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Abstract

In this paper we present two contributions to improve
accuracy and speed of an image search system based on
bag-of-features: a contextual dissimilarity measure (CDM)
and an ef�cient search structure for visual word vectors.

Our measure (CDM) takes into account the local distri-
bution of the vectors and iteratively estimates distance cor-
recting terms. These terms are subsequently used to update
an existing distance, thereby modifying the neighborhood
structure. Experimental results on the Nistér-Steẃenius
dataset show that our approach signi�cantly outperforms
the state-of-the-art in terms of accuracy.

Our ef�cient search structure for visual word vectors
is a two-level scheme using inverted �les. The �rst level
partitions the image set into clusters of images. At query
time, only a subset of clusters of the second level has to be
searched. This method allows fast querying in large sets
of images. We evaluate the gain in speed and the loss in
accuracy on large datasets (up to 1 million images).

1. Introduction

In this paper we address the problem of �nding images
containing the same object or scene seen from different
viewpoints, with different background and occlusion. Ini-
tial approaches used simple voting based techniques [9, 10].
More recently they were extended based on the bag-of-
features image representation [12, 14]. Our paper builds
upon these approaches and presents two contributions.

First, we introduce a contextual dissimilarity measure
(CDM) which takes into account the neighborhood of a
point. This measure is iteratively obtained by regularizing
the average distance of each point to its neighborhood. Our
CDM is learned in a unsupervised manner, in contrast with
a large number of works which learn the distance measure
from a set of training images [2, 4, 6, 16]. However, in
the context of a large database, supervised learning is sim-
ply too time consuming. Furthermore, in contrast to cat-
egory classi�cation where class members are clearly de-
�ned and represented by a suf�ciently large set, this does
not necessarily hold in our case. Note that the different

weighting schemes from text retrieval, namely the term fre-
quency/inverse document frequency weighting [13], can be
seen as a simple way to improve the distance [12, 14] in an
unsupervised manner. Experimental results show that the
gain due to our distance is signi�cantly higher that the one
due to a weighting scheme. Note that the two approaches
can be combined.

Second, we introduce an ef�cient search technique for
visual word vectors. There is a large body of approximate
search techniques [1, 3, 5]. A few works have addressed
this problem in computer vision. For example, Nistér et
Steẃenius [12] propose an ef�cient method to assign de-
scriptors to visual words based on a hierarchicalk-means
approach. Similarly, Moosmann et al. [11] use a forest of
random trees to rapidly and precisely assign descriptors to
clusters. However, to our knowledge nobody has addressed
the problem of rapidly accessing visual word frequency vec-
tors. The inverted �le system [12, 14, 17] avoids compar-
ing the feature vectors individually by storing for each vi-
sual word the set of image references in which this visual
word appears. However, this approach is still linear in the
number of images in the dataset. In contrast our approach
subdivides the dataset into a number of subsets and uses a
two-level inverted �le system. The subdivision is based on a
k-medoids algorithm which preserves the sparsity of the vi-
sual word vectors and is compatible with the CDM. We �rst
search for the most similar cluster(s) represented by their
centers and then search through the set of images belonging
to the cluster. In our experiments we measure the trade-off
between the number of clusters considered and the accu-
racy. A good accuracy is observed when searching through
a small number of closest clusters.

This paper is organized as follows. Section 2 reviews
the bag-of-words image retrieval approach of [14] and de-
scribes some variants. The CDM design is described in Sec-
tion 3 and the clustering-based strategy that improves the
ef�ciency in Section 4. The relevance of the approach and
the parameter analysis is shown in Section 5.



2. Overview of the image search scheme

In the following, we present the different steps of our
image search framework, similar to [14].

Descriptors: The n database images are described with
local descriptors. We combine the SIFT descriptor [9]
with the af�ne Hessian region extractor [10]. As a vari-
ant, the128-dimensional SIFT descriptors are reduced to
36-dimensional vectors with principal component analysis
(PCA), similar to [8].

Visual words: The visual words quantize the space of de-
scriptors. Here, we use thek-means algorithm to obtain the
visual vocabulary. Note that, although the generation of the
visual vocabulary is performed off-line, it is time consum-
ing and becomes intractable as the number of visual word
increases (> 100000). The fast hierarchical clustering de-
scribed in [12] allows the generation of such huge vocabu-
laries in a reasonable time.

Assigning the descriptors to visual words:Each SIFT de-
scriptor of a given imagei is assigned to the closest visual
word. The histogram of visual word occurrences is sub-
sequently normalized with the L1 norm, generating a fre-
quency vectorf i = ( f i; 1; : : : ; f i;k ). As a variant, instead
of choosing the nearest neighbor, a given SIFT descriptor is
assigned to thek-nearest visual words. This variant will be
referred to as multiple assignment (MA) in the experiments.

Weighting frequency vectors:The frequency vector's com-
ponents are then weighted using a strategy similar to the
one in [12]. Denoting byn the number of images in the
database and bynj the number of images containing thej th

visual word, thej th componentwi;j associated with image
i is given by

wi;j = f i;j log
n
nj

: (1)

The resulting visual word frequency vectorwi =
(wi; 1; : : : ; wi;j ; : : : ; wi;k ), or simply visual word vector, is
a compact representation of the image.

Distance: Searching similar images in the database
amounts to computing the visual word vectorwq of the
query and to �nding the description vector(s)wi minimiz-
ing d(wq; wi ); where the relationd(�; �) is a distance on the
visual word vector space. Note that the weighting scheme
previously described can be seen as part of the distance def-
inition.

Our contextual dissimilarity measure described in Sec-
tion. 3, operates at this stage. It updates a given distance
d(�; �), e.g., the Manhattan distance, by applying a weight-
ing factor � i that depends on the vectorwi to which the
distance is computed:

CDM(wq; wi ) = d(wq; wi ) � i : (2)
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Figure 1. Toy example: the 3-nearest neighbors of vector 5 without
and with CDM. The circles depict the average distances of the
vectors 3 and 5 to their neighborhood.

The distance update term� i is computed off-line for each
visual word vector of the database. The extra-storage re-
quired to store this scalar is negligible.

Ef�cient search: The distance computation is optimized
with an inverted �le system exploiting the sparsity of the
visual word vectors [17]. Such an inverted �le can be used
for any Minkowski norm [12] when the vectors are of unit
norm. For huge vocabulary sizes, the hierarchical cluster-
ing proposed in [12] greatly reduces the cost of assigning
the descriptors to visual words.

Note, however, that the visual word vector search com-
plexity remains linear with the database size. This is the
critical step for huge databases, as the steps extraction and
assignment of the SIFT descriptors do not depend on the
database size. The clustering approach proposed in Sec-
tion 4 reduces this complexity, hence decreasing the search
time by an order of magnitude.

3. Contextual dissimilarity measure

Let us consider Fig. 1. On this toy example vector 3 is a
3-nearest neighbor of vector 5, but the converse is not true.
This observation underlines the fact that the neighborhood
relationship is not symmetric in ak-nearest neighbor frame-
work. By contrast, it is the case in an"-search framework.

The dissimilarity measure described in this section im-
proves the symmetry of thek-neighborhood relationship by
updating the distance, such that the average distance of a
vector to its neighborhood is almost constant. This regular-
ization is performed in the spirit of a local Mahalanobis dis-
tance for each vector. Indeed, assuming all the directions to
be equivalent, the average distance computed on the neigh-
borhood can be thought of as a local variance computed for
each vector. Furthermore, assuming a Bayesian framework,
the distance to a vector can be thought of as a likelihood.
In order to push further the similarity, one would have to
give an interpretation to the iterative CDM construction pro-
posed in 3.2.

Let us consider the neighborhoodN (i ) of a given visual
word vectorwi and# N (i ) the cardinal of this set (which is



a constant within thek-nearest neighbors framework). The
quantity de�ned hereafter, and referred to as theneighbor-
hood symmetry rate, is an objective measure of the notion
of neighborhood symmetry:

s =
1
n

X

w i

1
# N (i )

X

w j 2N ( i )

sym(wi ; wj ); (3)

where thesym(wi ; wj ) = 1 if wi is a neighbor ofwj and
wj is a neighbor ofwi , 0 otherwise. By de�nition, the sym-
metry rate is maximized in the"-search framework, due to
the distance symmetry property. Although we believe that
such a perfect neighborhood symmetry is not likely to be
properly enforced in the framework ofk-nearest neighbors
search, it can improve.

In the rest of this section, we �rst introduce the update
procedure of the dissimilarity measure. This �rst step of the
procedure, by itself, produces a new dissimilarity measure
(non-iterative approach). The proposed CDM is then ob-
tained by iterating this update step until a stopping criterion
is satis�ed.

3.1. Non-iterative approach

Let us consider the neighborhoodN (i ) of a given visual
word vectorwi de�ned by its# N (i ) = nN nearest neigh-
bors. We de�ne the neighborhood distancer (i ) as the mean
distance of a given visual word vectorwi to the vectors of
its neighborhood:

r (i ) =
1

nN

X

x 2N ( i )

d(wi ; x); (4)

whered(�; �) is a distance or dissimilarity measure, e.g. the
distance derived from the L1-norm. The quantityr (i ) is
shown in Fig. 1 by the circle radii. It is computed for each
visual word vector and subsequently used to de�ne a �rst
dissimilarity measured� (:; :) between two visual word vec-
tors:

d� (i; j ) = d(i; j )
�

�r 2

r (i )r (j )

� �

; (5)

where0 < � < 1 is a smoothing factor and�r is the geomet-
ric mean neighborhood distance obtained by

�r =
Y

i

r (i )
1
n : (6)

This quantity is computed in the log domain. Note that the
arithmetic mean can be used as well and leads to similar re-
sults. The relationd� (�; �), referred to asnon-iterative con-
textual dissimilarity measure(NICDM), is not a distance:
although the symmetry and the separation axioms are sat-
is�ed, the triangular inequality does not hold. The nearest
neighbors of a given vectorwi can nevertheless be obtained
for this relation.

10000 visual words, CDM
1000 visual words, CDM

10000 visual words, NICDM
1000 visual words, NICDM
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Figure 2. Impact of smoothing factor� on the relevance for the
non-iterative (NICDM) and the iterative (CDM) approaches in the
case of 1000 and 10000 visual words. N-S dataset [15].

Note that in (5), the termsr (i ) and �r do not impact the
nearest neighbors of a given vector. They are used to ensure
that the relation is symmetric. The best values for the fac-
tor � have been experimentally observed to lie between0:4
and0:8, as shown in Fig. 2. The relevance is measure by
the equal error rate (EER). Its de�nition as well as the de-
scription of the Nist́er-Steẃenius dataset [12] (N-S dataset)
used here is detailed in the experimental section 5. Note
that� = 0 amounts to using the original distanced(�; �).

Let us now consider the impact of the approach on the
average distance of a given vectorwi to the others. This
impact is formalized by the following ratio:

Q
j d� (i; j )

Q
j d(i; j )

=

0

@
Y

j

�r 2

r (i )r (j )

1

A

�

: (7)

Together with the observation that
Q

j r (j ) = �r n ; we have

Q
j d� (i; j )

Q
j d(i; j )

=
�

�r
r (i )

� �n

; (8)

which in essence means that the NICDMd� (�; �) favors iso-
lated vectors (withr (i ) > �r ) and, conversely, penalizes vec-
tors lying in dense areas.

3.2. Iterative approach

The update of Eq. (5) is iterated on the new matrix of
dissimilarities. The rationale of this iterative approach is to
integrate the neighborhood modi�cation from previous dis-
tance updates. Denoting with a superscript(k ) the quantities
obtained at iterationk, we have

d(k+1) (i; j ) = d(k ) (i; j )
�

�r (k )

r (k ) (i )
�r (k )

r (k ) (j )

� �

: (9)



Note that, at each iteration, the new neighborhood distances
r (k ) (i ) are computed for each visual word vectorwi .

The objective of this iterative approach is to minimize a
function representing the disparity of the neighborhood dis-
tances, in other terms to optimize the homogeneousness of
the dissimilarity measures in the neighborhood of a vector.
This function, here de�ned as

S(k ) =
X

i

jr (k ) (i ) � �r (k ) j; (10)

is clearly positive. Its minimum is zero and satis�ed by the
trivial �xed-point of Eq. 9 such that

8i; r (i ) = �r: (11)

Let us de�ne a small quantity" > 0. As a stop-
ping criterion, the algorithm terminates when the inequality
S(k ) � S(k+1) > " is not satis�ed anymore. This ensures
that the algorithm stops within a �nite number of steps. In
practice, for" small enough, we observed that this criterion
led r (k ) (i ) to converge towards the �xed-point of Eq. (11).

At this point, we can only compute the CDM between
visual word vectors of the database, due to the iterative de-
sign of this distance. In order to compute directly the CDM
from the original distance, one has to maintain a cumulative
distance correcting term� (k )

i during iterations, as

� (k+1)
i = � (k )

i

�
�r (k )

r (k ) (i )

� �

: (12)

Denoting by� i the quantity� (k � 1)
i when the algorithm ter-

minates, it is easy to show that

dk (i; j ) = d(i; j ) � i � j : (13)

Thek-nearest neighbors of a given queryq are then the
minima given by

NN (q) = k-argminj d(q; j ) � j : (14)

Note that �nding the nearest neighbors of a query vector
wq does not require the knowledge of the update term as-
sociated withwq, as shown in Eq. 14. That's why we will
prefer the asymmetric version of the CDM to the one given
in Eq. 13, as

CDM(i; j ) = d(i; j ) � j : (15)

By default, the term CDM will be dedicated to the de�-
nition of the asymmetric measure CDM(�; �) of Eq. 15. The
advantage of this CDM is that it can be computed for a
query vector which is not in the database. One has just to
store together with a given database visual word vectorwi

the corresponding distance update terms(� i )1� i � n , which
in terms of storage overhead is clearly negligible.
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Figure 3. Evolution during iterations of the EER and the symmetry
rate (N-S dataset, neighborhood size=10,� = 0 :1).
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Figure 4. CDM: impact of the neighborhood size. N-S dataset.

3.3. Discussion

Symmetry rate:Fig. 3 shows the impact during iterations of
the distance update on the symmetry rate and the relevance
measured by the EER. As expected, the symmetry rate in-
creases jointly with the relevance. The factor� has been set
to 0:1 for illustration purpose, but note that by setting� to
0:5 the convergence is faster for identical results.

Impact of the parameters:Two parameters have to be set:
the neighborhood sizenN and the smoothing factor� .

Fig. 2 shows the impact of the smoothing factor� on the
performance for both the direct and the iterative approaches.
For the former, the best results are obtained for a value of
� lying between0:4 and0:8, with a maximum for� = 0 :6
approaching the performance of CDM. It also appears that
the EER behavior of the CDM is remarkably stable when
� < 0:8. This is the main advantage of the iterative ap-
proach over the direct approach, as in practice the algorithm
converges towards a set of distance correcting terms that do
not depend on� . We have �xed� = 0 :5 for all the experi-
ments in the following.
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Figure 5. Vector sparsityvsvocabulary size. N-S dataset.

Fig. 4 depicts the impact of the neighborhood size on
the performance of the iterative approach. Once again, the
sensitivity to this parameter is moderate. In the rest of this
paper, the sizenN has been �xed to10, although better re-
sults may be obtained by optimizing this quantity.

4. Ef�cient search for visual word vectors

Although for a database of several thousands of images,
�nding the closest visual word vectors is quite fast (about
0.15s for a database of 10200 images and 10000 visual
words), its search complexity is linear in the database size
and is the critical stage for huge databases.

In order to reduce the complexity, we propose a two-
level structure for ef�cient visual word search. The �rst
level consists in an inverted �le of medoids. The second
level is composed of the set of clusters, each of which being
searched by an inverted �le, as illustrated by Fig. 6.

4.1. Choice of the medoids

Two strategies are proposed to choose the medoids used
in the �rst level of the inverted �le. The �rst is based on
a k-medoids algorithm [7] clustering. The second simply
amounts to randomly extracting a subset of visual words.

In the context of visual word vectors clustering, thek-
medoids has several advantages over a simplek-means.
Firstly, by choosing representative visual word vectors as
centroids, the algorithm allows the exploitation of the in-
trinsic sparsity of visual word vectors. Indeed, the computa-
tion of the distance between two sparse vectors (or only one
sparse vector) is proportional to the number of non-zeros
components. This is especially useful for big visual vocab-
ularies for which the frequency vector sparsity is high, as
depicted in Fig. 5. Indeed, searching the nearest neighbors
of a given visual word vector query is at least 10 ten times
faster for 30000 visual words with a basic implementation
and even more if an ef�cient inverted �le structure is used.

query

entries

1

2

2

Figure 6. Illustration of our ef�cient search structure: 1) the in-
verted �le associated with entries is searched to �nd the bestk0

(here 2) clusters, 2) thek00nearest neighbors (here 2) are retrieved
using the inverted �les associated with thesek0 clusters.

By contrast, thek-means centroids, for which the centroids
are the means of a great number of vectors, have a rate of
non-zero components greater than 0.5. Therefore this algo-
rithm can not exploit the sparsity of the visual word vectors.

Secondly and still unlike thek-means algorithm, thek-
medoids clustering does not implicitly assume that the dis-
tance is Euclidean. It only needs the matrix of distances
between visual word vectors, hence allowing the use of the
Manhattan distance.

The bottleneck of thek-medoids algorithm is the prelim-
inary computation of the matrix of distances between image
frequency vectors. For very large datasets, we extract ran-
dom visual frequency vectors which serve as medoids. This
results in a moderate loss of accuracy.

4.2. Structure construction and querying

Fig. 6 illustrates our clustering-based ef�cient search
structure, which is constructed as follows:

� the medoids are extracted from the set of visual word
vectors, producing a set ofk medoids calledentries;

� an inverted �le is created for the entries and for each
of thek clusters.

For a given querywq, the search procedure illustrated in
Fig. 6 then amounts to performing the following steps:

� use the inverted �le of entries to �nd thek0 nearest
medoids of the query and the corresponding clusters ;

� for each of thek0 corresponding clusters, compute the
distances using the inverted �les, then return the list of
nearest neighbors.

The CDM is exploited at both stages of the search pro-
cedure by simply applying the distance update factors� i to
the distances computed by the inverted �les.

Assuming that the clusters are balanced and that the
computational cost of searching within an inverted �le is
roughly linear in the number of elements stored, the com-

plexity of the search is inO
�

k + n k 0

k

�
; where the integers



k, k0 andn respectively denote the number of medoids, the
number of clusters parsed and the total number of vectors.
Assuming in addition that the number of clustersk is small
in comparison with the sizen and that the clusters contain
the same number of vectors, then the search cost is approx-
imately divided byk=k0.

4.3. Approximate NICDM/CDM

For very large datasets, the bottleneck of the CDM is
the computation of the distances between all the frequency
vectors, which is of quadratic complexity with the number
of vectors. In what follows we propose to use the ef�cient
search structure to compute the update terms.

For this purpose, we �rst construct the ef�cient search
structure by choosing as medoids random visual frequency
vectors extracted from the dataset. Then, the neighbor-
hood distance of Eq. 4 is computed using the visual word
vectors associated with a limited number of clusters (e.g.,
5%), which subsequently allows the computation of approx-
imated update terms.

5. Experiments

5.1. Datasets and evaluation criteria

The evaluation is performed on two datasets, namely the
N-S dataset [15] and a set of frames extracted from the Lola
movie [14]. The �rst one is composed of 2550 objects or
scenes, each of which being taken from 4 different view-
points. Hence the dataset contains 10200 images. The Lola
dataset is composed of 164 video frames taken at 19 dif-
ferent locations in the movie. A different dataset has been
used to perform the clustering on uncorrelated data. For
this purpose we have taken a subsample of SIFT descriptors
extracted from the Corel image database.

Three different measures have been used to evaluate the
impact of the various parameters and variants: the EER, the
average normalized rank (ANR) and the measure used by
Steẃenius and Nist́er [15]. The EER is the point on the
precision/recall curve such thatprecision = recall . It is
obtained when the number of images retrieved is equal to
the number of relevant images. The ANR is given by

ANR =
1
n

nX

i =1

1
n n rel( i )

n rel( i )X

j =1

rank(j ) �
nrel( i ) (nrel( i ) + 1)

2
;

(16)
wheren is the number of dataset images andnrel(i ) is the
number of images which should be retrieved for the imagei .

For the sake of comparison, we will also use the Nistér
score. This simple measure [15] counts the average number
of correct images among the four �rst images returned for a
given query. This measure is meaningful because there are
4 relevant images per object in the N-S dataset. Note that,
for this dataset, this measure is equal to four times the EER.

5.2. Evaluation of the parameters

Table 1 and Table 2 summarize the impact of the param-
eters on the retrieval accuracy for the two datasets respec-
tively. The analysis focuses on the following parameters:
CDM, the SIFT clustering algorithm, the visual vocabulary
size, the norm and the use of the PCA and of MA.

CDM: All the experiments in Table 1 and Table 2 show a
signi�cant improvement when using CDM. Fig. 7 illustrates
some typical queries for which the CDM signi�cantly im-
proves the results. For the N-S dataset (�rst two lines), the
query with no CDM returns �owers, which are often irrel-
evantly returned. The capability of the CDM to reduce the
impact of the too-often-selected images is clear in this con-
text. The query on the Lola database (two last lines) is even
more impressive. The �rst three images are correct with and
without CDM. Although the four next images seem wrong
for both queries, they are in fact correct for the CDM, as
the images correspond to the same location (the Deutsche
Transfer Bank) observed from signi�cantly different view-
points.

Clustering: We have implemented our own version of the
hierarchical clustering according to [12]. Although Table 1
shows (Exp. #1 and #3) that the accuracy is somewhat re-
duced, this approach is very ef�cient and greatly reduces
the computing cost associated with the assignment of SIFT
descriptors to visual words when the vocabulary size is big.
Note however that SIFT assignment is not the most critical
stage for ef�ciency.

The choice of the learning set is also shown to have a
strong impact on the accuracy. By default we have used the
uncorrelated Corel dataset. However, the results are signi�-
cantly improved by using instead a subsample of the dataset
on which the experiments are performed, as shown in Ta-
ble 2 by Exp. #4 and #9.

Vocabulary size:On the experiments #2 #3 #4 and #5 of
Table. 1 and the experiments #1 #3 #6 and #7 of Table. 2,
one can see that bigger vocabularies provide better retrieval
accuracy. However, for the N-S dataset (See Table 1), the
gain is rather low when using vocabulary sizes greater than
10000.

Norm: It was observed in [12] that the Manhattan distance
provides better results than the Euclidean one. This obser-
vation is con�rmed in our experiments for the two databases
and is also true when the CDM is used.

Relevance of the variants:In Table 1, Exp. #5 and Exp. #7
show that the PCA marginally reduces the accuracy of the
scheme, while decreasing the computational cost associated
with the visual word assignment. However, the impact on
the ef�ciency of this dimensionality reduction is con�ned to
the word frequency processing stage. Since the hierarchi-
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Figure 7. Query examples: short lists returned for a given query with and without the CDM.
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Figure 8. Ef�cient search structure: trade-off between the number
of image clusters visited and the EER. The total number of clusters
is 200.

cal SIFT assignment of [12] improves the ef�ciency much
more, the interest of the PCA in this context is limited.

The MA of SIFT descriptors to visual words somewhat
improves the accuracy of the search (compare Exp. #8 and
Exp. #9 to Exp. #5 in Table 1) at the cost of an increased
search time, due to the impact of the method on the visual
word vector sparsity. It should be used for applications re-
quiring high accuracy. Note that the number of assignments
must be small, e.g. 2 or 3, as we have observed that the
accuracy decreases for larger values.

Ef�cient medoids-based search structure:Fig. 8 shows how
the method introduced in Section 4 trades accuracy against
ef�ciency. The maximum score is almost attained for20

SIFT vocab. EER
clustering size no CDM CDM

#1 hierarchical 10000 0.724 0.853
#2 k-means 1000 0.724 0.862
#3 k-means 10000 0.774 0.884
#4 k-means 20000 0.781 0.885
#5 k-means 30000 0.784 0.887
#6 k-means 30000 0.669 0.842 L2
#7 k-means 30000 0.753 0.873 PCA
#8 k-means 30000 0.780 0.898 MA� 2
#9 k-means 30000 0.767 0.899 MA� 3

Table 1. Nist́er and Steẃenius dataset. Impact of the CDM (nN =
10) and of the following parameters: clustering algorithm (k-
means or hierarchical [12]), vocabulary size, norm (L1 if not spec-
i�ed or L2), use of the PCA (36 dimensions), multiple assignment
(MA) of descriptors to visual words.

clusters, which corresponds to10%of the 200 clusters. In
this case, the search time is approximately reduced by a fac-
tor 7. These results have been obtained using either thek-
medoids algorithm or a random subset for the �rst level of
the search structure. Using random visual word vectors in-
stead of medoids, on can observe a moderate loss of accu-
racy and ef�ciency (the clusters are less balanced).

5.3. Comparison with the state-of-the-art

For the N-S dataset, our approach obtains a Nistér score
of 3:60 (maximum 4) for a CDM computed withnN = 10
neighbors and 30000 visual words. The best score pre-
sented [15] is3:19 for the most time consuming approach.



training vocab. norm nN ANR
set size no CDM CDM

#1 corel 10000 L1 30 0.0522 0.0148
#2 corel 20000 L1 10 0.0476 0.0238
#3 corel 20000 L1 20 0.0476 0.0156
#4 corel 20000 L1 30 0.0476 0.0145
#5 corel 20000 L2 30 0.0528 0.0224
#6 corel 30000 L1 30 0.0468 0.0133
#7 corel 50000 L1 30 0.0416 0.0118
#8 lola 10000 L1 30 0.0321 0.0063
#9 lola 20000 L1 30 0.0240 0.0046

Table 2. Lola dataset. Impact of the vocabulary size, the norm
(Manhattan L1 or Euclidean L2) and the number of neighborsnN

used in the CDM calculation.

The visual vocabulary have respectively been learned on the
Corel dataset in our case, and on the Flip dataset in [15].

The best ANR obtained for the Lola movie is0:0046,
signi�cantly outperforming the best score0:0132of [14].
Note that, by contrast to this work, we only use one kind of
descriptor (in that case the best score of [14] is0:0196) and
no temporal �ltering. Our approach is still better (0:0118)
if the visual words are learned on uncorrelated data.

5.4. Large-scale evaluation

To assess the scalability of our approaches, the CDM and
the ef�cient search structure have been used jointly for large
scale image search. For this purpose, we have merged the
N-S dataset with a set of images downloaded from the web.
The images producing less that 10 interest points have been
removed. To reduce the overall computing cost, we have
used a maximum of 1000 descriptors per image, chosen
according to their cornerness. We have not used thetf-idf
scheme and the number of visual words (learned on a differ-
ent dataset) has been set to 10000. For the search structure,
we have randomly extracted 400 medoids from the dataset.
We have then opted for the NICDM with� = 0 :6. The
approximate NICDM update factors have been obtained ac-
cording to the guidelines of subsection 4.3.

Table 3 shows that the NICDM improves the results for
any dataset size. Querying with 40 image clusters out of
400 does not signi�cantly alter the search accuracy. In-
terestingly, using a subset of clusters to compute the CDM
does not signi�cantly impact the accuracy of it. Hence, for
the largest dataset, as the clusters contain many images, we
only used 3 of them.
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dataset number of clusters EER
size � i query no NICDM NICDM

10200 20 20 0.715 0.771
10200 20 40 0.747 0.815
10200 20 400 (all) 0.772 0.849
10200 400 (all) 400 (all) 0.772 0.851
100000 20 20 0.678 0.736
100000 20 40 0.707 0.772
200000 10 20 0.700 0.727
200000 10 40 0.697 0.762
500000 3 20 0.656 0.712
500000 3 40 0.682 0.745
1000000 3 20 0.644 0.701
1000000 3 40 0.669 0.732

Table 3. Large-scale evaluation with and without NICDM. Impact
of the dataset size and the number of image clusters used (a) to
compute the distance update terms� i and (b) for querying. Pa-
rameters: 10000 distinct visual words,� = 0 :6, 400 medoids.

References
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for near

neighbor problem in high dimensions. InProc. Symp. Foundations
Computer Science, pages 459–468, 2006.

[2] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity met-
ric discriminatively, with application to face veri�cation. InCVPR,
pages 539–546, 2005.

[3] R. Fagin, R. Kumar, and D. Sivakumar. Ef�cient similarity search
and classi�cation via rank aggregation. InACM SIGMOD Conf.,
pages 301–312, 2003.

[4] A. Frome, Y. Singer, and J. Malik. Image retrieval and classi�cation
using local distance functions. InNIPS, 2006.

[5] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high di-
mension via hashing. InProc. Intl. Conf. Very Large DataBases,
pages 518–529, 1999.

[6] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neigh-
bourhood components analysis. InNIPS, 2004.

[7] L. Kaufman and P. Rousseeuw.Finding groups in data: an introduc-
tion to cluster analysis. J. Wiley & Sons, 1990.

[8] Y. Ke and R. Sukthankar. PCA-SIFT: a more distinctive representa-
tion for local image descriptors. InCVPR, pages 506–513, 2004.

[9] D. G. Lowe. Distinctive image features from scale-invariant key-
points. IJCV, 60(2):91–110, 2004.

[10] K. Mikolajczyk and C. Schmid. Scale and af�ne invariant interest
point detectors.IJCV, 60(1):63–86, 2004.

[11] F. Moosmann, B. Triggs, and F. Jurie. Randomized clustering forests
for building fast and discriminative visual vocabularies. InNIPS,
2006.
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