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Why learning from incomplete supervision?

 Fully supervised training requires costly bounding box annotations 

 Weakly supervised learning only uses image-wide labels
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 Experimental evaluation and analysis
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Challenging factors in object detection

 Intra-class appearance variation 
► Deformable objects: e.g. animals
► Transparency: e.g. bottles
► Sub-categories: e.g. ferry vs yacht 

 Scene composition 
► Heavy occlusions: e.g. tables and chairs
► Clutter: coincidental image content present

in bounding box

 Imaging conditions 
► viewpoint, scale, lighting conditions



Representations

 Need for strong appearance features to separate classes despite 
strong intra-class variability and subtle inter-class variations
► Consider deformability of cats and dogs
► Similarity between furry cats and dogs in the similar poses

 Fischer vector representation

[Sanchez et al., IJCV, 2013]
► Local SIFT descriptors, PCA to 64 dim.
► 64 component GMM for soft quantization
► Record first and second order moments

of features assigned to each Gaussian
► 4x4 SPM grid, power and L2 normalization
► 140K dimensional descriptor
► PQ compression to reduce storage cost 



Representations

 Need for strong appearance features to separate classes despite 
strong intra-class variability and subtle inter-class variations
► Consider deformability of cats and dogs
► Similarity between furry cats and dogs in the similar poses

 Global Convolutional Neural Network feature

[Jia et al., caffe.berkeleyvision.org]
► Trained on 1000 ImageNet 2012 categories
► Caffe framework
► Use last shared layer for representation
► Resize detection windows to 224x224 pixels
► L2 normalization
► 4K dimensional descriptor



A typical object detection system

 Training a binary classifier that will score object windows
► Positives given by manual annotation (hundreds to thousands)
► Potential pool of negatives outside positive boxes (zillions)

 Repetitive access to find useful/hardest negative samples
 Store or re-extract feature vectors of these examples

 At test image, classify windows of different shapes and sizes
► Detection speed proportional to number of considered windows 



Issues with classic scanning windows

 Number of detection windows in an image is huge
► Quadratic in image size

 Features are expensive to evaluate

 Features are expensive to store

 Alternatives to dense exhaustive 

search are needed



Alternatives to exhaustive sliding window search

 Branch-and-bound techniques 



Alternatives to exhaustive sliding window search

 Branch-and-bound techniques 
► Imposes requirements on type of classifiers / features

[Lampert, Blaschko, Hofmann, PAMI 2009]

 Feature cascades
► Requires set of fast features in early stages

[Viola & Jones, IJCV 2004]

 Coarse-to-fine search
► Requires compositionality of classifier score 

[Felzenszwalb, Girshick, McAllester, CVPR 2010]

 Data driven generic object hypotheses
► Consider boxes aligned with low-level image contours
► Does not impose constraints on classifiers / features

[Alexe, Deselaers, Ferrari, CVPR 2010]



Search: restricted scanning of bounding box space

 Selective search method [Uijlings et al., IJCV, 2013]
► 1000 - 2000 windows per image
► Covers over 95% of true objects with sufficient accuracy
► Unsupervised multi-resolution hierarchical segmentation
► Candidate detections generated as bounding box of segments

 Candidate windows used for hard negative mining and testing

 Feature compression using PQ codes and lossless compression
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Why learning from incomplete supervision?

 Fully supervised training requires costly bounding box annotations 

 Weakly supervised learning only uses image-wide labels



Learning from incomplete supervision

 Joint identification problem: recognition model and training instances

 Alternating optimization: fix one, optimize the other



State-of-the-art weakly-supervised detector training

 Vast majority of work relies on 
multiple-instance learning 

Pandey & Lazebnik 2011, Siva et al. 
2011, 2012, 2013, Russakovsky et al. 
2012, Shi et al. 2013, ...

 Approaches vary in terms of
► Initialization strategy
► Object descriptors and detector
► Utilization of pair-wise window 

similarities

 Some alternative recent approaches 
are based on topic models

Shi, Hospedales, Xiang, ICCV 2013. 
Wang, Ren, Huang, Tan, ECCV 2014.



Multiple instance learning

 Examples come in labeled “bags”

Dietterich et al., Artif. Intell., 1997
► Selective search gives ~1500 

windows per image = bag
► Positive images contain at 

least one positive window 
► Negative images only have 

negative windows in the bag

 Multiple Instance SVM

Andrews et al., NIPS 2002
► Initialize initial selection of 

samples from positive bags
► Train SVM with selection
► Select top scoring sample in 

each positive bag
► Repeat until convergence



Problems in standard multiple instance learning

 MIL gets stuck at poor local optima
► Non-convex optimization problem

 Windows used in training get higher score than other windows
► Biased towards re-localizing on the training windows



Problems in standard multiple instance learning

 Linear SVM classifier score is weighted sum of dot products

 Fisher Vector descriptors are near-orthogonal = near zero dot product
► But recall that descriptors are unit normalized

 Linear SVM scores much higher for windows used in training
► This causes the degenerate re-localization behaviour

wT x=∑i
αi(x i

T x)



Problems in standard multiple instance learning

 MIL gets stuck at poor local optima
► Non-convex optimization problem

 Windows used in training get higher score than other windows
► Biased towards re-localizing on the training windows



Solution: Multi-fold training for multiple instance learning

 Separate sets of positive images for training and re-localization
► Negative images do not need to be split, since no relocalization there

 Repeat two steps
► Divide positive training images randomly into K folds
► For fold k = 1,...,K

 Train detector from all training images, except those in fold k
 Select top-scoring window in each positive image in fold k

 Avoids the re-localization bias since windows used for training and 
evaluation are always different



Solution: Multi-fold training for multiple instance learning



A quick look at standard and multi-fold training

 Separate sets of positive images for training and re-localization



The trouble with cats and dogs ...

 Weakly supervised learning can only be expected to learn the most 
repetitive and discriminative patterns.

 These patterns may not correspond to the full objects, but to parts

 Exploited before in the context of fully supervised training
“The Truth About Cats and Dogs”, Parkhi et al., ICCV 2011.



… and our solution to cats and dogs

 Refinement of the output of the multi-fold training procedure

 Final detector trained using these refined hypotheses

 Exploit low-level (non-category) contour detection to promote windows 
aligning with contours



Object hypothesis refinement

 Edge-driven method to generate object hypotheses

“Edge Boxes”, Zitnick & Dollar, ECCV'14

 Promotes windows that 
► align with long contours, 
► few contours stradlle the window boundary

 Here used to re-assess windows using average of detection and 
objectness score, only considering top-10 detection windows
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Evaluations based on PASCAL VOC'07 benchmark



Evaluation of multi-fold training

 Standard detection AP on test set

 Localization performance on positive training images 
► Fraction of images with correct localization (CorLoc)

Deselaers et al., PAMI 2012

 Both averaged over all 20 classes

Standard Multi-fold

  CorLoc

FV 29.7 38.8 (+9.1)

CNN 41.2 45.0 (+3.8)

Detection AP

FV 15.5 22.4 (+6.9)

CNN 24.3 25.9 (+1.6)



Evaluation of multi-fold training

 CorLoc over the re-training / re-localization iterations

 Iteration n: n-th iteration after initialization from full image

 For both features: averaged over all 20 classes

 Multi-fold training improves both learning from both features
► 10 folds suffice
► 5 to 10 iterations suffice



Window refinement and combining features

 Refinement helps improves performance

 Combining features boosts performance

Refinement No Yes

CorLoc

FV 38.8 46.1 (+7.3)

CNN 45.0 54.2 (+9.2)

FV+CNN 47.3 52.0 (+4.7)

Detection AP

FV 22.4 23.3 (+0.9)

CNN 25.9 28.6 (+2.7)

FV+CNN 27.4 30.2 (+2.8)



Analysis: The relation between CorLoc and detection AP

 Relation between localization during training and final test performance
► Very highly correlated, similar coefficient for both features 



Analysis: The relation between CorLoc and detection AP

 Relative performance of weakly supervised learning with respect to 
performance with full supervision
► Ratio of AP with weak vs full supervision
► Stable performance when CorLoc is > 40%, around 80% relative
► Smaller CorLoc results in rapid deterioration



Analysis: What type of errors are made?

 More correct localization with multi-fold training

 Less overshoot of true object for multi-fold training, more undershoot

 Refinement fixes “undershoot” cases 

  Complete failure (<10%) relatively rare: explains robustness



Analysis: what makes weakly supervised learning hard ?

 Performance for the shades of grey between fully and weakly 
supervised learning scenario

 The two most critical factors for performance
► Getting one example right per positive image
► Hard-negative mining on positive images



Comparison the recent state of the art

 Separation between methods based on whether they leverage external 
training data to learn CNN features

 Improvements over the state of the art without external training data

 With external training data: comparable to best methods [Wang et al.,'14]



Summary and outlook

 State-of-the-art weakly supervised object detection performance
► Strong appearance cues for recognition: FV and CNN descriptor
► Re-localization bias suppression: Multi-fold MIL training
► Recognition and localization decoupling: hypothesis refinement

 From here on forward:
► Dealing with noise on the image labels (eg google-image download)
► Concurrent training of categories: leverage explaining away
► Richer interactions between recognition and segmentation

 Relevant publications
► “Multi-fold MIL training for weakly supervised object localization”, CVPR'14
► Journal paper under review: CNN features and refinement
► PhD thesis Gokberk Cinbis, 2014: “Fisher kernel based models for image

classification and object localization”
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