfeaturesfor tracking [67].

An often applied feature detector is the Harris corner detector [27]. The color Harris
operator H can be written asa function of the eigervalues of the structure tensor

Hf =05 0x 0y 9y Ox gyz k(gx 9x + Ty QY)Z (5.20)
12 k(1t 2)%:

5.4.2 Adaptations of the Color Tensor

The sameequations as DiZenzo's equations for orientation estimation are found by
Kass and Witkin [37]. They studied orientation estimation for oriented patterns
(e.g. ngerprint images). Oriented patterns are de ned as patterns with a dominant
orientation everywhere. For oriented patterns other mathematics are neededthan
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for regular object images. The local structure of object imagesis described by a
step edge, whereasfor oriented patterns the local structure is described as a set
of lines (roof edges). Lines generate opposing vectors on a small scale. Hence for
geometric operations on oriented patterns, methods are neededfor which opposing
vectors enforce one another. This is the same problem as encourtered for all color
images,wherethe opposing vector problem doesnot only occur for oriented patterns,
but alsofor step edges,for which the opposing vectorsoccur in the di erent channels.
Hence similar equations were found in both elds. Next to orientation estimation,
a number of other estimators were proposed by oriented pattern researt [6], [24],
[79]. Theseoperation are basedon adaptations of the structure tensor and can also
be applied to the color tensor.

The structure tensor of Eq. 5.2 can also be seenas a local projection of the

derivative energy on two perpendicular axes, namely u; = 1 0 T and U, =
01 ',
Guitz = (GxyU1) (Gxyui) (GxyuUi) (GyyUz) (5.21)
(GxyU1) (GxyUuz) (GxyUz) (GxyUz)
in which Gy, = gx gy : From the Lie group of transformation sewral other

choices of perpendicular projections can be derived [6], [24]. They include feature
extraction for circle, spiral and star-like structures.
The star and circle detector is given as an example. It is basedon u; =

)(21+7yz Xy T which coincide with the derivative pattern of a circular patterns

and u, = p% y X " which denotesthe perpendicular vector eld which
x2+y

coincideswith the derivative pattern of starlike patterns. These vectors can be used

to compute the adapted structure tensor with Eq. 5.21. Only the elemens on the

diagonal have non zero ertries and are equal to

!

x2 2xy y?
X2+yzgx Ox + X2+yzgx gy + X2+yzgy gy 0

H = x2 2xy y?
0 iy Oy xzeyzOx Oy T x2yzOx Ox

: (5.22)

here ; describesthe amourt of derivative energy contributing to circular structures
and , the derivative energy which describes a starlike structure. Similar to the
proof given in Eq. 5.4 the elemers of Eq. 5.22 can be proven to be invariant under
transformations of the RGB -space.

Curvature is another feature which can be derived from an adaption of the struc-
ture tensor, asdiscussedn chapter 4. The t betweenthe local di erential structure
and a parabolic model function can be written asa function of the curvature. Finding
the optimum of this function yields an estimation of the local curvature. For vector
data the equation for the curvature is given by

r

- __ __ -2 __
w2gy v W? Oy Ow W2 Ow Ow W20y Qv+ 4w? Wgy ng
- 20 WG, O 629
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in which g, and g ,, are the derivativesin gaugecoordinates.

5.4.3 Color Optical Flow

Optical ow can also be computed from the structure tensor. This is originally pro-
posedby Simoncelli [68] and has beenextendedto color in [4], [21]. The vector of a
multi-c hannel point over time stays constart [31], [48]

dg _
dt

Di eren tiating yields the following set of equations

0: (5.24)

GyxyVv+0g =0 (5.25)

with v the optical ow. To solve the singularity problem and to robustify the opti-
cal ow computation we follow Simoncelli [68] and assumea constart ow within a
Gaussianwindow. Solving Eq. 5.25 leadsto the following optical ow equation

V=(Gxy Gxy) 'Gxy g, =M ‘b (5.26)
with
M= 9x O Ox Gy (5.27)
9y Ox Oy Qy
and
b= IO . (5.28)
Oy Ot

The assumption of color optical ow basedon RGB is that RGB pixel values
remain constart over time (see Eq. 5.24). A change of brightness introduced due
to a shadav, or a light sourcewith uctuating brightness such as the sun results
in non existert optical ow. This problem can be overcomeby assuming constart
chromaticity over time. For photometric invariant optical ow, full invariance is
necessarysince the optical ow estimation is basedupon comparing the (extracted)
edge response of multiple frames. Consequetly photometric invariant optical ow
can be attained by replacing the inner product of gx by one of the following

C C [ [
SX_SX ; H ﬂx : (5.29)
iti? o si®

5.5 Experiments

The experimerts test the featureson the required criteria of our framework: 1. pho-
tometric invariance, 2. robustness. The third criterium, i.e. invariance with respect
to color coordinate transformations, we have already proven theoretically. In this
sectionwe aim to demonstrate invariance by experiment and illustrate the generality
of the experiments by the variety of examples. For all experimerts the derivativesare
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Table 5.2: Percentage of falsely detected points and percentage of wrongly classi ed
points. Classi cation is basel on the extraction of invariant information. Uncorrelated
Gaussian noise is addal with standard deviation 5 and 20.

computed with a Gaussianderivative of = 1 and the color tensor scaleis computed
with = 3, exceptwhen mertioned otherwise. The experiments are performed using
a Sory 3CCD color cameraXC-003PR, Matrox Corona Frame-grabber, and two Osram
18 Watt \Lumilux deLuxe daylight" uorescent light sources.

5.5.1 Photometric Invariant Harris Point Detection

Robustnesswith respect to photometric changes,stability of the invariants, and ro-
bustnessto noise, are tested. Further the ability of invariants to detect and extract

(@) (b) ()

Figure 5.3: (a) An examplefrom Soil-47 image. (b) shadow-shadingdistortion with
the shadow-shadingquasi-invariant Harris points superimposed (c) specular distor-
tion and the shadow-shading-sgcular Harris points superimposeal (see also color plate
C.11).
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featuresis examined, seealso Table 5.1. The experimert is performedwith the photo-
metric invariant Harris corner detector (Eq. 5.20) and is executedon the Soil47 multi
object set [42], which comprisesof 23 images,seeFig. 5.3a.

First, the feature detection accuracy of the invariants is tested. For eat image
and invariant, the 20 most prominent Harris points are extracted. Next, Gaussian
uncorrelated noiseis added to the data, and the Harris point detection is computed
10 times per image. The percertage of points which do not correspond to the Harris
points in the noiselesscaseare given in Table 5.2. The Harris point detector based
on the quasi-invariant outperforms the alternatives. The instability within the full
invariant can be partially repaired by the robust full invariant, however for detection
purposesthe quasi-invariants remain the best choice.

Next, the feature extraction for the invariants is tested. Again the 20 most promi-
nent Harris points are detected in the noise free inﬁge. For these points the pho-
tometric invariant derivative energyis extracted by 1+ 2 2 n,,where 4 isan
estimation of the noisewhich cortributes to the energyin both ;1 and ,. To imitate
photometric variations of imageswe apply the following photometric distortion to the
images(compare with Eq. 5.5)

g(x)= (f )+ e+ (x); (5.30)

where (x) is a smooth function resenbling variation similar to shadingand shadav
eects, (x) is a smooth function which imitates specular re ections, and (x) is
Gaussiannoise. To test the shadav-shading extraction (x) is chosento vary be-
tweenO and 1, and (x) is 0. To test the shadav-shading-sgecular invariants  (x)
was chosenconstart at 0.7 and (x) varied betweenzeroand ft y. After the photo-
metric distortion the derivative energy is extracted at the sametwenty points. The
extraction is consideredcorrect if the deviation of the derivative energy betweenthe
distorted and the noise-freecaseis lessthen 10 percen. The results are given in
Table 5.2. Quasi-invariants which not suited for extraction have a hundred percert
error. The full invariants have better results but with worseningsignal-to-noiseratio
its performance drops drastically. In accordancewith the theory in section 5.3 the
robust full invariants successfullyimprove the performance.

5.5.2 Color Optical Flow

Robustnessof the full photometric invariance features is tested on photometric in-
variant optical ow estimation. The optical ow is estimated on a synthetical image
sequencewith constart optical ow. We use the robust full photometric structure
tensor for the estimation of optical ow and compareit with 'classical' photometric
optical ow asproposedby [21]. Derivativesare computed with a Gaussianderivative
of = 1and the color tensor scaleis = 5.

The shadav-shading photometric optical ow is tested on image with decreasing
intensity (seeFig. 5.4a) which is shifted one pixel per frame. Uncorrelated Gaussian
noisewith = 20is addedto the sequence.In Fig. 5.4b,cthe meanand the standard
deviation of the optical ow along the y-axis of Fig. 5.4a are depicted. Similarly
to the shadowv-shading-specular invariant optical ow is tested on a sequencewith
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Figure 5.4: (a),(d) framefrom test sequene with constant optical ow of one pixel per
frame. (b),(c) mean and relative standard deviation mean of the optical ow basel on
RGB (black line), shadow-shadinginvariant (blue line) and robust shadow-shading
invariant (red line). (e),(f) mean and relative standard deviation of the optical ow
basal on RGB (black line), shadow-shading-sgcular invariant (blue line) and robust
shadow-shading-sgeular invariant (red line) (see also color plate C.12).

increasing achromaticity along the axes (see Fig. 5.4d,e,f.). The results shav that
robust invariant methods (red lines) outperform the standard photometric optical ow
(blue lines). The gained robustnessbecomesapparert for the measuremets around
the instable region. Which are the black area for the shadav-shading invariant and
the achromatic, grey areafor the shadov-shading-sgecular invariant optical o w.

As an exampleof a real-world scene,multiple framesare taken from static objects
while the light sourceposition is changed. This results in a violation of the brightness

@) (b) (© (d)

Figure 5.5: (a) frame 1 of object seene with lter size superimposal on it. (b) RGB
gradient optical ow (c) shadow-shadingnvariant optical ow and (d) robustshadow-
shadinginvariant optical ow (see also color plate C.13).



5.5. Exp erimen ts 63

@) (b) (© (d) (e)

Figure 5.6: (a) input image with Canny edgedetection based on suaessively(b) lumi-
nance derivative (c) RGB derivatives (d) the shadow-shadingquasi-invariant (e) the
shadow-shading-sgcular quasi-invariant (see also color plate C.14).

constraint by changing shadingand moving shadavs. Sinceboth the cameraand the
objects did not move the ground truth optical o w is zero. The violation of the bright-
nessconstraint disturbs the optical ow estimation basedon the RGB (Fig. 5.5b).
The shadov-shading invariant optical ow estimation is much lessdisturbed by the
violation of the brightnessconstrain (Fig. 5.5¢). Howewer, the ow estimation is still
unstable around someof the edges.The robust shadov-shadinginvariant optical ow
hasthe best results and is only unstable in low-gradient area's (Fig. 5.5d).

5.5.3 Color Canny Edge Detection

We illustrate the use of eigervalue-basedfeatures by adapting the Canny edge de-
tection algorithm to allow for vectorial input data. The algorithm consists of the
following steps

1. Compute the spatial derivatives, fx, and combine them if desiredinto a quasi-
invariant (Eq. 5.8 or Eq. 5.11).

2. Compute the maximum eigervalue (Eg. 5.18) and its orientation (Eq. 5.19).
3. Apply non-maximum suppressionon ; in the prominent direction.

In Fig. 5.6 the results of color Canny edge detection for seweral photometric quasi-
invariants is shavn. The results shav that the luminance-basedCanny, Fig. 5.6b,
missesseweral edgeswhich are correctly found by the RGB -basedmethod , Fig. 5.6c¢.
Also the removal of spurious edgesby photometric invariance is demonstrated. In
Fig. 5.6d the edgedetection is robust to shadav and shading changesand only detects
material and specular edges.In Fig. 5.6eonly the material edgesare depicted.

5.5.4 Circular Object Detection

The use of photometric invariant orientation and curvature estimation is demon-
strated on a circle detection example. Other than the previous experiments these
imageshave beenrecordedby the Nikon Coolpix 950, a commercial digital cameraof
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(@) (b) (c)

Figure 5.7: (a) detected circles basal on luminance (b) detected circles based on
shadow-shading-sgcular quasi-invariant (¢) detected circlesbasel on shadow-shading-
specular quasi-invariant (see also color plate C.15).

averagequality. The imageshave size 267x200pixels with JPEG compression. The
digitization wasdonein 8 bits per color.

Circular object recognition is complicated due to shadawv, shading and specular

events which in uence the feature extraction. We apply the following algorithm for
circle detection

1. Compute the spatial derivatives, fyx, and combine them if desiredinto a quasi-

invariant (Eq. 5.8 or Eq. 5.11).

. Compute the local orientation, Eq. 5.19, and curvature, Eq. 5.23.

. Compute the hough space[3], H R;x%;y° , whereR is the radius of the circle

and x° and y° indicate the certer of the circle. The computation of the orien-
tation and curvature reducesthe number of votes per pixel to one. Namely, for
a pixel at position x = x%;y! |

R = 1

x%=xt+ Lcos (5.31)

yo=yl+ Lsin :

Every pixel votes with its the derivative energyp fx fx.

. Compute the maxima in the hough space. These maxima indicate the circle

certers and the radii of the circle.

In Fig. 5.7 the results of the circle detection are given. The luminance-basedcircle
detection is corrupted by the photometric variation in the image. Nine circles had
to be detected beforethe v e balls were detected. For the shadav-shading-specular
quasi-invariant basedmethod the v e most prominent peaksin the hough spacecoin-
cide with reasonableestimatesof the radii and certer points of the circles. Note that,
although the recordingsdo not ful Il the assumptionson which the dichromatic model
is based,such aswhite light source,saturated pixels and linear cameraresponse,the
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(a) (b) (c)

Figure 5.8: (a) input image (b) the circularity coe cient C (c) the detected circles
(see also color plate C.16).

invariants still improve performanceby partially suppressingsceneincidental everts,
such as shadowvs and specularities. In Fig. 5.7 an outdoor example with a shadowv
partially covering the objects is given.

5.5.5 Local Color Symmetry Detector

The applicability of the features derived from an adaptation of the structure tensor
(section5.4.2)is illustrated herefor a symmetry detector. We apply the circle detector
to an image corntaining Lego-blocks (Fig. 5.8). Becausewe know that the color within

the blocks remains the same, the circle detection is done on the shadowv-shading-
specularvariant, Hy (Eq. 5.11). The shadov-shading-specular variant contains all the
derivative energy except for the energywhich can only be causedby a material edge.
With the shadav-shading-specular variant the circular energy ; and the starlike
energy , are computed accordingto Eq. 5.22. Dividing the circular energy by the
total energyyields a descriptor of local circularity (seeFig. 5.8b)

C= 1+l - (5.32)

The superimposedmaxima of C, Fig. 5.8c, give good estimation of the circle certers.

5.6 Conclusions

In this chapter we proposeda framework to combine tensor-basedfeatures and pho-
tometric invariance theory. The tensor basis of these features ensuresthat opposing
vectorsin di erent channelsdo not cancelout, but instead that they reinforce eath
other. To overcomethe instability causedby transformation to an photometric full
invariant, we proposean uncertainty measureto accompary the full invariant. This
uncertainty measureis incorporated in the color tensor to generaterobust photomet-
ric invariant features. Experiments show that: 1) the color basedfeaturesoutperform
their luminance counterparts, 2) the quasi-invariants give stable detection, and 3)
that the robust invariants give better extraction results.
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Chapter 6

Boosting Color Saliency in
Image Feature Detection

6.1 Intro duction

Indexing objects and object categoriesas an ordered collection of saliert points has
been successfullyapplied to image matching, content-based retrieval, learning and
recognition [13], [47], [54], [63], [65], [85]. Saliert points are local featuresin the im-
agewhich exhibit geometrical structure, such as T-junctions, corners,and symmetry
points. The aim of saliert point detection is to represent objects more conciselyand
robust to varying viewing conditions, such as changesdue to zooming, rotation, and
illumination changes. Applications basedon saliert points are generally composedof
three phases: 1. a feature detection phaselocating the features. 2. an extraction
phasein which local descriptions are extracted at the detected locations and 3. a
matching phasein which the extracted descriptors are matched against a databaseof
descriptors. In this chapter, the focusis to improve the saliert point detection phase.

Although the majority of image data is in color format nowadays, most saliert
point detectors are still luminance based. They typically focus on shape saliency
rather than color saliency[44], [93]. They focus on corner points without distinguish-
ing low-saliert black-and-white corners from high-saliert red-green corners. Only
recertly color information has beenincorporated in the detection phase. Montesinos
et al. [55] proposean extension of the luminance Harris corner detector to color [27].
Heidemann[29] incorporates color into the generalizedsymmetry transform proposed
by Reisfeldet al. [60]. Both methods achieve a performancegain for near isoluminant
everts. Howevwer, sincethe luminance axis remainsthe major axesof color variation in
the RGB-cube, results do not dier greatly from luminance basedfeature detection.
Itti et al. [33] usecolor cortrast as a clue for salience. Their method is basedon a
zero-ordersignal which is not easily extendableto di eren tial-based features.

For the evaluation of saliert point detectors Schmid et al. [64] proposedtwo crite-
ria: 1. repeatability, saliert point detection should be stable under the varying viewing
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conditions, such as geometrical changesand photometric changes. 2. distinctiveness
saliert points should focus on ewvents with a low probability of occurrence. Most
salient point detectors are designedaccording to these criteria. They focus on two
dimensional structures, suc as corners, which are stable and distinctiv e at the same
time. Although color is believed to play an important role in attributing saliency
[34], the explicit incorporation of color distinctiv enessnto the designof saliert points
detectors has, to our knowledge, not beendone.

A remarkable phenomenonappears when studying the statistics of color image
derivatives. In histograms of color derivatives, points of equal frequencyform regular
structures. These color image derivatives play two roles in saliert point detection.
Firstly, they are input to the saliency function, which based on local derivatives
probesfor saliert structures. Secondly they are part of the extracted local features,
on which the distinctiv enessof the saliert point detector is based. This double role,
together with the statistical nding described above, leadsto the following question:
How can we exploit the regularity of the distinctiv enessof color image derivativesto
improve saliert feature detection ?

In this chapter we aim to incorporate color distinctiv enessinto saliert point de-
tection. The extensionshould be generaland hencebe easyto incorporate in existing
saliert point detectors. For a color image, with valuesf = (R; G; B)T, saliert points
are the maxima of the saliency map, which comparesthe derivative vectors in a
neighborhood xed by scale ,

s=H (f:f) (6.1)

where H is the saliency function and the subscript indicates di eren tiation with re-
spect to the parameter. This type of saliency mapsinclude [6], [27], [29], [44], [7€].
The impact of a derivative vector on the outcome of the local saliencedepends on
its vector norm, jfyj. Hence, vectors with equal norm have an equal impact on the
local saliency Rather than deriving saliency from the vector norm, the challengeis
to adapt the saliency function in order that vectors with equal color distinctiv eness
have equal impact on the saliency function.

6.2 Color Distinctiv eness

The e ciency of saliert point detection dependson the distinctiv enessof the extracted
saliert points. At the saliert points' positions, local neighborhoods are extracted and
described by local image descriptors. The distinctiv enessof the descriptor de nes the
concisenes®f the represenation and the discriminativ e power of the saliert points.
The distinctiv enessof interest points is measuredby its information cortent [64].

For luminance-baseddescriptors, the information content is measuredby looking
at the distinctiv enessof the di erential invariants described by the local 2-jet [40] at
the detectedpoints [63]. Montesinoset al. [55] arguethat dueto the extra information
available in colorimagesthe color 1-jet is su cien t for local structure description. The
color 1-jet descriptor is given by

v= R G B R¢ G By R, G, By, ': (6.2)
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The information content of this color descriptor includes the information cortent of
more complex local color descriptors such as color di erential invariant descriptors,
sincethese complex descriptors are computed from the elemerts of Eq. 6.2.

From information theory it is known that the information content of an evert
is dependert on its frequency or probability. Events which occur rarely are more
informativ e. The dependencyof information cortent on its probability is given by

I (v) = log(p(v)) (6.3)

where p(v) is the probability of the descriptor v. The information corntent of the
descriptor, given by Eq. 6.2, is approximated by assumingindependen probabilities
of the zeroth order signal and the rst order derivatives

p(v) = p(f) p(fx) p(fy): (6.4)

To improve the information content of the saliert point detector, de ned by Eq. 6.1,
the probability of the derivatives,p(fx), should be small.

We can now restate the aim of this chapter in a more precisemanner. The aim is
to nd atransformation g:<3! <3 for which holds that

p(f)=p f, $ jgf)i= g f, (6.5)

This implies that vectors with equal information cortent have equal impact on the
saliency function. The transformation, attained by the function g, is called color
saliency boosting. Similar equationshold for p(f,). Once a color boosting function g
has beenfound, the color boosted saliency can be computed with

s=H (9(f):a9(fy): (6.6)

The saliency map which usedto derive saliency from the orientations and gradiert
strength of the derivativesin alocal neighborhood, is after color boosting basedon the
orientations and the information content of these derivatives. Gradient strength has
beenreplacedby information content, thereby aiming for higher information content.

From Eqg. 6.5 the color boosting function g is found by analyzing the probabilities
of the derivatives. The channelsof fy, f Ry; Gx; Bxg are correlated due to the physics
of the world. Photometric events in the world, such as shading, and re ection of the
light sourcein specularitiesin uence RGB valuesin awell de ned manner[66]. Before
investigating the statistics of color derivatives,the derivativesneedto be transformed
to a color spacewhich is uncorrelated with respect to these photometric everts.

6.3 Physics-Based Decorrelation

Here we describe three color coordinate transformations which partition RGB -space
di erently. The transformation are derived from photometric invariance theory [66)].
Photometric invariance theory allows us to distinguish between various photometric



70 Chapter 6. Boosting Color Saliency in Image Feature Detection

causedor featuresin the image, such asshadaws, shading, specularities and object re-
ectance changes. The theory is basedon the dichromatic re ection model introduced
by Shafer[66]. Geusebrek et al. [16] extendedthe photometric re ection theory to
di erential-based operations. In chapter 3 we introduced the quasi-invariant deriva-
tivesto improve noise characteristics. Here we usethe samecolor transformations to
decorrelatethe spatial derivative, f4, into axeswhich are photometrically variant and
photometrically invariant.

6.3.1 Spherical Color Spaces

The spherical color transformation, seeFig. 6.1a, is given by:

0 1 arct%n(%)
@' A= %b arcsin PRt X (6.7)
r r= RZ+ G2+ B2

The spatial derivativesare transformed to the spherical coordinate system by:

0 1 0 GxR_R4G 1
rsin' . RZ+G? ot
Sh)=fi=@ ', A= REEreGp BRM6Y) k. (gg)

Iy RyR+G,G+B,B
T

The scalefactors follow from the Jacobian of the transformation. They ensurethat
the norm of the derivative remains constart under transformation, hencejfyj = jfgj.
In the spherical coordinate systemthe derivative vector is a summation of a shadow-
shading variant part, Sy = (0; O;rx)T and a shadav-shading quasi-invariant part,
givenby S§ = (rsin' ;r' X;O)T.

6.3.2 Opponent Color Spaces

The opponert color space,seeFig. 6.1b, is given by:
0 1 0 . 1

@

ol >
@ A=fHre® k. (6.9)
R+G+B
o3 3
For this the following transformation of the derivativesfollows:
0 1 O
01y p% (Rx  Gx)
O(f)=10= @o2 A= i (Ra+ Gy 2B,) K: (6.10)
03 pl_g (Rx + Gy + Bx)

The opponert color spacedecorrelatesthe derivative with respectto specular changes.
The derivativeis divided into a specularvariant part, Ox = (0;0;03,) , and aspecular

quasi-invariant part O¢ = (olx;ozx;O)T.
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Figure 6.1: The spherial, oppnent and hue-satuition-intensity coordinate system.

6.3.3 Hue-Saturation-In tensit y Color Spaces

The well known hue-saturation-intensity is given by

0 ol

1 0
h rctan 5
@sA=@ " 012+ 02 A; (6.11)
i 03

The transformation of the spatial derivatives into the hsi-space decorrelates the
derivative with respect to specular, shadav and shading variations,

0 1 0 (R(Bx_Gu)* G(Rx Bi)* B(Gx Ry)) 1
s hy " 2(R2+G2+B2 RG RB GB)
- h: A: % R(2Ry Gxn By)+ G(2Gx Ry Byx)+B(2Bx Ry Gy) .
H (fx) = fx @ Sx " 8(R2+G2+B2 RG RB GB) '

Ix x* Gx* By
(R_Sé_B)
(6.12)
The shadowv-shading-specular variant is given by Hy = (0;0; ix)T and the shadaw-
shading-specular quasi-invariant by HS = (shy; sx; O)T.

Sincethe length of a vector is not changedby coordinate transformations, the norm
of the derivative remainsthe samein all three represetations jfyj = jf$j = jfoj = ff .
For both the opponert color spaceand the hue-saturation-intensity color space,the
photometrically variant direction is given by the L1 norm of the intensity. For the
spherical coordinate systemthe variant is equal to the L2 norm of the intensity.

We discussedthree color spaceswhich decorrelate the color spaceswith respect
to various physical everts. In the decorrelated color spacesoften occurring physical
variations, suc asintensity changes,will only in uence the photometric variant axes.
In the next section the statistics of color image derivatives are examined in these
decorrelated color spaces.

6.4 Statistics of Color Images

As discussedin Section 6.2 the information content of a descriptor depends on the
probability of the derivatives, seeEq. 6.3 and Eq. 6.4. In this section we investigate



72 Chapter 6. Boosting Color Saliency in Image Feature Detection

G, x o, 02, h, rsinj g,

@) (b) (©)

Figure 6.2: The histograms of the distribution of the transformed derivatives of the
Corel image datakase in respectively the (a) RGB coordinates, (b) the opponent co-
ordinates and (c) the spherial coordinates. The three planes correspnd with the
isosalient surfaces which contain (from dark to light) respectively 90% 99% 99:9%
of the total numkber of pixels (see also color plate C.17).

the statistics of color derivativesin the decorrelatedcolor spacesproposedin Section
6.3. From the statistics weaim to nd a mathematical description of surfacesof equal
probability, so called isosaliert surfaces.Sincea description of these surfacesleadsto
the solution of Eq. 6.5.

The statistics of color imagesare shavn for the Corel database[15], which consists
of 40,000imagesafter the exclusion of black and white images. In Fig. 6.2 the dis-
tributions of the rst order derivatives,f, are given for the various color coordinate
systemsdescribed in section6.3 (H SI hasbeenleft out due to spaceconsiderations).
The isosalient surfacesshown a remarkably simple structure, approximately similar to
an ellipsoid. For all three color spaces,the third coordinate coincideswith the axis
of maximum variation (i.e. the intensity). For the opponert and the spherical coor-
dinate system, the rst and secondcoordinate are rotated, with rotation matrix R
sothat the rst coordinate coincideswith the axis of minimum variation

T
rsin'~5;r'+x =R (rsin’ x;r'X)T (6.13)

(GlX;GZX)T =R (le;ozx)T :
The tilde indicates the color spacetransformation with the aligned axes. Similarly,
the aligned transformations are given by S(fy) = f7 and O (fx) = f2.
After alignment of the axesisosaliern surfacesof the derivative histograms can be
approximated by ellipsoids

ht?+ h2%+ h3°=R? (6.14)

wherehy = h(f,) = hi;h2;h3 | and h is one of the transformations S, O, or H .
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6.5 Boosting Color Saliency

We now return to our goal, that is to incorporate color distinctiv enessinto saliert
point detection. Or mathematically, to nd the transformation for which vectors
with equal information corntent have equal impact on the saliency function. In the
previous section we saw that derivatives of equal saliency form an ellipsoid. Since
Eq. 6.14is equal to

ht %+ hZ2%+ h3%=j h(f))® (6.15)

the following holds
p(h)=p f $ i h(f)i= Th f (6.16)
where isa3x3diagonalmatrix with ;= , 2= ,and 33= . isrestricted
to %+ 3%,+ 3;= 1. The desiredsaliencyboosting function (seeEq. 6.5) is obtained
g(fx) = h(fx): (6.17)

By a rotation of the color axesfollowed by a rescaling of the axis, the oriented isos-
alient ellipsoids are transformed into spheres,and thus vectors of equal saliency are
transformed into vectors of equal length.

6.5.1 Inuence of Color Saliency Boosting on Rep eatabilit y

In the introduction two criteria for saliert point detection were described, namely
distinctiv enessand repeatability. The color boosting algorithm is designedto focus
on color distinctiv enesswhile adopting the geometrical characteristics of the operator
to which it is applied. In this section we examinethe in uence of color boosting on
the repeatability. We identify two phenomenawhich in uence the repeatability of
g (fx). Firstly, by boosting the color saliency an anisotropic transformation is carried
out. This will reducethe signal-to-noiseratio negatively. Secondly by boosting the
photometric invariant directions more than the photometric variant directions, we
improve robustnesswith respect to sceneacciderial changes.

For isotropic uncorrelated noise,", the measuredderivative f;, can be written as

fo=f +" (6.18)
and after color saliency boosting
g fx =g+ ™ (6.19)

Note that isotropic noise remains unchangedunder the orthogonal curvilinear trans-
formations. Assumethe worst casein which f, only has signal in the photometric
variant direction, then the noise can be written as

9K ssifyi.
j "y

X 6.20
J 11]) ( )
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fo |ty | f8 | SC | fe | o¢ | | HS

X

11 | 0577 1 0.851| 0.856 | 0.850| 0.851| 0.858 | 1
2 | 0.577| - 0.515| 0.518 | 0.524 | 0.525| 0.509| O
33 | 0.577| - 0.099 0 0.065 0 0.066| O

Table 6.1: The diagonal entries of  for the Corel data set computal for Gaussian
derivatives with = 1.

Hence, the signal-to-noiseratio reducesby —-, which will negatively in uence re-
peatability to geometrical and photometrical changes.

The secondphenomenawhich in uences repeatability is the gain in photometric
robustness. By boosting color saliencythe in uence of the photometric variant direc-
tion diminishes while the in uence of the quasi-invariant directions increases. As a
consequencéhe repeatability under photometric changes,such as changing illumina-
tion and viewpoint, increases.

Depending on the task at hand, distinctivenessmay be lessdesired than signal-
to-noise. For this purposethe parameter is proposed, which allows for choosing

between best signal-to-noise characteristics, = 0, and best information content,
=1:
g (k)= hE)+ @ )h(f): (6.21)
For = 0this is equalto color gradient-based saliert point detection.

6.6 Experiments and lllustrations

Color saliency boosting is tested on: information content and repeatability. The
saliert points based on color saliency boosting are compared to luminance, RGB
gradient, and the quasi-invariant-based saliert point detectors. The generality of the
approad is illustrated by applying color boosting to seweral existing feature detectors.

6.6.1 Initialization

Experimerts are performedon a subsetof 1000randomly chosenimagesfrom the Corel
data set. Before color saliency boosting can be applied, the -parameters (Eq.6.15)
have to be initialized by tting ellipsesto the histogram of the data set. First the
axesof the opponert and the sphericaltransformation are aligned by Eq. 6.13. Next,
the axesof the ellipsoid are derived by tting the isosaliencysurfacewhich contains
99 percen of the pixels of the histogram of the Corel data set. The results for the
various transformations are summarizedin Table 6.1. The relation betweenthe axes
in the various color spacesclearly con rms the dominance of the luminance axis in
the RGB-cube, since 33, the multiplication-factor of the luminance axis, is much
smaller than the color-axesmultiplication factors, 1; and 2.

To give an idea on how the -parameters changewhen changing the data set, we
alsoestimatedthe parametersfor two other data sets,the Soil data [42] and a table-
tennis sequencgseeFig. 6.3a,c). For the Soil data and the opponert color model the
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Figure 6.3: (a) Example Soil data set and (c) frame from table-tennis sequene. (b)
and (d) resultsof Harris detector (red dots) and the Harris detector with color bhoosting
(yellow dots). The red dots mainly coincide with black and white events, while the
yellow dots are focusse on colorful points (see also color plate C.18).

-parameters are 11 = 0:542, ,, = 0:780,and 33 = 0:313. Sincethis set consists
of colorful objects the luminance axis is lesssuppressedhan for the Corel set. For the
tennis sequencethe di erence with Corel is smaller, 11 = 0:588, ., = 0:799, and
33 = 0:124. A changein -parameters can have various causessud as the quality
of the camera, the applied compressionand the di erent content of the data.
We have chosenthe Harris point detector [27] to test color boosting in experiment
B, C, and D. It is computed with

H (fx;fy) =1 fxfy fy T fy Kk fx fie+ 1y fy (6.22)

by substituting f, and fy by g(fx) and g(fy). The bar : indicates corvolution with
a Gaussian Iter and the dot indicates the inner product. We applied Gaussian
derivativesof = 1 and Gaussiansmoothing with = 3.

6.6.2 Color Distinctiv eness

Here we examine if color boosting improves the color distinctiv enessof the Harris
detector. In [64], the Harris detector has already been shavn to outperform other
detectors both on 'shape' distinctiv enessand repeatability. The color distinctiv eness
of saliert point detectors is described by the information content of the descriptors
extracted at the locations of the saliert points. From the combination of Eq. 6.3 and
Eqg. 6.4, it followsthat the total information is computed by summing the information
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standard descriptor normalized descriptor
20 points 100 points 20 points 100 points
method || inf. ‘ incr(%) ‘ decr(%) | inf. ‘ incr. ‘ decr. || inf. ‘ incr. ‘ decr. | inf. ‘ incr. ‘ decr.
fx 20.4 - - 20.0 - - 13.2 - - 13.9 - -
ifxia 19.9 0 14 198| O 08 || 130| O 27 | 138 O 1.0
S¢ 22.2| 455 101 |204| 9.1 | 177 | 179|929 | 09 |16.2|69.8 | 2.8
M 223| 494 .6 20.8| 13.1| 13 || 169|869 | 06 | 155| 576 | .7
(oM 22.6 51.4 12.9 205 120| 34.2 || 189|925 | 1.3 | 16.5| 64.6 | 10.8
e 23.2| 62.6 00 |21.4|215| 09 | 184|882 | 0.3 |16.4| 650 | 1.7
HE 21.0| 217 434 | 190 1.8 | 77.4 || 17.3| 77.1| 109 | 148 | 31.7 | 379
h 23.0| 57.2 0.3 21.3|16.7| 1.1 || 183|874 | 05 |16.2| 623 | 2.2
rand. 14.4 0 99.8 14.4 0 100 || 10.1| 2.7 | 89.1 | 10.2 .6 96.7

Table 6.2: The information content of salient point detectors. Measured in 1. in-
formation content and 2. the percentage of imagesfor which a substantial decrease
( 5%) or increase (+5%) of the information content occurs. The exgeriment is per-
formed with both 20 or 100 salient points per image. The experiment is repeated with
a normalized descriptor which is invariant for luminance changes.

of the zerothand rst orderpart, | (v) = | (f)+1 (fx)+1 (fy). The information cortent
of the parts is computed from normalized histograms with

X
L(f) = pi log (pi) (6.23)
I
where p; are the probabilities of the bins of the histogram of f.

The results for 20 and 100saliert points perimageare shavn in Table6.2. Next to
the absoluteinformation content we have also computed the relative information gain
with respect to the information content of the color gradient basedHarris detector.
For this purposethe information cortent on a singleimageis de ned as

X
I = log (p(v;)) (6.24)
j=1

wherej = 1;2;::n and n is the number of saliert points in the image. Here p(v;)
is computed from the global histograms, which allows comparison of the results per
image. The information corntent change is consideredsubstartially for a 5 percert
increaseor decrease.

The highest information content is obtained with f2, which is the color saliency
boosted version of the opponert derivatives. The boosting results in an increaseof
7% to 13% of the information content comparedto the color gradient baseddetector.
On the imagesof the Corel set this resulted in a substartial increaseon 22%to 63%
of the images. The advantage of color boosting diminishes when increasingthe num-
ber of saliert points per image. This is causedby the limited number of color clues
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Figure 6.4: (a) and (c) Corel input images. (b) and (d) resultsof Harris detector (red
dots) and the Harris detector with color boosting (yellow dots). The red dots mainly
coincide with black and white events, while the yellow dots are focuss& on colorful
points (see also color plate C.19).

in many of the images, which is especially visible for the results of the photometric
quasi-invariants, S¢, OS, or HS. These detectors discard all intensity information,
which in the caseof 100 saliert points per image results in many imageswith a sub-
stantial decreasein information content. Finally, it is noteworthy to seehow small
the di erence is betweenluminance and RGB -basedHarris detection. Sincethe in-
tensity direction alsodominatesthe RGB derivatives,using RGB -gradient instead of
luminance-basedHarris detection only resultsin a substartial increasein information
content in 1% of the images.

It might be desirablefor the descriptor to be invariant for sceneincidental everts
like shadingand shadavs[63). In thesecasedhe information content of the normalized
descriptor, which is invariant to luminance changes,better re ects the information
content of the saliert point detector

TR TR ST SRR (6:25)
The results of the normalized descriptor are given in the right half of Table 6.2. The
increasein information corntent of the quasi-invariants and the color boosted detectors
stands out even more, with substartial gains in information content of up to 90%.
Here the quasi-invariants baseddetectors outperform the other detectors.

In Fig. 6.4results of the RGB -gradient basedand color boostedHarris detector are
depicted. From a color information point of view, the RGB -gradient basedmethod
doesa poor job. Most of the saliert points have a black and white local neighborhood,
with a low color saliency The salient points after color boosting focus on more
distinctiv e points. Similar results are depicted in Fig. 6.3b,d, where the results are
showvn computed with the -parameters belongingto the data setsof theseimages.

6.6.3 Repeatabilit y: signal-to-noise

Repeatability measuresthe stability with respect to varying viewing conditions. As
indicated in section 6.5.1 color saliency boosting reducesthe signal-to-noise ratio.
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Repeatability with respectto geometricalchanges,scaling,and a ne transformations
are considereda property of the detector and will not be consideredhere.

The lossof repeatability causedby color saliency boosting is examined by adding
uniform, uncorrelated Gaussiannoise of = 10. This yields a good indication of
lossin signal-to-noise, which in its turn will in uence results of repeatability under
other variations, sudh as zooming, illumination changes,and geometrical changes.
Repeatability is measuredby comparing the Harris points detectedin the noisy image
to the points in the noise-freeimages. The results in Fig. 6.5a correspond to the
expectation made by Eg. 6.20, namely the larger the di erence between 3; and 33,
the poorer the repeatability.

In Fig. 6.5b the information cortent and repeatability as a function of the color
boosting, determined by the -parameter, is given (see Eq.6.21). The experimernt
is performed by applying color boosting to the opponert color space. The results
show that information content increasesat the cost of stability. Depending on the
application a choice should be made about the amount of color saliency boosting.

6.6.4 Repeatabilit y: photometric variation

Photometric robustnessincreaseswith color boosting, as discussedin Section 6.5.1.
In Fig. 6.6 the dependanceof repeatability is tested on two image sequenceswith
changing illumination conditions [53]. The experiment was performed by applying
color boosting to the spherical color space,since changesdue to shadov-shading will
be along the photometric variant direction of the spherical system. For these ex-
periments two intertwining phenomenacan be obsened: the improved photometric
invariance and the deterioration of signal-to-noiseratio with increasing . For the
nuts-sequencewith very prominent shadavs and shading, the photometric invariance
is dominant, while for the fruit-basket the gained photometric invariance only im-
proves performance slightly for medium values. For total color saliency boosting,
= 1 the lossof repeatability, due to lossof signal-to-noise,is substartial.
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Figure 6.5: (a) The percentage of Harris points which remain detected after adding
Gaussianuncorrelated noise. (b) The information content (blue line) and the repeata-
bility (red line) as a function of the amount of color saliency boosting.
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Figure 6.6: (a),(b) Two framesfrom two sequenes with changing il lumination con-
ditions. (c) Repeatability as a function of the amount of color saliency boosting for
the two sequenes. Dotted line for the nuts-sequen@ and the continuous line for the
fruit-b asket seqguene (see also color plate C.20).

6.6.5 lllustrations Generalit y

Color saliency boosting can be applied on all functions which can be written as a
function of the local derivatives. Here we apply it to three di erent feature detectors.
First we apply saliency boosting to the focus point detector which was originally
proposedby Reisfeld et al. [60] and recertly extendedto color by Heidemann [29].
The detector focuseson the certer of locally symmetric structures. Fig. 6.7b shows
the saliency map as proposedin [29]. In Fig. 6.7cthe result after saliency boosting
is depicted. Although focus point detection is already an extension from luminance
to color, black-and-white transition still dominate the result. Only after boosting
the color saliency the lessinteresting black-and-white structures in the image are
ignored and most of the red Chinesesignsare found. Similar di erence in performance
is obtained by applying color boosting to the linear symmetry detector proposed
by Bigen [6]. This detector focuseson corner and junction like structures. The
RGB gradient based method focusesmainly on black-and-white everts while the
more saliert signboards are found only after color saliency boosting.

As a nal illustration we illustrate that color saliency boosting can easily be ap-
plied to gradient basedmethods. In third row of Fig. 6.7 color boosting is applied
to a gradient basedsegmemation algorithm proposedby Jermyn and Ishikawa [36)].
The algorithm nds globally optimal regionsand boundaries. In Fig. 6.7b and c re-
spectively the RGB gradient and the color boosted gradient are depicted. While the
RGB -gradient basedsegmetation is distracted by the many black-and-white everts
in the background, the color boosted segmemation nds the saliert trac signs.

6.7 Conclusions

In this chapter color distinctiv enessis explicitly incorporated in the design of saliert
point detectors. The method, called color saliencyboosting, can be incorporated into
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Figure 6.7: Respectively, input image, RGB -gradient based saliency map, color boosted
saliency map and the resultswith red dots (lines) for gradient-based methad and yellow
dots (lines) for salient points after color saliency boosting. Results (a),(b),(c),(d) for
the focus points, (e),(f ),(9),(h) for the symmetry points and (i),(j),(k),(I) for the glokal
optimal regions and boundary methad (see also color plate C.21).

existing detectors which are mostly focusedon shape distinctiv eness.Saliency boost-

ing is basedupon an analysis of the statistics of color image derivatives. Isosaliert

derivatives form ellipsoids in the color derivative histograms. This fact is exploited

to adapt derivativesin such a way that equal saliency implies equal impact on the

saliency map. Experiments show that color saliency boosting substartially increases
the information cortent of the detected points. A substartial information cortent

increaseis obtained on up to 20 60% of the Corel images. Further, the generality

of the method is illustrated by applying color boosting to various point detectors.



Chapter 7

Summary and Conclusions

7.1 Summary

In this thesis, we explore methods to exploit the extra information available in color
imagesas opposedto grey-value images. We indicate two main advantages of using
color data over luminance data. Firstly, color data contains a richer photometric

description of the local structure from which various causedor variations in the image
can be distinguished. This richer description allows for example to separate highly

informativ e object edgesfrom less informative shadov edges. A secondadvantage
of color over luminance is that color can be usedto improve the distinctiv enessof
saliert point detectors. An analysis of the distribution of colorsin the world allows
to distinguish betweenlow frequent and therefore highly informativ e colors, and high

frequert and therefore lessinformativ e colors. The obsenation of color distinctiv eness
can be incorporated in existing saliert point detectors. The two above mentioned

advantageslet to the following main objectivesfor this thesis:

1. From Luminance to Color: Extend luminance-basedalgorithms to color in
a mathematically soundway. One consequencés that colorimage enhancemen
methods do not intro duce new chromaticities. A secondimplication is that for
di eren tial-based algorithms the derivativesof the separatechannelsshould be
combined without loss of derivative information.

2. Photometric Information: = Compute photometric invariant di erential in-
formation in a robust way. We focus on the class of applications for which
no a-priori knowledge of the noise characteristics of the acquisition system is
available.

3. Color Distinctiv eness: Improve the distinctiv enessof saliert point detection
algorithms by explicitly incorporating color statistics into the detector design.

The results obtained in the thesis are discussedper chapter in the following para-
graphs:
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Chapter 2: Least Squares and Robust Estimation of Local Image Struc-
ture. In this chapter we proposethe Gaussianfacet model, as a generalization of
the classicHaralick facet model, which constructs a polynomial approximation of the
unsmoothed image. The measureddi erential structure therefore is closer to the
“real' structure than the di erential structure measuredusing Gaussianderivatives.
At the points in an image where the di erential structure changesabruptly (because
of discortinuities in the imaging conditions, e.g. a material change, or a depth dis-
continuity) both the Gaussianderivatives and the Gaussianfacet model di use the
information from both sidesof the discortin uity (smoothing acrossthe edge). Robust
estimators that are classicallymeart to deal with statistical outliers can alsobe used
to deal with these "mixed model distributions'. In this paper we intro duce the robust
estimators of local image structure. We start with the Gaussianfacet model where we
replacethe quadratic error norm with a robust (Gaussian) error norm, which leadsto
a robust Gaussianfacet model. Examples are given for luminance and color images,
and for both zero and higher order di erential structure.

Chapter 3: Edge and Corner Detection by Photometric Quasi-In varian ts.
We proposea new classof derivatives which we refer to as quasi-invariants. These
guasi-invariants are derivativeswhich sharewith full photometric invariants the prop-
erty that they are insensitive for certain photometric edges,such asshadavs or specu-
lar edges,but without the inherert instabilities of full photometric invariants. Exper-
iments shaw that the quasi-invariant derivativesare lesssensitive to noiseand intro-
ducelessedgedisplacemen than full invariant derivatives. Moreover, quasi-invariants
signi cantly outperform the full invariant derivativesin terms of discriminativ e power.
Chapter 4: Curv ature Estimation in Orien ted Patterns Using Curvilinear
Mo dels. Curved oriented patterns are dominated by high frequenciesand exhibit
zero gradierts on ridges and valleys. Existing curvature estimators fail here. The
characterization of curved oriented patterns basedon translation invariance lacks an
estimation of local curvature and yields a biasedcurvature-dependert con dence mea-
sure. In chapter 4, we use parameterized curvilinear models to measurethe amourt
of local gradient energy along the model gradient as a function of model curvature.
Minimizing the residual energy yields a closed-form solution for the local curvature
estimate and the corresponding con dence measure. We shaw that simple curvilinear
models are applicable in the analysis of a wide variety of curved oriented patterns.
Chapter 5: Robust Photometric Invariant Features from the Color Tensor.
In this chapter we focus on the structure tensor, or color tensor, which adequately
handlesthe vector nature of color images. Further, we combine the featuresbasedon
the color tensor with photometric invariant derivativesto arrive at photometric in-
variant features. We circumvent the drawbadk of unstable photometric invariants by
deriving an uncertainty measureto accompary the photometric invariant derivatives.
The uncertainty is incorporated in the color tensor, hereby allowing the computa-
tion of robust photometric invariant features. The combination of the photometric
invariance theory and tensor-basedfeatures allows for detection of a variety of fea-
tures such as photometric invariant edges,corners, optical ow and curvature. The
proposedfeatures are tested for noise characteristics and robustnessto photometric
changes. Experiments shaw that the proposedfeaturesare robust to sceneincidental
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everts and that the proposeduncertainty measureimproves the applicability of full
invariants.

Chapter 6: Boosting Color Saliency in Image Feature Detection. In this
chapter color distinctiv enessis explicitly incorporated into the designof saliency de-
tection. The algorithm, called color saliency boosting, is basedon an analysis of the
statistics of color image derivatives. Isosaliert color derivatives are showvn to form
ellipsoidal surfaces. Based on this remarkable statistical nding, isosalient deriva-
tivesare transformed by color boosting to have equal impact on the saliency Color
saliencyboosting is designedas a genericmethod easily adaptable to existing, mostly
shape distinctiv enessfocussed,feature detectors. Results shav that substartial im-
provemerts in information corntent are acquired by targeting color saliert features.
Further, the generality of the method is illustrated by applying color boosting to
multiple existing saliency methods.

7.2 Conclusions

In this thesis we have proposedtheory and techniquesto augmen the usefulnessof
color for computer vision. The rst objective of the thesis is to extend luminance-
based algorithms to color in a mathematical sound way. For color image Itering
this implies that the correlation betweenthe channelshasto be taken into account
to prevert the introduction of undesired new chromaticities. To this end, a robust
estimator of local imagestructure is proposed. The estimation is basedon the iterativ e
useof a spatial-tonal Gaussian Iter which is basedon both the spatial distance and
the tonal distance betweenpixel values. Application of the robust estimator resultsin
e cien t noisereduction with only little lossof contrast, and without the intro duction
of new chromaticities. For di eren tial-based algorithms the extensionfrom luminance
to color posesa dierent problem. The problem is how to conmbine the di erential
information of the separatechannels. We obsene that tensor mathematics solvesthis
problem. Therefore we give an overview of tensor-basedfeatures and we shov how to
extend them to color.

The secondobjective of the thesis is to designrobust photometric invariant dif-
ferertial operators. We distinguish betweenfeature detection, i.e. the localization of
a feature, and feature extraction, i.e. the extraction of a descriptor of a local neigh-
borhood at a certain location in the image. Firstly, for feature detection, a set of
derivative lters is proposedwhich are coined quasi-invariants. These Iters outper-
form existing full photometric invariant derivativesin terms of discriminative power
and localization. Secondly for feature extraction, we derive an uncertainty measure
to accompary full-invariant derivatives. Color features which incorporate this uncer-
tainty measureare showvn to outperform existing full invariant features. The proposed
color featuresinclude: edges,corners, symmetry points, circle detectors, and optical
ow.

The third objective of the thesisis to improve the distinctiv enessof saliert point
detection algorithms by explicitly incorporating color statistics into the detector de-
sign. From information theory it is known that rare evens, i.e. events with a low
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frequency of occurrence, have high information cortent. Saliert point detection aims
at detecting saliert, and hencehighly informativ e points in the image. Most existing
salient point detectors are luminance-basedand are computed from the di erential
structure of the image. An analysisof the statistics of color derivativesfor a large data
set of real world pictures reveals a remarkable phenomenon; derivatives with equal
frequency and henceequal information cortent, form ellipsoid surfacesin derivative
space. We exploit this phenomenonby adjusting the saliency functions in such a
way that points with equal information content have equal in uence on the saliency
function. This processis called color saliency boosting, and it has been proven to
substartially increasethe information content of the detected saliert points.
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Samenvatting

Vandaag de dag maakt het merendeelvan de beeldberwerkings operaties sledits ge-
bruik van de luminantie (de grijswaarden) en wordt de kleureninformatie onbenut
gelaten, ondanks het feit dat een aanzienlijk deel van beelddata tegenwoordig in
kleurenformaat is. Dit proefsdirift behandelt technieken en theorieen om de mo-
gelijkheden, die kleurenbeeldberwerking en in het bijzonder kleurenkenmerkdetectie
bieden, verder te benutten.

Voor het gebruik van kleurenbeeldenis het belangrijk om na te gaanhoe bestaande
operaties, ontwikkeld voor luminantiebeelden, op eenwiskundig correcte wijze naar
kleurenbeeldenkunnen worden uitgebreid. Voor beeldwerfraaiing betekent dit dat de
correlatie tussen de kanalen (rode, groene en blauwe kanaal) zodanig moet worden
gerespecteerd dat de operaties geenkleuren introduceren die niet aanwezig zijn in
het originele beeld. In dit proefsdrift wordt dit probleem omgestireven naar een
robuust schattingsprobleem, en wordt eene ci ente methode voorgesteld om lokale
beeldstructuur te scatten. Beeldwerfraaiing gebaseerdop deze methode laat een
goede ruisonderdrukking zien, geconbineerd met behoud van contrast en zonder de
intro ductie van ongewenste nieuwe kleuren.

Voor operaties die gebaseerdzijn op de dierentiele structuur van een beeld
veroorzaakt de uitbreiding naar kleuren een ander wiskundig probleem: hoe moet
de di erentiele structuur van de versdillende kanalen worden geconbineerd ? Er
wordt aangetomond dat tensor wiskunde dit probleem oplost, waarna een overzicht
wordt gegeen van bestaandetensor gebaseerdeperaties, samenmet de uitbreiding
voor kleurenbeelden.

Verder concerireert dit proefsdirift zich op tweevoordelenvan kleurenbeeldbew-
erking ten opzichte van traditionele luminantie gebaseerdéeeldbewerking.

Ten eerste, kleurenbeeldenbevatten eenrijk ere fotometrische besdirijving van de
beeldinhoud. Hierdoor wordt het mogelijk om fotometrisch invariante kenmerkdetec-
tie in beeldente doen. Beeld operaties kunnen zo worden ontworpen dat belangrijke
overgangen tussen objecten wel worden gedetecteerdterwijl relatief onbelangrijke
schaduw randen worden genegeerd. Hoewel fotometrische invariantie algemeenge-
bruikt wordt, is er sletts weinig onderzcek gedaannaar uitbreiding van fotometrische
invariantie theorie naar de di erentiele structuur van beelden. In dit proefsdrift
stellen wij een groep afgeleidde Iters voor, genaamdde quasi-invarianten, die het
mogelijk maakt om de fotometrische invariante di erentiaal structuur van beelden
op eenrobuuste manier te meten. Experimenten tonen aan dat de quasi-invarianten
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betereresultaten behalendan de bestaandemethodeswat betreft discriminerend ver-
mogenen lokalisatie van de beeldkenmerken.

Een tweedevoordeel van kleurenbeeldbewerking is dat kleur eenbelangrijke aan-
wijzing is voor saillante (in het oog springende) beeldpurten. Bestaande saillante
beeldpurtoperatieszijn gebaseerdp de di eren tiele structuur van beelden,en maken
geengebruik van kleuren informatie. De saillantie van een beeldpurt wordt onder
andere bepaald door zijn zeldzaamheid, omdat zeldzame beeldpurten meer infor-
matie bevatten dan veelvoorkomendebeeldpurten. In dit proefsdirift analyserenwe
de kanswerdeling van kleurenafgeleidenvoor een grote dataset van 40.000 beelden,
en komentot de obsenatie dat dezeverdeling goed benaderd kan worden door een
ellipsede. Dezeopmerkelijke obsenatie wordt gebruikt om saillante beeldpurtdetec-
tie te optimaliseren. Experimenten laten zien dat de hiervoor aangepastemethodes
beeldpurten detecterenmet hogereinformatie dichtheid.
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Color Plates

@ (b) (©) (d) ()

Figure C.1: Chapter 1: (a) Exampleimageand (b) linear smaothed version of example
image. (c) Red channel, (d) green channeland (e) blue channel of exampleimage.

@) (b) ()

Figure C.2: Chapter 1: (a) Example image, (b) human sene segmentation and (c)
standard computer edge detection.
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Figure C.3: Chapter 1: (a) Exampleimage, and (b) resultsof a standard salient point
detector.

Figure C.4: Chapter 2: Robust Estimation of Local Structure in Color Images. On
the rst row from left to right: the "Lena' image with some noise addal to it, the
zero-order facet model basal robust estimator of the valuesand the robust estimator

basal on a rst order basal facet model. On the second row we showa detail from the
image alove.
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(a) (b) (©) (d) (e) ®)

Figure C.5: Chapter 3: (a) Red-blueedge,with a decreasingintensity of the blue patch
going in the upward direction. Resmnse of (b) normalized RGB derivative, and (c)
shadow-shadingquasi-invariant (SS). (d) Red-blue edge, with decreasing saturation
going in the upward direction. Resmnse of (e) hue derivative (hy), and (f) specular-
shadow-shadingyjuasi-invariant (H$).

(@) (c)

(b) (d)
Figure C.6: Chapter 3: (a) Input image with superimposal two dotted lines which
are plotted in the images(c) and (d). (b) Edgeclassi cation result, with white object
edges,blackshadowedgesand light grey specular edges. (c),(d) The derivative strength
along lines indicated in (a).
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@ (b) (c) (d)

Figure C.7: Chapter 3: (a) Input image and corner detector results based on (b)
RGB gradient (fy), (c) shadow-shadingjuasi-invariant (S¢), and (d) shadow-shading-
specular quasi-invariant (Hg).

(@) (b) (© (d)

(€) (f) (9) (h)

Figure C.8: Chapter 3: (a), (e) Input images. Corner detection basal on (b)
RGB gradient (fx), (c) normalized RGB, (d) shadow-shadingquasi-invariant (S%),
(f) RGB gradient (fx), (g) hue full invariant (hy), and (h) shadow-shadingquasi-
invariant (HS).
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(@) (b)

Figure C.9: Chapter 5: (a) The subs@mce of measured light in the Hilbert space of
possible spectra.  (b) The RGB coordinate system and an alternative orthonormal
color coordinate systemwhich spans the same subsce.

@) (b) (© (d)

Figure C.10: Chapter 5: (a) test image (b) hue derivative (c) saturation (d) quasi-
invariant.

(@) (b) ()

Figure C.11: Chapter 5: (a) An examplefrom Soil-47 image. (b) shadow-shading
distortion with the shadow-shadingquasi-invariant Harris points superimposed (c)
specular distortion and the shadow-shading-sgrular Harris points superimposed.
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Figure C.12: Chapter 5: (a),(d) frame from test seguene with constant optical ow of
one pixel per frame. (b),(c) mean and relative standard deviation mean of the optical
ow basal on RGB (black line), shadow-shadinginvariant (blue line) and robust
shadow-shadingnvariant (red line). (e),(f) mean and relative standard deviation of
the optical ow basel on RGB (black line), shadow-shading-sgcular invariant (blue
line) and robust shadow-shading-sgeular invariant (red line).

@) (b) (© (d)

Figure C.13: Chapter 5: (a) frame 1 of object seene with lter size superimposel on
it. (b) RGB gradient optical ow (c) shadow-shadingnvariant optical ow and (d)
robust shadow-shadingnvariant optical ow.
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@) (b) (© (d) (e)

Figure C.14: Chapter 5. (a) input image with Canny edge detection basel on suc-
cessively(b) luminance derivative (c) RGB derivatives (d) the shadow-shadingjuasi-
invariant (e) the shadow-shading-sgcular quasi-invariant.

(@) (b) (©)

Figure C.15: Chapter 5: (a) detected circles basad on luminance (b) detected circles
basal on shadow-shading-sgcular quasi-invariant (c) detected circlesbasal on shadow-
shading-sgcular quasi-invariant.

(@) (b) (©)

Figure C.16: Chapter 5: (a) input image (b) the circularity coe cient C (c) the
detected circles.
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Figure C.17: Chapter 6: The histograms of the distribution of the transformed deriva-
tives of the Corel image datatase in respectively the (a) RGB coordinates, (b) the
opponent coordinates and (c) the spherial coordinates. The three planes correspnd
with the isosalient surfaces which contain (from dark to light) respectively 90% 99%,

99:9%t of the total number of pixels.

%©©
2 -0
%
&° @0
° @
(@) (b)
oo
o O
oo R
(c) (d)

Figure C.18: Chapter 6: (a) Example Soil data set and (c¢) frame from table-tennis
sguen@. (b) and (d) results of Harris detector (red dots) and the Harris detector
with color boosting (yellow dots). The red dots mainly coincide with black and white

events, while the yellow dots are focussel on colorful points.
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Figure C.19: Chapter 6: (a) and (c) Corel input images. (b) and (d) resultsof Harris
detector (red dots) and the Harris detector with color boosting (yellow dots). The red
dots mainly coincide with black and white events, while the yellow dots are focussel
on colorful points.

@) (b) (c)

Figure C.20: Chapter 6: (a),(b) Two framesfrom two sgquen@s with changingillu-
mination conditions. (c) Repeatability as a function of the amount of color saliency
boosting for the two sequen@s. Dotted line for the nuts-sequen® and the continuous
line for the fruit-basketsequene.
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Figure C.21: Chapter 6: Respectively, the input image, RGB -gradient basel saliency
map, the color hoosted saliency map and the results with red dots (lines) for the
gradient-basal methad and yellow dots (lines) for the salient points after color saliency
boosting. (a),(b),(c),(d) Resultsfor the focus points, (e),(f),(g),(h) for the symmetry
points and (i),(j),(k),() for the glokal optimal regions and boundary methad.



