A contextual dissimilarity measure for accurate and ef cient image search
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Abstract weighting schemes from text retrieval, namely the term fre-

guency/inverse document frequency weighting [13], can be

In this paper we present two contributions to improve seen as a simple way to improve the distance [12, 14] in an
accuracy and speed of an image search system based omnsupervised manner. Experimental results show that the
bag-of-features: a contextual dissimilarity measure (CDM) gain due to our distance is signi cantly higher that the one
and an ef cient search structure for visual word vectors. due to a weighting scheme. Note that the two approaches

Our measure (CDM) takes into account the local distri- can be combined.
bution of the vectors and iteratively estimates distance cor-
recting terms. These terms are subsequently used to update
an existing distance, thereby modifying the neighborhood Second, we introduce an ef cient search technique for
structure. Experimental results on the NisStevénius visual word vectors. There is a large body of approximate
dataset show that our approach signi cantly outperforms search techniques [1, 3, 5]. A few works have addressed
the state-of-the-art in terms of accuracy. this problem in computer vision. For example, Niset

Our ef cient search structure for visual word vectors Stewénius [12] propose an ef cient method to assign de-
is a two-level scheme using inverted les. The rst level scriptors to visual words based on a hierarchicaheans
partitions the image set into clusters of images. At query approach. Similarly, Moosmann et al. [11] use a forest of
time, only a subset of clusters of the second level has to beandom trees to rapidly and precisely assign descriptors to
searched. This method allows fast querying in large setsclusters. However, to our knowledge nobody has addressed
of images. We evaluate the gain in speed and the loss inthe problem of rapidly accessing visual word frequency vec-

accuracy on large datasets (up to 1 million images). tors. The inverted le system [12, 14, 17] avoids compar-
ing the feature vectors individually by storing for each vi-
1. Introduction sual word the set of image references in which this visual

word appears. However, this approach is still linear in the

In this paper we address the problem of nding images number of images in the dataset. In contrast our approach
containing the same object or scene seen from differentsubdivides the dataset into a number of subsets and uses a
viewpoints, with different background and occlusion. Ini- two-level inverted le system. The subdivision is based on a
tial approaches used simple voting based techniques [9, 10]k-medoids algorithm which preserves the sparsity of the vi-
More recently they were extended based on the bag-of-sual word vectors and is compatible with the CDM. We rst
features image representation [12, 14]. Our paper buildssearch for the most similar cluster(s) represented by their
upon these approaches and presents two contributions.  centers and then search through the set of images belonging

First, we introduce a contextual dissimilarity measure to the cluster. In our experiments we measure the trade-off
(CDM) which takes into account the neighborhood of a between the number of clusters considered and the accu-
point. This measure is iteratively obtained by regularizing racy. A good accuracy is observed when searching through
the average distance of each point to its neighborhood. Oura small number of closest clusters.
CDM is learned in a unsupervised manner, in contrast with
a large number of works which learn the distance measure
from a set of training images [2, 4, 6, 16]. However, in This paper is organized as follows. Section 2 reviews
the context of a large database, supervised learning is simthe bag-of-words image retrieval approach of [14] and de-
ply too time consuming. Furthermore, in contrast to cat- scribes some variants. The CDM design is described in Sec-
egory classi cation where class members are clearly de-tion 3 and the clustering-based strategy that improves the
ned and represented by a suf ciently large set, this does ef ciency in Section 4. The relevance of the approach and
not necessarily hold in our case. Note that the different the parameter analysis is shown in Section 5.



2. Overview of the image search scheme

In the following, we present the different steps of our
image search framework, similar to [14].

Descriptors: The n database images are described with
local descriptors. We combine the SIFT descriptor [9]
with the af ne Hessian region extractor [10]. As a vari-

ant, thel28-dimensional SIFT descriptors are reduced to
36-dimensional vectors with principal component analysis
(PCA), similar to [8].

Visual words: The visual words quantize the space of de-
scriptors. Here, we use themeans algorithm to obtain the

visual vocabulary. Note that, although the generation of the

visual vocabulary is performed off-line, it is time consum-

ing and becomes intractable as the number of visual word

increasesX 10000Q. The fast hierarchical clustering de-
scribed in [12] allows the generation of such huge vocabu-
laries in a reasonable time.

Assigning the descriptors to visual wordBach SIFT de-
scriptor of a given image is assigned to the closest visual
word. The histogram of visual word occurrences is sub-
sequently normalized with the L1 norm, generating a fre-
qguency vectoff; = (fi.1;:::;fik ). As a variant, instead

of choosing the nearest neighbor, a given SIFT descriptor is

assigned to thk-nearest visual words. This variant will be
referred to as multiple assignment (MA) in the experiments.

Weighting frequency vector3he frequency vector's com-

— L2

~---= L2+CDM

Figure 1. Toy example: the 3-nearest neighbors of vector 5 without
and with CDM. The circles depict the average distances of the
vectors 3 and 5 to their neighborhood.

The distance update term is computed off-line for each
visual word vector of the database. The extra-storage re-
quired to store this scalar is negligible.

Ef cient search: The distance computation is optimized
with an inverted le system exploiting the sparsity of the
visual word vectors [17]. Such an inverted le can be used
for any Minkowski norm [12] when the vectors are of unit
norm. For huge vocabulary sizes, the hierarchical cluster-
ing proposed in [12] greatly reduces the cost of assigning
the descriptors to visual words.

Note, however, that the visual word vector search com-
plexity remains linear with the database size. This is the
critical step for huge databases, as the steps extraction and
assignment of the SIFT descriptors do not depend on the
database size. The clustering approach proposed in Sec-

ponents are then weighted using a strategy similar to thetion 4 reduces this complexity, hence decreasing the search

one in [12]. Denoting byn the number of images in the
database and hy; the number of images containing t&
visual word, thg ™ componeniv;; associated with image
i is given by

Wi i n

1)

The resulting visual word frequency vectow;

a compact representation of the image.

Distance: Searching similar images in the database
amounts to computing the visual word vectwg of the
guery and to nding the description vector(s) minimiz-

ing d(wg; w;i); where the relationl( ; ) is a distance on the

time by an order of magnitude.

3. Contextual dissimilarity measure

Let us consider Fig. 1. On this toy example vector 3 is a
3-nearest neighbor of vector 5, but the converse is not true.
This observation underlines the fact that the neighborhood
relationship is not symmetric inkenearest neighbor frame-
work. By contrast, it is the case in drsearch framework.

The dissimilarity measure described in this section im-
proves the symmetry of tHe neighborhood relationship by
updating the distance, such that the average distance of a
vector to its neighborhood is almost constant. This regular-
ization is performed in the spirit of a local Mahalanobis dis-

visual word vector space. Note that the weighting schemetance for each vector. Indeed, assuming all the directions to
previously described can be seen as part of the distance defbe equivalent, the average distance computed on the neigh-

inition.
Our contextual dissimilarity measure described in Sec-

borhood can be thought of as a local variance computed for
each vector. Furthermore, assuming a Bayesian framework,

tion. 3, operates at this stage. It updates a given distancdéhe distance to a vector can be thought of as a likelihood.

d(; ), e.g., the Manhattan distance, by applying a weight-
ing factor ; that depends on the vecter to which the
distance is computed:

CDM(Wq; wi) = d(wg;w;) i (2)

In order to push further the similarity, one would have to
give an interpretation to the iterative CDM construction pro-
posed in 3.2.

Let us consider the neighborhobl{(i) of a given visual
word vectow; and# N (i) the cardinal of this set (which is



a constant within th&-nearest neighbors framework). The
guantity de ned hereafter, and referred to as tieégghbor-
hood symmetry ratds an objective measure of the notion
of neighborhood symmetry:
1X 1

Wi wj 2N (i)

X
s=

3

where thesym(w;;w;) = 1 if w; is a neighbor ofv; and
w; is a neighbor ofv;, 0 otherwise. By de nition, the sym-
metry rate is maximized in thesearch framework, due to
the distance symmetry property. Although we believe that
such a perfect neighborhood symmetry is not likely to be
properly enforced in the framework &fnearest neighbors
search, it can improve.

In the rest of this section, we rst introduce the update
procedure of the dissimilarity measure. This rst step of the

procedure, by itself, produces a new dissimilarity measure

(non-iterative approach). The proposed CDM is then ob-
tained by iterating this update step until a stopping criterion
is satis ed.

3.1. Non-iterative approach

Let us consider the neighborhodi(i) of a given visual
word vectorw; de ned by its# N (i) = ny nearest neigh-
bors. We de ne the neighborhood distandé) as the mean
distance of a given visual word vecte to the vectors of
its neighborhood:

ri)=

d(wi; x);

1 X
I~ (4)

x2N (i)
whered( ; ) is a distance or dissimilarity measure, e.g. the
distance derived from the L1-norm. The quantity) is

shown in Fig. 1 by the circle radii. It is computed for each
visual word vector and subsequently used to de ne a rst

dissimilarity measurd (:;:) between two visual word vec-

tors:
2

d (i5j)= di;j) ro;W : ©)

where0 < < 1is asmoothing factor andis the geomet-
ric mean neighborhood distance obtained by

Y 1
r= r(i)m:

(6)

This quantity is computed in the log domain. Note that the
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Figure 2. Impact of smoothing factor on the relevance for the
non-iterative (NICDM) and the iterative (CDM) approaches in the
case of 1000 and 10000 visual words. N-S dataset [15].

Note that in (5), the terms(i) andr do not impact the
nearest neighbors of a given vector. They are used to ensure
that the relation is symmetric. The best values for the fac-
tor have been experimentally observed to lie betw@dn
and0:8, as shown in Fig. 2. The relevance is measure by
the equal error rate (EER). Its de nition as well as the de-
scription of the Nigtr-Stevénius dataset [12] (N-S dataset)
used here is detailed in the experimental section 5. Note
that =0 amounts to using the original distandg; ).

Let us now consider the impact of the approach on the
average distance of a given vectoy to the others. This
impact is formalized by the following ratio:

SAG) g 1, -
;dGi) ()

Together with the observation thgtj r(j)=r"; we have
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which in essence means that the NIC@M ; ) favors iso-
lated vectors (withi (i) > r) and, conversely, penalizes vec-
tors lying in dense areas.

3.2. lterative approach

The update of Eq. (5) is iterated on the new matrix of

arithmetic mean can be used as well and leads to similar reqjssimilarities. The rationale of this iterative approach is to

sults. The relation ( ; ), referred to amon-iterative con-
textual dissimilarity measur@NICDM), is not a distance:

integrate the neighborhood modi cation from previous dis-
tance updates. Denoting with a supersdfipthe quantities

although the symmetry and the separation axioms are satpptained at iteratiok, we have

is ed, the triangular inequality does not hold. The nearest
neighbors of a given vectay; can nevertheless be obtained
for this relation.

Pk (k)

d% D (i) = d® (i) r® ) r® ()

©)



Note that, at each iteration, the new neighborhood distances ~ °° 1 1 1 ! !

r(K) (i) are computed for each visual word vectqr. 088l SR L S 6. Tto.

The objective of this iterative approach is to minimize a
function representing the disparity of the neighborhood dis- ‘ ‘ ‘ ‘ ‘
tances, in other terms to optimize the homogeneousness of, 084~ S~ S oo SRR
the dissimilarity measures in the neighborhood of a vector. ™ .t 7. ]

This function, here de ned as iteration ! ! ! !
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is clearly positive. Its minimum is zero and satis ed by the
trivial xed-point of Eq. 9 such that

Figure 3. Evolution during iterations of the EER and the symmetry

8ir(i)=r (11) rate (N-S dataset, neighborhood size=1G; 0:1).
Let us de ne a small quantity > 0. As a stop- 09 ‘
ping criterion, the algorithm terminates when the inequality | ﬁw*x*)‘ ,,,, 4

s gk+l) > " s not satis ed anymore. This ensures
that the algorithm stops within a nite number of steps. In
practice, for' small enough, we observed that this criterion ‘ ‘ ‘ ‘ ‘
ledr () (i) to converge towards the xed-point of Eq. (11). g 082[/f i e S

At this point, we can only compute the CDM between " 34 """"""""" P P
visual word vectors of the database, due to the iterative de-  o7sf| — T B .
sign of this distance. In order to compute directly the CDM ¢l 7 o ... USRS R S
from the original distance, one has to maintain a cumulative ‘ ‘ ‘ ‘

distance correcting term(k) during iterations, as
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r9(i) Figure 4. CDM: impact of the neighborhood size. N-S dataset.
Denoting by ; the quantity i(k Y when the algorithm ter-
minates, it is easy to show that 3.3. Discussion
d(i:j) = d(i;j) | ¥ (13) Symmetry rateFig. 3 shows the impact during iterations of

the distance update on the symmetry rate and the relevance
Thek-nearest neighbors of a given quenare then the  measured by the EER. As expected, the symmetry rate in-

minima given by creases jointly with the relevance. The factdnas been set
to 0:1 for illustration purpose, but note that by settingo
NN (g) = k-argmin d(q;j) j: (14) 0:5 the convergence is faster for identical results.

Note that nding the nearest neighbors of a query vector
wq does not require the knowledge of the update term as-
sociated withwg, as shown in Eq. 14. That's why we will
prefer the asymmetric version of the CDM to the one given
in Eqg. 13, as

Impact of the parametersTwo parameters have to be set:
the neighborhood sizey and the smoothing factor.

Fig. 2 shows the impact of the smoothing factoon the
performance for both the direct and the iterative approaches.
- . For the former, the best results are obtained for a value of

COM(ij ) = d(ij) - (15) lying betweerD:4 and0:8, with a maximum for = 0:6

By default, the term CDM will be dedicated to the de - approaching the performance of CDM. It also appears that
nition of the asymmetric measure COIM ) of Eq. 15. The  the EER behavior of the CDM is remarkably stable when
advantage of this CDM is that it can be computed for a < 0:8. This is the main advantage of the iterative ap-
guery vector which is not in the database. One has just toproach over the direct approach, as in practice the algorithm
store together with a given database visual word veator  converges towards a set of distance correcting terms that do
the corresponding distance update tefm3; i n», which not depend on . We have xed = 0:5 for all the experi-
in terms of storage overhead is clearly negligible. ments in the following.



rate of non-zero components

Figure 6. lllustration of our ef cient search structure: 1) the in-

200 1000 10000 5000( verted le associated with entries is searched to nd the st

vocabulary size (here 2) clusters, 2) tHé®nearest neighbors (here 2) are retrieved

using the inverted les associated with thekclusters.
Figure 5. Vector sparsitysvocabulary size. N-S dataset.

By contrast, th&-means centroids, for which the centroids
Fig. 4 depicts the impact of the neighborhood size on are the means of a great number of vectors, have a rate of
the performance of the iterative approach. Once again, thenon-zero components greater than 0.5. Therefore this algo-
sensitivity to this parameter is moderate. In the rest of this rithm can not exploit the sparsity of the visual word vectors.
paper, the sizey has been xed td.0, although better re- Secondly and still unlike thi-means algorithm, thk-
sults may be obtained by optimizing this quantity. medoids clustering does not implicitly assume that the dis-
tance is Euclidean. It only needs the matrix of distances

) ) between visual word vectors, hence allowing the use of the
4. Ef cient search for visual word vectors Manhattan distance.

Although for a database of several thousands of images, ~The bottleneck of thk-medoids algorithm is the prelim-
nding the closest visual word vectors is quite fast (about inary computation of the matrix of distances between image
0.15s for a database of 10200 images and 10000 visuafrequency vectors. For very large datasets, we extract ran-
words), its search complexity is linear in the database sizedom visual frequency vectors which serve as medoids. This
and is the critical stage for huge databases. results in a moderate loss of accuracy.

In order to reduce the complexity, we propose a two-
level structure for ef cient visual word search. The rst
level consists in an inverted le of medoids. The second  Fig. 6 illustrates our clustering-based ef cient search
level is composed of the set of clusters, each of which beingstructure, which is constructed as follows:
searched by an inverted le, as illustrated by Fig. 6.

4.2. Structure construction and querying

the medoids are extracted from the set of visual word
4.1. Choice of the medoids vectors, producing a set kfmedoids calleeéntries
an inverted le is created for the entries and for each

Two strategies are proposed to choose the medoids used ¢ thek clusters.

in the rst level of the inverted le. The rstis based on _ _ _
a k-medoids algorithm [7] clustering. The second simply _ For a given queryvg, the search procedure illustrated in
amounts to randomly extracting a subset of visual words. Fig. 6 then amounts to performing the following steps:

In the context of visual word vectors clustering, tkie use the inverted le of entries to nd th&° nearest
medoids has several advantages over a sirkpieeans. medoids of the query and the corresponding clusters ;
Firstly, by choosing representative visual word vectors as for each of thek® corresponding clusters, compute the
centroids, the algorithm allows the exploitation of the in- distances using the inverted les, then return the list of
trinsic sparsity of visual word vectors. Indeed, the computa- nearest neighbors.

tion of the distance between two sparse vectors (or only one ) .

sparse vector) is proportional to the number of non-zeros 1he CDM is exploited at both stages of the search pro-
components. This is especially useful for big visual vocab- c€dure by simply applying the distance update factpts
ularies for which the frequency vector sparsity is high, as € distances computed by the inverted les.

depicted in Fig. 5. Indeed, searching the nearest neighbors ASSuming that the clusters are balanced and that the
of a given visual word vector query is at least 10 ten times computa_tlonal_cost of searching within an inverted le is
faster for 30000 visual words with a basic implementation "0ughly linear in the number of eléaments stored, the com-
and even more if an ef cient inverted le structure is used. plexity of the searchisi® k+ n% ;where the integers



k, k®andn respectively denote the number of medoids, the 5.2. Evaluation of the parameters
number of clusters parsed and the total number of vectors.

Assuming in addition that the number of clustkris small .
: . . : . eters on the retrieval accuracy for the two datasets respec-
in comparison with the size and that the clusters contain : .

tively. The analysis focuses on the following parameters:

the same number of vectors, then the search cost is approx- . . .
imately divided byk=k® CDM, the SIFT clustering algorithm, the visual vocabulary

size, the norm and the use of the PCA and of MA.

4.3. Approximate NICDM/CDM CDM: All the experiments in Table 1 and Table 2 show a

For very large datasets, the bottleneck of the CDM is signi cantimprovement when using CDM. Fig. 7 illustrates
the computation of the distances between all the frequencysome typical queries for which the CDM signi cantly im-
vectors, which is of quadratic complexity with the number proves the results. For the N-S dataset ( rst two lines), the
of vectors. In what follows we propose to use the ef cient query with no CDM returns owers, which are often irrel-
search structure to compute the update terms. evantly returned. The capability of the CDM to reduce the

For this purpose, we rst construct the ef cient search impact of the too-often-selected images is clear in this con-
structure by choosing as medoids random visual frequencytext. The query on the Lola database (two last lines) is even
vectors extracted from the dataset. Then, the neighbor-more impressive. The rstthree images are correct with and
hood distance of Eq. 4 is computed using the visual word Without CDM. Although the four next images seem wrong
vectors associated with a limited number of clusters (e.g.,for both queries, they are in fact correct for the CDM, as
5%), which subsequently allows the computation of approx- the images correspond to the same location (the Deutsche

imated update terms. Transfer Bank) observed from signi cantly different view-
points.

Table 1 and Table 2 summarize the impact of the param-

5. Experiments Clustering: We have implemented our own version of the

5.1. Datasets and evaluation criteria hierarchical clustering according to [12]. Although Table 1

h luation i ‘ d q v th shows (Exp. #1 and #3) that the accuracy is somewhat re-
The evaluation is performed on two datasets, namely t €duced, this approach is very ef cient and greatly reduces

N-S dataset [15] and a set of frames extracted from the I‘Olathe computing cost associated with the assignment of SIFT

movie [14]. The rst one is composed of 2550 objects or descriptors to visual words when the vocabulary size is big.

Scenes, each of which being ta.ken from 4 different view- Note however that SIFT assignment is not the most critical
points. Hence the dataset contains 10200 images. The Lo'%tage for ef ciency

dataset is composed of 164 video frames taken at 19 dif-

feregttlocatl?ns w;r:he Imotv 'e.' A different dalltr;\s(ej:t dhats beFen strong impact on the accuracy. By default we have used the
used 1o perform the clustering on uncorrelated data. For, . rejated Corel dataset. However, the results are signi -

this purpose we have taken a subsample of SIFT descriptor%antly improved by using instead a subsample of the dataset

extracted f.rom the Corelimage database. on which the experiments are performed, as shown in Ta-
Three different measures have been used to evaluate thg|e 2 by Exp. #4 and #9.

impact of the various parameters and variants: the EER, the _ _
average normalized rank (ANR) and the measure used byvocabulary size:On the experiments #2 #3 #4 and #5 of
Stevénius and Nigr [15]. The EER is the point on the Table. 1 and the experiments #1 #3 #6 and #7 of Table. 2,

precision/recall curve such thptecision = recall. It is one can see that bigger vocabularies provide better retrieval
obtained when the number of images retrieved is equal toaccuracy. However, for the N-S dataset (See Table 1), the

The choice of the learning set is also shown to have a

the number of relevant images. The ANR is given by gain is rather low when using vocabulary sizes greater than
et 10000
_ 1 X 1 . Iﬂrel(i)(“rel(i) + 1) . i .
ANR = — rankj) —————; Norm: It was observed in [12] that the Manhattan distance

N . _ NNgeiy . _ 2 . . ;
i=1 =1 provides better results than the Euclidean one. This obser-
vation is con rmed in our experiments for the two databases

and is also true when the CDM is used.

(16)
wheren is the number of dataset images ang(i) is the
number of images which should be retrieved for the image

For the sake of comparison, we will also use the &list Relevance of the variant$n Table 1, Exp. #5 and Exp. #7
score. This simple measure [15] counts the average numbeshow that the PCA marginally reduces the accuracy of the
of correct images among the four rstimages returned for a scheme, while decreasing the computational cost associated
given query. This measure is meaningful because there aravith the visual word assignment. However, the impact on
4 relevant images per object in the N-S dataset. Note that,the ef ciency of this dimensionality reduction is con ned to
for this dataset, this measure is equal to four times the EER the word frequency processing stage. Since the hierarchi-



query rank 2 rank 3 rank 4 rank 5 rank 6 rank 7
=
a
O
=
a
@)
o
c
N-S dataset [12]
Deutsche Transfer
=
a
O
=
[a)
O
o
c
Lola dataset [14]
Figure 7. Query examples: short lists returned for a given query with and without the CDM.
. S SO —— SIFT vocab. EER
P ,,,,,,,,,,,,,, o '._Q_f;gi;@':%’*9‘:9"’%%{% clustering size | noCDM CDM

#1 | hierarchical 10000/ 0.724 0.853
#2 | k-means 1000| 0.724  0.862
#3 | k-means 10000, 0.774  0.884
#4 k-means 20000 0.781 0.885
#5 | k-means 30000, 0.784  0.887
#6 | k-means 30000, 0.669  0.842| L2

: ‘ #7 k-means 30000/ 0.753 0.873| PCA
; random vectors - no CDM —+— #8 | k-means 30000 0.780  0.898| MA 2
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EER
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I SO T : " k-medoids - no CDM --x-- |
0.551/ : 77" random vectors - CDM - -%-- #9 k-means 30000, 0.767 0.899 | MA 3
i i k—medo‘lds -CDM - & -
0.5
0 ° 10 15 2 Table 1. Nisér and Stewnius dataset. Impact of the CDMy =

ber of clust d . . .
rumberorelusiers parse 10) and of the following parameters: clustering algorithky (

means or hierarchical [12]), vocabulary size, norm (L1 if not spec-
i ed or L2), use of the PCA (36 dimensions), multiple assignment
(MA) of descriptors to visual words.

Figure 8. Ef cient search structure: trade-off between the number
of image clusters visited and the EER. The total number of clusters
is 200.

h clusters, which corresponds 10% of the 200 clusters. In

this case, the search time is approximately reduced by a fac-

tor 7. These results have been obtained using eithékt-the
edoids algorithm or a random subset for the rst level of

ﬂe search structure. Using random visual word vectors in-

stead of medoids, on can observe a moderate loss of accu-

racy and ef ciency (the clusters are less balanced).

cal SIFT assignment of [12] improves the ef ciency muc
more, the interest of the PCA in this context is limited.
The MA of SIFT descriptors to visual words somewhat
improves the accuracy of the search (compare Exp. #8 an
Exp. #9 to Exp. #5 in Table 1) at the cost of an increased
search time, due to the impact of the method on the visual
word vector sparsity. It should be used for applications re-
quiring high accuracy. Note that the number of assignments
must be small, e.g. 2 or 3, as we have observed that the5 3. Comparison with the state-of-the-art

accuracy decreases for larger values. _ o
For the N-S dataset, our approach obtains aé¥istore

Ef cient medoids-based search structufeig. 8 shows how  of 3:60 (maximum 4) for a CDM computed withy = 10
the method introduced in Section 4 trades accuracy againsheighbors and 30000 visual words. The best score pre-
ef ciency. The maximum score is almost attained & sented [15] is3:19 for the most time consuming approach.



training vocab. norm ny ANR dataset number of clusters EER
set size noCDM CDM size i query no NICDM  NICDM
#1 corel 10000 L1 30| 0.0522 0.0148 10200 20 20 0.715 0.771
#2 corel 20000 L1 10 0.0476 0.0238 10200 20 40 0.747 0.815
#3 corel 20000 L1 20| 0.0476 0.0156 10200 20 400 (all) 0.772 0.849
#4 | corel 20000 L1 30| 0.0476  0.0145 10200 | 400 (all) 400 (all) 0.772 0.851
#5 corel 20000 L2 30 0.0528 0.0224 100000 20 20 0.678 0.736
#6 corel 30000 L1 30| 0.0468 0.0133 100000 20 40 0.707 0.772
#7 corel 50000 L1 30| 0.0416 0.0118 200000 10 20 0.700 0.727
#8 lola 10000 L1 30 0.0321 0.0063 200000 10 40 0.697 0.762
#9 lola 20000 L1 30 0.0240 0.0046 500000 3 20 0.656 0.712
500000 3 40 0.682 0.745
Table 2. Lola dataset. Impact of the vocabulary size, the norm 1000000 3 20 0.644 0.701
(Manhattan L1 or Euclidean L2) and the number of neighibars 1000000 3 40 0.669 0.732

used in the CDM calculation.
Table 3. Large-scale evaluation with and without NICDM. Impact
of the dataset size and the number of image clusters used (a) to
The visual vocabulary have respectively been learned on thecompute the distance update termsand (b) for querying. Pa-
Corel dataset in our case, and on the Flip datasetin [15]. rameters: 10000 distinct visual words= 0 :6, 400 medoids.
The best ANR obtained for the Lola movie @6s0046
signi cantly outperforming the best scof®0132 of [14]. References
Note t_hat, b_y contrast to this work, we only use one kind of [1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for near
descriptor (in tha_t case the best scor_e Of_[l4]:(3§].9@ and neighbor problem in high dimensions. Rroc. Symp. Foundations
no temporal ltering. Our approach is still betted:0118 Computer Scienc@ages 459-468, 2006.

if the visual words are learned on uncorrelated data. [2] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity met-
ric discriminatively, with application to face veri cation. I6VPR
. pages 539-546, 2005.
5.4. Large-scale evaluation [3] R. Fagin, R. Kumar, and D. Sivakumar. Ef cient similarity search
. and classi cation via rank aggregation. KWCM SIGMOD Conf.
To assess the scalability of our approaches, the CDMand  pages 301-312, 2003.
the ef cient search structure have been used jointly for Iarge [4] A. ‘Frome, Y. _Singer, and J Malik. Image retrieval and classi cation
scale image search. For this purpose, we have merged the _ using local distance functions. MIPS 2006.

. . [5] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high di-
N-S dataset with a set of images downloaded from the web. mension via hashing. IRroc. Intl. Conf. Very Large DataBases

The images producing less that 10 interest points have been  pages 518-529, 1999.
removed. To reduce the overall computing cost, we have [6] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neigh-
used a maximum of 1000 descriptors per image, chosen _ bourhood components analysis.NItPS 2004.

. . [7] L.Kaufman and P. Rousseeutinding groups in data: an introduc-
according to their cornerness. We have not usedfticf tion to cluster analysisJ. Wiley & Sons, 1990.

scheme and the number of visual words (learned on a differ- [g] v. ke and R. Sukthankar. PCA-SIFT: a more distinctive representa-
ent dataset) has been set to 10000. For the search structure, tion for local image descriptors. I8VPR pages 506-513, 2004.

we have randomly extracted 400 medoids from the dataset. [9] D. G. Lowe. Distinctive image features from scale-invariant key-
We have then opted for the NICDM with = 0:6. The points. NCV, 60(2):91-110, 2004.

. . 10] K. Mikolajczyk and C. Schmid. Scale and af ne invariant interest
approximate NICDM update factors have been obtained ac- ~ point detectorslCV, 60(1):63-86, 2004.

cording to the guidelines of subsection 4.3. [11] F.Moosmann, B. Triggs, and F. Jurie. Randomized clustering forests
Table 3 shows that the NICDM improves the results for fzoorotéu"dmg fast and discriminative visual vocabularies. NIPS

any dataset SIZ?' _Querymg with 40 Image clusters out of [12] D. Nistér and H. Stewnius. Scalable recognition with a vocabulary

400 does not signi cantly alter the search accuracy. In- tree. INCVPR pages 2161-2168, Jun 2006.

terestingly, using a subset of clusters to compute the CDM[13] G. Salton and C. Buckley. Term-weighting approaches in automatic

does not signi cantly impact the accuracy of it. Hence, for tse;;) rfgé%val' Information Processing & Managemeri4(5):513~

the IargeSt dataset, as the clusters contain many images, Wﬁ.4] J. Sivic and A. Zisserman. Video Google: A text retrieval approach

only used 3 of them. to object matching in videos. ICCV, pages 1470-1477, Oct. 2003.
[15] H. Stewenius and D. Nig&r. Object recognition benchmark.
http://vis.uky.edu/%7Estewe/ukbench/.
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