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Penalized least squares

Summary
• Model formulation and basic notation

• Penalties

• Shrinkage estimation

• A closer look at Lasso, Bridge and SCAD estimators

• Some computational issues

• Asymptotics
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Least squares
Consider the standard linear regression model

Yi = β0 + β1x1i + · · ·+ βpxpi + εi

= xT
i β + εi (i = 1, . . . , n).

Assume that the predictors are centered, so we can estimate β0 by Ȳ and
focus on estimation of remaining parameters β.

These parameters can be estimated by least squares (LS) or possibly some
other more robust method.
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Minimize ‖Y− Xβ‖2. The solution is known to be

β̂ = (XTX)−1XTY.

• a possibility of collinearity in the design; this leads to increased
variability in estimation.

• large number of predictors (relative to number of observations); this
increases the possibility of overfitting.

A shrinkage approach will often result in estimates of the regression
coefficients that, while biased, are lower in mean squared error and are
more close to the true parameters.
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How?
A good approach to shrinkage is penalized least squares estimation. The
use of a criterion function with penalty has a long history which goes back
to Whittaker (1929) and Tikhonov (1963).

A general form of penalized least squares is

n

∑
i=1

(yi − xT
i β)2 +

p

∑
j=1

ρλ(|β j|)

From the least squares loss a so-called ‘penalty’ is added, that discourages
regression coefficients to become large.
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Penalty functions
Several penalty functions have been used in the literature.

• The L2 penalty ρλ(β) = λ|β|2 yields a ridge type regression

• The L1 penalty ρλ(β) = λ|β| results in LASSO (first proposed by
Donoho and Johnstone (1994) in the wavelet setting and extended by
Tibshirani (1996) for general least squares settings).

• More generally, the Lq (0 ≤ q ≤ 1) leads to bridge regression (see Frank
and Friedman (1993), Ruppert and Carroll (1997), Fu (1998), Knight and
Fu (2000), Yu and Ruppert (2001)).
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Conditions on ρ

Usually, the penalty function ρ is chosen to be symmetric and increasing on
[0, +∞). Furthermore, ρ can be convex or non-convex, smooth or
non-smooth.

A good penalty function should result in a estimator with the following
three properties (Antoniadis & Fan, 2001):

• Unbiasedness : The resulting estimator is nearly unbiased when the
true unknown parameter is large to avoid excessive estimation bias

• Sparsity : Estimating a small coefficient as zero, to reduce model
complexity

• Continuity : The resulting estimator is continuous in the data to avoid
instability in model prediction
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Generalities
Convex penalties (e.g. quadratic penalties)

• make trade-offs between bias and variance

• can create unnecessary biases when the true parameters are large

• parsimonious models cannot be produced

Nonconcave penalities

• select variables and estimate coefficients of variables simultaneously

• e.g. hard thresholding penalty (HARD, Antoniadis 1997)

ρλ(|β|) = λ2 − (|β| − λ)2 I(|β| < λ)
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Discussion
In the orthogonal design case, and for penalties that are symmetric and
increasing on [0, +∞), differentiable everywhere except perhaps at β = 0
some necessary conditions for unbiasedness, sparsity and stability have
been derived by Nikolova (2000) and Antoniadis and Fan (2001).

• unbiasedness↔ ρ̇(|β|) = 0 for large |β|

• sparsity↔ |β|+ λρ̇(|β|) ≥ 0

• stability↔ argmin{|β|+ λρ̇(|β|)} = 0

From the above, a penalty satisfying the conditions on sparsity and stability
must be non-smooth at 0.
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Why?
Roughly the penalized estimator minimizes

(z− θ)2/2 + λρ(|θ|)

By the assumptions, the solution θ̂ is an antisymmetric function of z and can
be located either at θ = 0 or at a zero θ = τ of the derivative of the criterion,
i.e.

z = τ + λρ̇(τ)

Because τ and ρ̇(τ) have the same sign, we have |τ| ≤ |z| (shrinkage).
Moreover τ = z + λρ̇(|β|) + o(ρ̇(|β|)) as |β| → ∞.
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SCAD

Penalty functions

Convex penalties (e.g. quadratic penalties)
make trade-offs between bias and variance
can create unnecessary biases when the true parameters are
large
parsimonious models cannot be produced

Nonconcave penalities
select variables and estimate coefficients of variables
simultaneously
e.g. hard thresholding penalty (HARD, Antoniadis 1997)

pλ(|θ|) = λ2 − (|θ|− λ)2I (|θ| < λ)

with thresholding rule

θ̂ = z · I (|z | > λ)
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Penalty functions

Related approaches

Bridge regression (Frank & Friedman, 1993) which minimizes∑
(yi − β0 −

∑
j βjxij)2 subject to

∑d
j=1 |βj |γ ≤ t with γ ≥ 0.

Nonnegative garotte (Breiman, 1995), which minimizes∑
(yi − β0 −

∑
j cjβjxij)2 under the constraint

∑
cj ≤ s

where {β̂j} are the full-model OLS coefficients.

Elastic net (Zou & Hastie, 2005), where the penalty is a
convex combination of the lasso and ridge penalty.

Relaxed Lasso (Meinshausen, 2005).

Axel Benner Statistical Learning for Analyzing Functional Genomic Data

SCAD penalty

Smoothly Clipped Absolute Deviation (SCAD; Fan, 1997)
satisfies all three requirements (unbiasedness, sparsity,
continuity)
is defined by

p′
λ(|θ|) = λ

{
I (|θ| ≤ λ) +

(aλ− |θ|)+
(a− 1)λ

I (|θ| > λ)

}
, a > 2

with thresholding rule

θ̂(z) =






sgn(z)(|z |− λ)+, |z | ≤ 2λ
{(a− 1)z − sgn(z)aλ} /(a− 2), 2λ < |z | ≤ aλ
z , |z | > aλ

Axel Benner Statistical Learning for Analyzing Functional Genomic Data

Selected penalty and thresholding functions
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Shrinkage (related approaches)
Many penalization methods developed recently achieve shrinkage and
variable selection.

• Nonnegative garrote (Breiman, 1995), which minimizes
∑(yi − β0 −∑j cjβ jxij)2 under the constraint ∑ cj ≤ s. The solution may
be written as β̂ = Cβ̂ols where C ≥ 0 and diagonal and Trace(C) ≤ s.
Making s small will cause some coefficients to be exactly zero. However
the solution depends on both the sign and the magnitude of the OLS
coefficients.

• Elastic net (Zou & Hastie, 2005), where the penalty is a convex
combination of the lasso and ridge penalty.

• Relaxed Lasso (Meinshausen, 2005).
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Smoothly Clipped Absolute Deviation
To overcome LASSO’s limitations Fan (1997) proposed the SCAD penalty
function defined by

ρ̇λ(|θ|) = λ

{
I(|θ| ≤ λ) +

(aλ− |θ|)+

(a− 1)λ
I(|θ| > λ)

}
, a > 2

with thresholding rule

θ̂(z) =


sgn(z)(|z| − λ)+, |z| ≤ 2λ

{(a− 1)z− sgn(z)aλ}/(a− 2), 2λ < |z| ≤ aλ

z, |z| > aλ.

It satisfies all three requirements (unbiasedness, sparsity and continuity).
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SCAD
The SCAD penalty corresponds to a quadratic spline

ρλ(|θ|) =


λ|θ|, |θ| ≤ λ

− (|θ|2−2aλ|θ|+λ2)
2(a−1) , λ < |θ| ≤ aλ

(a+1)λ2

2 , |θ| > aλ.

• Computation of the SCAD estimates can be done via Newton-Raphson.

• The SCAD function has a similar form as the L1-penalty for small
coefficients, but for larger coefficients, SCAD applies a constant penalty
in contrast to the LASSO penalty which increases linearly with the
coefficient.
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Nonparametric regression
Regularization/shrinkage estimation is also common in nonparametric
regression; for example, assume the model

Yi = g(xi) + εi, i = 1, . . . , n,

where g is assumed to be smooth.

Assume that g can be approximated by a linear combination of basis
functions (e.g. B-splines, wavelets, . . . ):

g(x) ' β0 +
p

∑
k=1

βkφk(x)

To avoid overfitting, one then adds a penalty term to the LS criterion

n

∑
i=1

(
Yi − β0 −∑

k
βkφk(xi)

)2

+ ρλ(β).



Penalized least squares

LASSO and BRIDGE
For some λ > 0 and γ > 0, β̂ minimizes

n

∑
i=1

(
Yi − xT

i β
)2

+ λ
p

∑
j=1
|β j|γ

I will concentrate on 0 < γ ≤ 1:

• γ = 1 (LASSO)

• γ ↓ 0 (Model selection methods, e.g. AIC, BIC).

The objective function is non-convex for γ < 1, and if λ is sufficiently large
exact zero estimates will result.
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Computational issues
Problem: How to minimize

n

∑
i=1

(
Yi − xT

i β
)2

+ λ
p

∑
j=1
|β j|γ

efficiently?

γ = 1 . Several algorithms are available:

• quadratic programming algorithms (Tibshirani, 1996).

• primal-dual algorithm (Osborne, Presnell & Turlach, 1998)

0 < γ < 1 . The problem seems to become much more difficult because

• objective function is not differentiable everywhere.

• multiple local minima can exist (because of nonconvexity).
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The one variable problem
But. . . the one variable problem is feasible to solve: Define

h(x) = x2 − 2bx + λ|x|γ.

Then argmin(h) ∈ [0, b]. Moreover argmin(h) = 0 iff λ ≥ λcrit(γ, b).
Othewise, x̂ = argmin(h) satisfies

ḣ(x̂) = 2x̂− 2b + λγ
|x̂|γ

x̂
= 0

which can be solved by Newton-Raphson or fixed-point iteration.
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Example
Consider the function

h(x) = x2 − 2bx + |x|1/2.

Then argmin(h) = 0 if b < (27/32)1/3 = 0.9449408.

If b > (27/32)1/3 = 0.9449408 then x̂ = argmin(h) satisfies

2x̂− 2b +
|x̂|1/2

2x̂
= 0

which can be solved via
x̂(0) = b

x̂(k) = b− |x̂
(k−1)|1/2

4x̂(k−1)
, k = 1, 2, . . . .
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Backfitting

Recall we want to minimize g(β) = ∑n
i=1
(
Yi − xT

i β
)2 + λ ∑

p
j=1 |β j|γ

A possible solution is to minimize g iteratively on variable at a time
( backfitting ). Assume for simplicity that Ȳ = 0 (or replace Yi by Yi − Ȳ
below).

(0) Initialize: Centre and scale covariates to have mean 0 and variance 1.

Using standardized covariates, define initial β̂ = β̂
ols

; set k← 1.

(1) Define:

gk(βk) =
n

∑
i=1

(
Yi −∑

j 6=k
β̂ jxji − βkxki

)2

+ λ|βk|γ

and set β̂k = argmin(gk).

(2) If k < p, set k← k + 1; else set k← 1.

(3) Repeat (1), (2) until convergence occurs.
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Remarks
• This algorithm works very well if the design is not too collinear.

Otherwise, it can get stuck in local minima - estimates get send to 0 too
quickly and then can’t get out.

• Non-convergence can be resolved by either trying multiple starting
points or by introducing relaxation factors to send estimates to 0 more
slowly.
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Asymptotics (fixed p)
Consider asymptotic distributions of estimators β̂n minimizing

Q(β) =
1
2

n

∑
i=1

(Yi − xT
i β)2 + n

p

∑
j=1

pλ(|β j|).

Several basic reasons to consider asymptotics of estimators:

• gives some insight to the properties of the estimators;

• provides a basis for inference;

• suggests approaches to choosing λ.

In order to get non-trivial results, we need to assume that λ→ 0 and√
nλn → ∞ as n→ ∞.
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Design conditions
Assume that

Cn =
1
n

n

∑
i=1

xixT
i → C

with C non-singular.

Moreover, if β0 denotes the true value of the parameter, let λn → 0 as
n→ ∞ and let

an = λn max{|ψ̇(|β0j|)|; β0j 6= 0} and bn = λn max{|ψ̈(|β0j|)|; β0j 6= 0}

Then if bn → 0, then there exists a local minimizer β̂ of Q(β) such that

‖β̂− β0‖ = OP(n−1/2 + an).

It is clear that by choosing λn approprietely, there exists a root-n consistent
estimator.
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Proof
Let αn = n−1/2 + an. The result will follow if for any ε > 0, there exists a
large enough constant Cε such that

P{ inf
‖u‖=Cε

Q(β0 + αnu) > Q(β0)} ≥ 1− ε.

Let
Wn(u) := Q(β0 + αnu)−Q(β0).

Recall that ψλ(0) = 0.
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Proof (next)
A Taylor’s expansion of ψ gives :

Wn(u) ≥ 1
2

nα2
nuTCu− αnuTXT(Y− Xβ0)

+nλn

s

∑
j=1
{ψλn(|β j0 + αnuj|)− ψλn(|β j0|)},

where s denotes the number of non-zero components of β0.

By the law of large numbers we have that

XT(Y− Xβ0) = OP(
√

n).
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Proof (next)
The first term on the right hand side of the above equality is of the order
OP(n1/2αn) and the second term of the order OP(nα2

n). By choosing a
sufficiently large Cε the first term dominates the second one, uniformly in u
such that ‖u‖ = Cε.

Now the third term is bounded above by
√

sn‖u‖anαn + nα2
nbn‖u‖2,

which is also dominated by the first term of order OP(n1/2αn).

By choosing therefore a large enough Cε the result follows •
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Oracle Property
Assume that the true vector of coefficients β0 is sparse. Without loss of
generality write β0 = (βT

1 , βT
2 )T with β2 = 0.

Assume that
√

nλn → +∞, then again there exists a local minimizer β̂ of
Q(β) such that

β̂2 = 0

and
‖β̂1 − β1‖ = OP(n−1/2 + an).

Moreover the estimator is asymptotically normal.
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Asymptotics when p→ ∞
Allowing the dimension to grow as the sample size increases allows a better
control of the approximation bias.

(a) lim infβ→0+ ψ̇(β) > 0

(b) an = O(n−1/2)

(c) an = o
(
(npn)−1/2

)
(d) bn = max1≤j≤pn{|ψ̈(|β j|)|; β j 6= 0} → 0

(e) bn = oP(p−1/2
n )

(f) There exist C and D such that when x1 and x2 > Cλn,

λn|ψ̈(x1)− ψ̈(x2)| ≤ D|x1 − x2|.

Under such conditions all results extend to the case with pn → ∞.
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Choosing the hyperparameters
Goal : Choose λ (eventually a also)

• SCAD penalty : θ = (λ, a)

• LASSO penalty : θ = λ

Five Fold Cross-Validation : Minimize with respect to θ

CV(θ) =
5

∑
ν=1

∑
(xk ,yk)∈Tν

{yk − xT
k β̂

(ν)(θ)}2

Generalized Cross-Validation : Minimize with respect to θ

GCV(θ) =
‖Y− Xβ(θ)‖2

n(1− e(θ)/n)2

where e(θ) = Trace(X(XTX + nV(β(θ))−1XT)
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Penalized Model-Based Clustering
Variable selection in clustering analysis, especially for “high dimension, low
sample size” data, is both challenging and important.

• Clustering applications with large number of features: Text
categorization, genomic microarray analysis

• Noisy features can lead to misleading clusters

• There is no clear-cut criterion function for feature selection in
unsupervised learning
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Setup
Specifically, given n p-dimensional observations xj = (xj1, . . . , xjp)T for
j = 1, . . . , n we aim to group the data into a few, say K , clusters such that
the observations in the same cluster are more similar to each other than
those from different clusters.

In this context, some of the attributes xjk’s of xj may not be relevant: use of
such attributes only introduces noise, and may impede uncovering the
clustering structure of interest. In addition, removing non-informative
attributes may largely enhance interpretability.
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Example

Optimal feature subset is inter-related with the number of clusters. The
optimal feature subset is {x1, x2}, {x2}, {x1} if we assume there are 3, 2 and
1 cluster(s), respectively.
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Model-based clustering
Model-based clustering (McLachlan and Peel, 2002; Fraley and Raftery,
2002) assumes that data come from a finite mixture model with each
component corresponding to a cluster.

Each observation x is drawn from a finite mixture distribution

f (x, Θ) =
K

∑
k=1

πk fk(x, θk),

with the mixing proportion πk, component specific distribution fk and its
parameters θk.

Denote by Θ = {(πk, θk), k = 1, . . . , K} all unknown parameters, with
restriction that 0 ≤ πk ≤ 1 and ∑ πk = 1.

Each component of the mixture distribution corresponds to a cluster. The
number of clusters, K, has to be determined in practice. In the sequel, we
focus on a mixture of Gaussians for clustering.
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The mixture density
We assume that each observation xj, j = 1, . . . , n, is drawn from a finite
Gaussian mixture

f (xj) =
K

∑
k=1

πk fk(xj; µk, Σk),

where µk is the mean vector of the Gaussian distribution characterizing the
kth cluster and Σk is the corresponding covariance matrix.

We will assume that features are conditionally independent given the
component label, i.e. that each Σk is a diagonal matrix, and that the Σk’s are
the same across different clusters. A theoretical justification of such an
assumption can be found in Bickel and Levina (2004).

Advantages of this approach is that there is no need to specify the number
of components, K.
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Assignment
Given an observation x∗ one computes the probability that x∗ is from the kth
cluster

pk =
πk

∏
p
j=1(2πσ2

j )1/2
exp

(
−

p

∑
j=1

(x∗j − µkj)2

2σ2
j

)
, k = 1, . . . , K,

and x∗ will be assigned to the cluster with the largets pk.

Given the data xj, j = 1, . . . , n, the log-likelihood function is

`0(Θ) =
n

∑
j=1

log

(
K

∑
k=1

πk fk(xj; µk, Σ)

)
.

Maximization of the above log-likelihood with respect to Θ is difficult, and
it is common to use the EM algorithm (Dempster et al., 1977) by casting the
problem in the framework of missing data.
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Penalized EM
Define zkj as the indicator of whether xj is from component k; If the missing
data zkj’s could be observed, then the log-likelihood for the complete data is:

`(Θ) =
n

∑
j=1

K

∑
k=1

zjk(log πk + log fk(xj; µk, Σ))

With the same motivation as in penalized regression, we propose a
penalized model-based clustering approach resulting in automatic variable
selection.

Specifically, we regularize `(Θ) to yield a penalized log-likelihood:

`ψ(Θ) = `(Θ) +
K

∑
k=1

p

∑
i=1

ψλ(|µik|)

where ψλ is a penalty function with penalization parameter λ.
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The indicator variables zik are not observed and an EM algorithm for the
penalized model-based clustering can be derived closely following from
that for standard model-based clustering (McLachlan and Peel, 2002) and
the general methodology for penalized likelihood (Green, 1990).

The only difference exists in estimating the means µjk’s in the M-step.

In practice, we need to determine the number of components, K. This is
realized by first fitting a series of models with various numbers of
components, and then using a model selection criterion to choose the best
one. For standard model-based clustering, it is common to use Bayesian
information criterion (BIC) (Schwarz, 1978).
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Choosing K and λ

For penalized model-based clustering, in addition to K , we also have to
choose an appropriate value of penalization parameter λ;.

One difficulty in using the BIC criterion is that it is not always clear what is
the dimension of the parameter space in a penalized model.

Following a conjecture of Efron et al. (2004) and a result of Zou et al. (2004)
for L1-penalized regression, we treat this dimension as the number of
non-zero parameter estimates, modifying BIC for penalized model-based
clustering.



Penalized least squares

References
Antoniadis, A. (1997) Wavelets in Statistics: A Review (with discussion),
Journal of the Italian Statistical Association, 6, 97-144.

Antoniadis, A. and Fan, J. (2001). Regularization of wavelets
approximations (with dis- cussion). Journal of American Statistical Association,
96, 939967.

P.J. Bickel, and E. Levina. (2004) Some theory for Fishers linear discriminant
function, naive Bayes, and some alternatives when there are many more
variables than observations. Bernoulli, 10:989-1010.

Efron B, Hastie T, Johnstone I, Tibshirani R. (2004). Least angle regression.
Annals of Statistics 32, 407-499.

Fan, J. (1997) Comment on Wavelets in Statistics: A Review by A.
Antoniadis. Journal of the Italian Statistical Association, 6, 131-138.

Fan, J., and Li, R. (2001) Variable selection via nonconcave penalized
likelihood and its oracle properties. JASA, 96. 1348-1360.



Penalized least squares

McLachlan, G.J. and Basford, K.E. (1988). Mixture Models: Inference and
Applications to Clustering. New York: Marcel Dekker.

Tibshirani (1996). Regression shrinkage and selection via the Lasso. JRSS-B.

Zou H, Hastie T, Tibshirani R. (2004). On the Degrees of Freedom of the
Lasso. Technical report, Statistics dept, Stanford University.
http://stat.stanford.edu/ hastie/pub.htm.


