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Face (identity) related tasks

 Face Recognition
► System has dataset with one or more images per person
► Assign new face to one of these known people (or reject)

 Face Verification
► Are two given faces of the same person or not ?
► Should work for “new people” not seen before by system

 Face Retrieval
► Given query face, find images of the same person in data set
► Ranked list of results

 Age estimation

 Gender, ethnicity estimation

 ….



Metric learning

 Acquisition of measures of distance or similarity from examples

 Similarity is inherently task dependent

Scene: city vs landscape

Objects: car vs bike

Season: fall vs winter
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Challenges in face representation

 In classic “controlled” data sets nuisance factors are controlled
► Illumination, pose, expression
► Cooperative subjects

 Example images from the “Multi-PIE” dataset



Challenges in face representation

 Recent shift of attention towards “uncontrolled” datasets
► Richer variations in nuisance factors: occlusion, illumination, 

expression, hairstyle, pose, etc.
► Data collected instead of generated for research purposes

 Typically collected from the web

 Examples images from the “Labeled Faces in the Wild” dataset (left) 
ECCV'08 and IARPA “Janus” dataset (right), CVPR 2015.



Challenges in face representation

 Desiderata of a “good” face representation
► Efficient to compute, small memory footprint
► Invariant to nuisance factors, effective for a range of tasks

 Sparse landmark-based approach

 Dense unsupervised local feature approach

 Dense supervised feature learning



Landmark-based face representation

 Represent face with local descriptors of landmarks
► Everingham et al., BMVC 2006
► Landmarks: point on eyes, nose, mouth, ...

 Detect landmarks 

 Warp face image to correct for pose (translation, rotation, scaling)

 Represent each landmark using local descriptor 
► Ignore position of landmarks in signature



Landmark detection with constellation models

  Separate detectors for 9 facial landmarks
► Linear HOG classifiers, Dalal & Triggs, CVPR 2005
► Response/score map for each landmark

 Combine with displacement model between landmarks
► Felzenszwalb & Huttenlocher, IJCV'05

E (x1, ... x9)=∑i=1

9
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Landmark-centered feature extraction

 Crop image regions around landmarks  (9 landmarks, 3 scales)

 Compute 128D SIFT gradient orientation histograms (Lowe, IJCV'04)
► Concatenate in 128 x 3 x 9 = 3,456D vector 
► Guillaumin et al., ICCV 2009



Bag-of-visual-word image representation 

 Interest point detection and local descriptors (eg SIFT) have proven 
extremely effective for general object detection and image retrieval
► Viewpoint invariance and robustness to partial occlusion 

 Bag-of-visual-word representation
► Sivic & Zisserman, ICCV 2003,  Csurka et al. ECCV 2004
► Cluster descriptor space to obtain discrete representation 
► Aggregate descriptors into visual word count histogram



Fisher vector image representation

 Fisher Vector (FV) representation improves over bag-of-words (BOW)
► Perronnin et al., ECCV 2010
► BOW: count descriptors per cluster
► FV: compute first and second order moments per cluster

► Gaussian mixture model  (GMM) clustering instead of k-means

► BOW: K dimensional for K clusters
► Fisher vector: 2KD dimensional for K clusters (typically D=64)
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Image representation by aggregated local descriptors 1

 Densely sampled patches of 3x3 pixels
► Sharma et al., ECCV'12
► Subtract value of center pixel for illumination invariance
► Face represented by “point-cloud” in 8d space
► Characterize face using Fisher vector of this point cloud
► Concatenate descriptors computed over different face regions

(
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Signature



Image representation by aggregated local descriptors 2

 Densely sampled patches encoded with SIFT descriptors
► Simonyan et al., BMVC'13
► Concatenate 2d location of patches to SIFT descriptor
► Fisher vector computed over point cloud of expanded descriptors



Convolutional neural networks (CNNs)

 Layered architecture of simple non-linear computations

 First computations start directly from image pixels

 End-to-end learning: Large set of parameters directly tuned to 
maximize performance

 Lots of success in computer vision since 2012 ImageNet succes
► Krizhevsky et al, NIPS 2012, reduced error rate by one third
► Most ideas date back two decades Le Cun et al, NIPS 1989
► Millions of parameters, needs lots of data, training on GPU

“L
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”

Krizhevsky et al, NIPS 2012



Face representation with convolutional networks 

 Previous representations are based on
► Land-mark detection, at least for alignment
► “Hand-crafted” SIFT or other local features
► Unsupervised clustering used in Fisher vectors

 Representations using convolutional neural networks
► Often landmark-based alignment as pre-processing
► “Hand-crafted” architecture of the network
► Supervised learning of parameters, e.g. for face recognition 

Taigman et al., CVPR 2014



Using CNN features for other tasks

 Suppose we have lots supervised data for one task, very little or no 
training data for another task
► Many face images of many identities for recognition
► Face verification for people not seen during training

 Use the “internal” representation of CNN as an image  “signature”
► Girshick et al., CVPR 2014. Taigman et al, CVPR 2014.

Taigman et al., CVPR 2014
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Experiments with “Labeled Faces in the Wild” dataset

 Contains 12,233 faces of 5,749 different people
► http://vis-www.cs.umass.edu/lfw

 Task: given two faces, it is the same person or not ?
► Learn metric from 90% of data, test on other 10%
► People in test set are not in the training set 
► Performance: percentage of pairs correctly classified



Results using representations based on local features 

 Performance without metric learning
► Landmark-based SIFT approach 67.8 %
► Fisher vector, raw 3x3 patches    73.4 %

 Same, but our refined implementation   80.7 %

 Performance with metric learning 
► Landmark-based SIFT approach      83.2 %  (+15.4)
► Fisher vector, our optimized implementation 86.4 %  (+  5.7)
► Fisher vector, dense SIFT 91.4 %

 Dense features improve over landmark-based ones

 Surprisingly good performance using simple 3x3 patches

 Metric learning improves performance significantly



Results using CNNs

 Local features with metric learning from 13K images 
► Fisher vector, dense SIFT , Simonyan et al, 2013 93.1 %

 Recent CNN-based results
► Ours 500K 95.2 %

 + local metric learning 500K 96.8 %
► Parkhi et al., BMVC 2015    + 2.6M 99.0 %
► Taigman et al., CVPR 2014 (facebook)   4M* 97.4 %
► Sun et al., CVPR 2014  200K* 97.5 %
► Schroff et al., CVPR 2015 (google) +  200M* 98.9 %

 With face alignment  99.6 %

     + metric learning drives CNN training

     * results based on proprietary datasets, not reproducible

 CNN features improve results using more training data: size matters

 Best results using metric learning to drive CNN training



Hard cases: correct decision, closest to being wrong

 Same person: illumination, pose, expression, occlusion

 Different people: same gender, similar hair and age

Correctly
predicted as same

Correctly 
predicted as different



Hard cases: strongest response for wrong decision

 Same person: occlusion, blur, pose 

 Different people: people with same gender and ethnic background

Incorrectly 
predicted as different

Incorrectly classified 
as same person
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Metric learning

 Embed (face) given signatures in a vector space such that distance is 
semantically meaningful 
► Faces of same identity close, different identities far

Rd



Mahalanobis metric learning

 Mahalanobis distance 

► Generalization of Euclidean distance: set M = I

 Equally distant points on ellipsoid instead of circle

dM (x , y)=(x− y)T M (x− y)

same
Different

same
Different



Mahalanobis metric learning

 Mahalanobis distance impractical for high dimensional data
► Number of parameters quadratic in data dimension
► PCA pre-processing might throw away important dimensions

 Reformulate as L2 distance after linear projection to lower dim. space

► Number of parameters linear in data dimension
► Can be used as data compression if L is a matrix of size 

same
Different

same
Different

d L(x , y)=(Lx−Ly)T (Lx−Ly)

d×D

dM(x , y )=(x−y)T M (x− y)



Metric learning using pairs or triplets

 Classify pairs of faces based on distance between descriptors
► Same if  different if 
► Learn (L,b) using logistic discriminant classifier 
► “LDML” Guillaumin et al, ICCV 2009

 Using triplets of data points
► Want x to be closer to y (same id) than to z (different id)
► Triplet satisfied if 
► “LMNN”, Weinberger et al, NIPS  2006

d L(x , y )<b d L(x , y)≥b

d L(x , y)+a<dL(x , z)



Effect of metric learning on landmark based features

 Metric learning substantially improves performance

 Low-rank metric learning better than first doing PCA 
► PCA suppresses information relevant for identity

No metric learning:
- L2 dist
- PCA

With metric learning:
- LDML, low rank
- LDML, after PCA
- LMNN, after PCA
- ITML, after PCA
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Performance as a function of projection dimension

 Surprisingly good performance with few dimensions
► Using Euclidean distance give 67.8% correct

 Performance saturates relatively quickly
► Original signature dimension 3,456



Comparing LDML and PCA projections

 Using PCA and LDML to find two dimensional projection of the faces 
of Britney Spears and Jennifer Aniston

pose
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Hierarchical metric learning for face retrieval 

 Hierarchical grouping of large face database
► Bhattarai et al, ECCV 2014
► Groups similar faces together
► Assign query face to group
► match only to faces in that group: speed-up

 Specific metrics adapted to each group
► Important features differ per group



Hierarchical metric learning for face retrieval: overview 



Hierarchical metric learning for face retrieval: results 

 Queries from Labeled Faces in the Wild dataset
► Additional 500,000 or 1,000,000 distractor faces added 

 Performance measure: fraction of queries with correct result within 
the top n images

 Hierarchy can speed-up and improve results
► d3: 8x speed-up w.r.t. baseline, d4 give 16x speedup



Local metric learning for face retrieval 

 Grouping of large face database, learn metric per group
► Non-hierarchical clustering avoids poor splits in top of tree

 Embed all data in a single space
► Align local metrics via local rotations and translation
► Can match any pair of points, not only within group



Local metric learning for face retrieval: evaluation

 Substantial improvements over hierarchical metric learning approach
► Flat clustering more effective
► Retrieval across full data set 

Flat local metric

Hierarchical 
local metric



2d illustration of learned metric embedding

 Faces male/female color coded, as well as 40 people 
► Male/female separated, outliers: children and strong pose/express.



Efficient search across a dataset of a million faces

 Clustering in learned global metric embedding space 
► Match cluster of query, or the m nearest [Jegou et al., PAMI 2010]

 More effective than using clustering used for local metrics
► More clusters better for any operating point

Local metric
clustering

m=1

m=8
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Age estimation

• Given face image predict the age of the subject: regression problem

• Aging effects differ among people from different ethnics, gender, etc. 

• Training separate models per group has limitations 
• more expensive
• very few examples in some groups

Examples from FGNET database (top row) 
and the MORPH database (bottom row)



Cross-population age estimation
• Large number of training examples in “source” domains

• Few training examples in “target” domain 

• Idea: Find a common linear subspace for regression
• Source domain helps to identify subspace
• Less regression parameters to estimate for target domain

 Regression loss: 

 Metric learning loss based on age:
► Using cross-domain pairs



Results on Morph II dataset
 Four domains: White Female, White Male, Black Female, Black Male

 Target size: number of training images in target domain

 Comparison
► LBP: no subspace, 9280 dims. 
► (W)PCA: classic (whitened) PCA
► ML: metric learning first, then regr.
► JL: proposed, project to 32 dims.

 Conclusion
► PCA subspaces not effective
► ML needs more target data
► JL consistently improves others
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Conclusion

 Face representations
► Unsupervised: generic local feature aggregation outperforms 

landmark based methods
► Supervised: convolutional neural nets better than unsupervised, 

amount of training data important 

 Metric learning significantly improves performance 
► In particular for unsupervised methods
► Local metric learning can improve further

 Challenges 
► Dealing with occlusions of parts of the face
► Matching faces under big pose changes: frontal vs. profile
► Matching between sketches and photos
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