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Abstract

Recently , methods basedon local image features have shown promise for texture and object recog-
nition tasks. This paper presents a large-scaleevaluation of an approach that represents images as
distributions (signatures or histograms) of features extracted from a sparseset of keypoint locations
and learns a Support Vector Machine classi�er with kernels based on two e�ectiv e measures for
comparing distributions, the Earth Mover's Distance and the � 2 distance. We �rst evaluate the per-
formance of our approach with di�eren t keypoint detectors and descriptors, aswell asdi�eren t kernels
and classi�ers. We then conduct a comparative evaluation with several state-of-the-art recognition
methods on four texture and �v e object databases. On most of these databases,our implementation
exceedsthe best reported results and achievescomparable performance on the rest. Finally , we inves-
tigate the in
uence of background correlations on recognition performance via extensive tests on the
PASCAL database, for which ground-truth object localization information is available. Our experi-
ments demonstrate that image representations basedon distributions of local features are surprisingly
e�ectiv e for classi�cation of texture and object images under challenging real-world conditions, in-
cluding signi�can t intra-class variations and substantial background clutter.

Keyw ords : image classi�cation, texture recognition, object recognition, scale- and a�ne-in variant
keypoints, support vector machines, kernel methods.

1 In tro duction

The recognition of texture and object categoriesis one of the most challenging problems in computer
vision, especially in the presenceof intra-class variation, clutter, occlusion, and posechanges. Histori-
cally, texture and object recognition have been treated as two separateproblems in the literature. It is
customary to de�ne texture as a visual pattern characterized by the repetition of a few basic primitiv es,
or textons [27]. Accordingly, many e�ectiv e texture recognition approaches[8, 31, 33, 57, 58] obtain tex-
tons by clustering local image features (i.e., appearancedescriptors of relatively small neighborhoods),
and represent texture images as histograms or distributions of the resulting textons. Note that these
approachesare orderless, i.e., they retain only the frequenciesof the individual features, and discard all
information about their spatial layout. On the other hand, the problem of object recognition has typi-
cally beenapproached using parts-and-shape models that represent not only the appearanceof individual
object components, but also the spatial relations betweenthem [1, 17, 18, 19, 60]. However, recent liter-
ature also contains several proposalsto represent the \visual texture" of imagescontaining objects using
orderlessbag-of-features models. Such models have proven to be e�ectiv e for object classi�cation [7, 61],
unsuperviseddiscovery of categories[16, 51, 55], and video retrieval [56]. The successof orderlessmodels
for theseobject recognition tasks may be explained with the help of an analogy to bag-of-words models
for text document classi�cation [40, 46]. Whereas for texture recognition, local features play the role
of textons, or frequently repeated elements, for object recognition tasks, local features play the role of
\visual words" predictive of a certain \topic," or object class. For example, an eye is highly predictive
of a facebeing present in the image. If our visual dictionary contains words that are su�cien tly discrim-
inativ e when taken individually , then it is possible to achieve a high degreeof successfor whole-image
classi�cation, i.e., identi�cation of the object classcontained in the imagewithout attempting to segment
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or localizethat object, simply by looking which visual words are present, regardlessof their spatial layout.
Overall, there is an emergingconsensusin recent literature that orderlessmethods are e�ectiv e for both
texture and object description, and it createsthe needfor a large-scalequantitativ e evaluation of a single
approach tested on multiple texture and object databases.

To date, state-of-the-art results in both texture [31] and object recognition [18, 23, 48, 61] have been
obtained with local features computed at a sparse set of scale- or a�ne-in variant keypoint locations
found by specialized interest operators [34, 43]. At the same time, Support Vector Machine (SVM)
classi�ers [54] have shown their promise for visual classi�cation tasks (see [50] for an early example),
and the development of kernels suitable for use with local features has emergedas a fruitful line of re-
search [4, 13, 23, 37, 47, 59]. Most existing evaluations of methods combining kernelsand local features
have been small-scaleand limited to one or two datasets. Moreover, the backgrounds in many of these
datasets,such as COIL-100 [44] or ETH-80 [32] are either (mostly) uniform or highly correlated with the
foreground objects, so that the performanceof the methods on challenging real-world imagery cannot be
assessedaccurately. This motivates us to build an e�ectiv e image classi�cation approach combining a
bag-of-keypoints representation with a kernel-basedlearning method and to test the limits of its perfor-
manceon the most challenging databasesavailable today. Our study consistsof three components:

Evaluation of implemen tation choices. In this paper, we place a particular emphasison producing
a carefully engineeredrecognition system, where every component has beenchosento maximize perfor-
mance. To this end, we conduct a comprehensive assessment of many available choicesfor our method,
including keypoint detector type, level of geometric invariance, feature descriptor, and classi�er kernel.
Several practical insights emergefrom this process.For example,we show that a combination of multiple
detectors and descriptors usually achieves better results than even the most discriminativ e individual
detector/descriptor channel. Also, for most datasets in our evaluation, we show that local features with
the highest possiblelevel of invariance do not yield the best performance. Thus, in attempting to design
the most e�ectiv e recognition systemfor a practical application, one should seekto incorporate multiple
typesof complementary features, but make sure that their local invariance properties do not exceedthe
level absolutely required for a given application.

Comparison with existing metho ds. We conduct a comparative evaluation with several state-of-
the-art methods for texture and object classi�cation on four texture and �v e object databases. For
texture classi�cation, our approach outperforms existing methods on Brodatz [3], KTH-TIPS [24] and
UIUCT ex [31] datasets, and obtains comparable results on the CUReT dataset [9]. For object category
classi�cation, our approach outperforms existing methods on the Xerox7 [61], Graz [48], CalTech6 [18],
CalTech101 [15] and the more di�cult test set of the PASCAL challenge [14]. It obtains comparable
results on the easierPASCAL test set. The power of orderlessbag-of-keypoints representations is not
particularly surprising in the caseof texture images, which lack clutter and have uniform statistical
properties. However, it is not a priori obvious that such representations are su�cien t for object category
classi�cation, sincethey ignorespatial relations and do not separateforegroundfrom background features.

In
uence of background features. As stated above, our bag-of-keypoints method usesboth fore-
ground and background features to make a classi�cation decisionabout the image as a whole. For many
existing object datasets, background features are not completely uncorrelated from the foreground, and
may thus provide inadvertent \hin ts" for recognition (e.g., cars are frequently pictured on a road or in a
parking lot, while facestend to appear against indoor backgrounds). Therefore, to obtain a completeun-
derstanding of how bags-of-keypoints methods work, it is important to analyzethe separatecontributions
of foreground and background features. To our knowledge, such an analysis has not been undertaken
to date. In this paper, we study the in
uence of background features on the diverse and challenging
PASCAL benchmark. Our experiments reveal that, while backgrounds do in fact contain somediscrim-
inativ e information for the foreground category, particularly in \easier" datasets, using foreground and
background features together does not improve the performanceof our method. Thus, even in the pres-
enceof background correlations, it is the features on the objects themselves that play the key role for
recognition. But at the sametime, we show the danger of training the recognition system on datasets
with monotonous or highly correlated backgrounds|suc h a system does not perform well on a more
complex test set.
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For object recognition, we have deliberately limited our evaluations to the image-level classi�cation
task, i.e., classifyingan entire test imageascontaining an instanceof oneof a �xed number of given object
classes.This task must be clearly distinguished from localization, or reporting a location hypothesis for
the object that is judged to be present. Though it is possible to perform localization with a bag-of-
keypoints representation, e.g., by incorporating a probabilistic model that can report the likelihood of an
individual feature for a given image and category [55], evaluation of localization accuracy is beyond the
scope of the present paper. It is important to emphasizethat we do not proposebasic bag-of-keypoints
methods as a solution to the generalobject recognition problem. Instead, we seekto demonstrate that,
given the right implementation choices,simple orderlessimage representations with suitable kernelscan
besurprisingly e�ectiv eon a wide variety of imagery. Thus, they canserveasgood baselinesfor measuring
the di�cult y of newly acquired datasets and for evaluating more sophisticated recognition approaches
that incorporate structural information about the object.

The rest of this paper is organized as follows. Section 2 presents existing approaches for texture
and object recognition. The components of our approach are described in section 3. Results are given
in section 4. We �rst evaluate the implementation choices relevant to our approach, i.e., we compare
di�eren t detectorsand descriptors aswell asdi�eren t kernels. We then compareour approach to existing
texture and object category classi�cation methods. In section 5 we evaluate the e�ect of changesto the
object background. Section 6 concludesthe paper with a summary of our �ndings and a discussionof
future work.

2 Related work

This sectiongivesa brief survey of recent work on texture and object recognition. As stated in the intro-
duction, thesetwo problems have typically beenconsideredseparately in the computer vision literature,
though in the last few years, we have seena convergencein the types of methods used to attack them,
as orderlessbagsof features have proven to be e�ectiv e for both texture and object description.

2.1 Texture recognition

A major challenge in the �eld of texture analysis and recognition is achieving invariance under a wide
range of geometric and photometric transformations. Early research in this domain has concentrated
on global 2D image transformations, such as rotation and scaling [6, 39]. However, such models do not
accurately capture the e�ects of 3D transformations (even in-plane rotations) of textured surfaces.More
recently , there has been a great deal of interest in recognizing imagesof textured surfacessubjected to
lighting and viewpoint changes[8, 9, 33, 35, 57, 58, 62]. Distribution-based methods havebeenintro duced
for classifying 3D textures under varying posesand illumination changes.The basic idea is to compute a
texton histogram basedon a universal representativ e texton dictionary. Leung and Malik [33] constructed
a 3D texton representation for classifying a \stack" of registered imagesof a test material with known
imaging parameters. The special requirement of calibrated cameraslimits the usageof this method in
most practical situations. This limitation wasremovedby the work of Cula and Dana [8], who usedsingle-
image histograms of 2D textons. Varma and Zisserman[57, 58] have further improved 2D texton-based
representations, achieving very high levels of accuracy on the Columbia-Utrecht re
ectance and texture
(CUReT) database [9]. The descriptors used in their work are �lter bank outputs [57] and raw pixel
values[58]. Hayman et al. [24] extend this method by usingsupport vector machine classi�ers with a kernel
basedon � 2 histogram distance. Even though thesemethods have beensuccessfulin the complex task of
classifying imagesof materials despite signi�can t appearancechanges,their representations themselves
are not invariant to the changesin question. In particular, the support regionsfor computing descriptors
are �xed by hand; no adaptation is performed to compensate for changesin surface orientation with
respect to the camera. Lazebnik et al. [31] have proposeda di�eren t strategy, namely, an intrinsically
invariant imagerepresentation basedon distributions of appearancedescriptors computed at a sparse set
of a�ne-in variant keypoints (in contrast, earlier approaches to texture recognition can be called dense,
sincethey compute appearancedescriptors at every pixel). This approach hasachieved promising results
for texture classi�cation under signi�can t viewpoint changes.In the experiments presented in this paper,
we take this approach asa starting point and further improve its discriminativ e power with a kernel-based
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learning method, provide a detailed evaluation of di�eren t descriptors and their invariance properties,
and place it in the broader context of both texture and object recognition by measuring the impact of
background clutter on its performance.

2.2 Ob ject recognition

The earliest work on appearance-basedobject recognition has mainly utilized global descriptions such as
color or texture histograms [45, 50, 53]. The main drawback of such methods is their sensitivity to real-
world sourcesof variabilit y such asviewpoint and lighting changes,clutter and occlusions.For this reason,
global methods weregradually supplanted over the last decadeby part-based methods, which becameone
of the dominant paradigms in the object recognition communit y. Part-based object models combine
appearancedescriptors of local features with a representation of their spatial relations. Initially , part-
basedmethods relied on simple Harris interest points, which only provided translation invariance [1, 60].
Subsequently , local features with higher degreesof invariance were used to obtain robustnessagainst
scalingchanges[18] and a�ne deformations[30]. While part-basedmodelso�er an intellectually satisfying
way of representing many real-world objects, learning and inferenceproblems for spatial relations remain
extremely complex and computationally intensive, especially in a weakly supervised setting where the
location of the object in a training image has not been marked by hand. On the other hand, orderless
bag-of-keypoints methods [55, 61] have the advantage of simplicit y and computational e�ciency , though
they fail to represent the geometric structure of the object class or to distinguish between foreground
and background features. For these reasons,bag-of-keypoints methods can be adversely a�ected by
clutter, just as earlier global methods basedon color or gradient histograms. One way to overcomethis
potential weaknessis to usefeature selection[12] or boosting [48] to retain only the most discriminativ e
features for recognition. Another approach is to designnovel kernels that can yield high discriminativ e
power despite the noiseand irrelevant information that may be present in local feature sets [23, 37, 59].
While thesemethods have obtained promising results, they have not beenextensively tested on databases
featuring heavily cluttered, uncorrelated backgrounds, so the true extent of their robustnesshasnot been
conclusively determined. Our own approach is related to that of Grauman and Darrell [23], who have
developed a kernel that approximates the optimal partial matching betweentwo feature sets. Speci�cally ,
we use a kernel based on the Earth Mover's Distance [52], which solves the partial matching problem
exactly. Finally, we note that our image representation is similar to that of [61], though our choice of
local features and classi�er kernel results in signi�can tly higher performance.

3 Comp onents of the represen tation

This section intro ducesour image representation basedon sparselocal features. We �rst discussscale-
and a�ne-in variant local regions and the descriptors of their appearance. We then describe di�eren t
image signaturesand similarit y measuressuitable for comparing them.

3.1 Scale- and a�ne-in varian t region detectors

In this paper, we usetwo complementary local region detector typesto extract salient image structures:
The Harris-L aplace detector [43] respondsto corner-likeregions,while the Laplaciandetector [34] extracts
blob-like regions(Fig. 1).

At the most basic level, these two detectors are invariant to scale transformations alone, i.e., they
output circular regions at a certain characteristic scale. To achieve rotation invariance, we can either
use rotationally invariant descriptors|for example, SPIN and RIFT [31], as presented in the following
section|or rotate the circular regions in the direction of the dominant gradient orientation [36, 43].
In our implementation, the dominant gradient orientation is computed as the average of all gradient
orientations in the region. Finally, we obtain a�ne-in variant versionsof the Harris-Laplace and Laplacian
detectors through the use of an a�ne adaptation procedure [21, 42]. A�nely adapted detectors output
ellipse-shaped regions which are then normalized, i.e., transformed into circles. Normalization leaves a
rotational ambiguit y that can be eliminated either by using rotation-in variant descriptors or by �nding
the dominant gradient orientation, as described above.
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Harris-Laplace detector Laplacian detector

Figure 1: Illustration of a�ne Harris and Laplacian regionson two natural images.

3.2 Descriptors

The normalized circular patches obtained by the detectors described in the previous section serve as
domains of support for computing appearance-baseddescriptors. Many di�eren t descriptors have been
presented in the literature (see[41] for an overview). In this paper weusethree di�eren t descriptors: SIFT,
SPIN and RIFT. The SIFT descriptor [36] hasbeenshown to outperform a set of existing descriptors[41],
while SPIN and RIFT, intro duced by [31], have achieved good performance in the context of texture
classi�cation.

The SIFT descriptor computesa gradient orientation histogram within the support region. For each
of 8 orientation planes, the gradient image is sampled over a 4 � 4 grid of locations, thus resulting in a
4� 4� 8 = 128-dimensionalfeature vector for each region. A Gaussianwindow function is usedto assign
a weight to the magnitude of each sample point. This makes the descriptor lesssensitive to the small
changesin the position of the support region and puts more emphasison the gradients that are near the
center of the region.

The SPIN descriptor, basedon spin imagesusedfor matching range data [26], is a rotation-in variant
two-dimensional histogram of intensities within an image region. The two dimensionsof the histogram
are d, the distance of the center, and i , the intensity value. The entry at (d; i ) is simply the probabilit y
of the occurrenceof pixels with intensity value i at a �xed distance d from the center of the patch. We
follow the sameimplementations of the spin imagesas [31], i.e., it is consideredas a soft histogram. In
our experiments, we use10 bins for distance and 10 for intensity value, thus resulting in 100-dimensional
feature vectors.

The RIFT descriptor is a rotation-in variant versionof SIFT. An imageregion is divided into concentric
rings of equal width, and a gradient orientation histogram is computed within each ring. To obtain
rotation invariance, gradient orientation is measured at each point relative to the direction pointing
outward from the center. We usefour rings and eight histogram orientations, yielding a 32-dimensional
feature vector.

To obtain robustnessto illumination changes,our descriptorsare madeinvariant to a�ne illumination
transformations of the form aI (x) + b. For SPIN and RIFT descriptorseach support region is normalized
with the mean and standard deviation of the region intensities. For SIFT descriptors the norm of each
descriptor is scaledto one [36].

Following the terminology of [31], we considereach detector/descriptor pair as a separate\c hannel."
As explained in Section 3.1, our detectors o�er di�eren t levels of invariance: scale invariance only (S),
scalewith rotation invariance (SR), and a�ne invariance (A). We denote the Harris detector with dif-
ferent levels of invariance as HS, HSR and HA and the Laplacian detector as LS, LSR and LA. Recall
that HSR and LSR regions are obtained from HS and LS by �nding the dominant gradient orienta-
tion, while for HS and LS, the dominant orientation is assumedto be horizontal for the purpose of
computing SIFT descriptors. The combination of multiple detector/descriptor channels is denoted by
(detector+detector)(descriptor+descriptor), e.g., (HS+LS)(SIFT+SPIN) meansthe combination of HS
and LS detectors each described with SIFT and SPIN descriptors.
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3.3 Comparing distributions of local features

After detecting salient local regionsand computing their descriptors asdescribed in the previous section,
we need to represent their distributions in the training and test images. One method for doing this
is to cluster the set of descriptors found in each image to form its signature f (p1; u1); : : : ; (pm ; um )g,
where m is the number of clusters, pi is the center of the i th cluster, and ui is the relative size of the
cluster (the number of descriptors in the cluster divided by the total number of descriptors extracted
from the image). Earth Mover's Distance (EMD) [52] has shown to be very suitable for measuring the
similarit y between image signatures. The EMD between two signatures S1 = f (p1; u1); : : : ; (pm ; um )g
and S2 = f (q1; w1); : : : ; (qn ; wn )g is de�ned as follows:

D(S1; S2) =

P m
i =1

P n
j =1 f ij d(pi ; qj )

P m
i =1

P n
j =1 f ij

wheref ij is a 
o w value that can be determined by solving a linear programming problem, and d(pi ; qj ) is
the ground distance betweencluster centers pi and qj . We useEuclidean distance as the ground distance
and extract 40 clusterswith k-meansfor each image. Note that EMD is a cross-bindissimilarit y measure
and can handle variable-length representation of distributions, i.e., m and n do not have to be the same.

An alternativ e to image signatures is to obtain a global texton vocabulary (or visual vocabulary) by
clustering descriptors from a special training set, and then to represent each image in the databaseas a
histogram of texton labels [8, 57, 58, 61]. Given a global texton vocabulary of size m, the i th entry of
a histogram is the proportion of all descriptors in the image having label i . To comparetwo histograms
S1 = (u1; : : : ; um ) and S2 = (w1; : : : ; wm ), we usethe � 2 distance de�ned as

D(S1; S2) =
1
2

mX

i =1

(ui � wi )2

ui + wi
:

In our experiments, we extract 10 textons (clusters) with k-meansfor each classand then concatenate
textons of di�eren t classesto form a global vocabulary.

3.4 Kernel-based classi�cation

For classi�cation, we useSupport Vector Machines (SVM) [54]. In a two-classcase,the decisionfunction
for a test samplex has the following form:

g(x) =
X

i
� i yi K (x i ; x) � b; (1)

where K (x i ; x) is the value of a kernel function for the training samplex i and the test samplex, yi the
classlabel of x i (+1 or � 1), � i the learned weight of the training samplex i , and b is a learned threshold
parameter. The training sampleswith weight � i > 0 are usually called support vectors. In the following,
we use the two-classsetting for binary detection, i.e., classifying images as containing or not a given
object class. To obtain a detector response,we use the raw output of the SVM, given by Eq. (1). By
placing di�eren t thresholds on this output, we vary the decision function to obtain Receiver Operating
Characteristic (ROC) curves such as the onesin Figs. 18 to 21. For multi-class classi�cation, di�eren t
methods to extend binary SVMs tend to perform similarly in practice [54]. We use the one-against-
one technique, which trains a classi�er for each possiblepair of classes.For each new test pattern, all
binary classi�ers are evaluated, and the pattern is assignedto the classthat is chosenby the majorit y of
classi�ers. Experimental comparisonson our dataset con�rm that the one-against-oneand one-against-
other techniquesgive almost the sameresults.

To incorporate EMD or � 2 distanceinto the SVM framework, weuseextendedGaussiankernels[5, 25]:

K (Si ; Sj ) = exp
�

�
1
A

D(Si ; Sj )
�

; (2)

where D(Si ; Sj ) is EMD (resp. � 2 distance) if Si and Sj are image signatures (resp. vocabulary-
histograms). The resulting kernel is the EMD kernel (or � 2 kernel). A is a scalingparameter that can in
principle be determined through cross-validation. We have found, however, that setting its value to the
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mean value of the EMD (resp. � 2) distancesbetween all training imagesgives comparable results and
reducesthe computational cost. To combine di�eren t channels,we sum their distances,i.e., D =

P n
i D i

where D i is the similarit y measurefor channel i . We then apply the generalizedGaussiankernel, Eq.
(2), to the combined distance.

The � 2 kernel is a Mercer kernel [20]. We do not have a proof of the positive de�niteness for the
EMD-k ernel; however, in our experiments, this kernel hasalways yielded positive de�nite Gram matrices.
In addition, it must be noted that even non-Mercer kernelsoften work well in real applications [5].

4 Empirical Evaluation

4.1 Exp erimen tal setup

For our experimental evaluation, we usefour texture and �v e object categorydatasets,described in detail
in the following two sections. The texture datasetsare UIUCT ex [31], KTH-TIPS [24], Brodatz [3], and
CUReT [9]. The object category datasetsare Xerox7 [61], Graz [48], CalTech6 [18], CalTech101 [15] and
Pascal [14].

T01 (bark) T02 (bark) T03 (bark) T04 (wood) T05 (wood)

T06 (wood) T07 (water) T08 (granite) T09 (marble) T10 (stone)

T11 (stone) T12 (gravel) T13 (wall) T14 (brick) T15 (brick)

T16 (glass) T17 (glass) T18 (carpet) T19 (carpet) T20 (fabric)

T21 (paper) T22 (fur) T23 (fabric) T24 (fabric) T25 (fabric)

Figure 2: Four sampleseach of the 25 texture classesof the UIUCT ex dataset. The databasemay be
downloaded from http://www-cvr. ai. ui uc.ed u/ ponce grp/data/texture database.
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4.1.1 Texture datasets

The UIUCT ex dataset [31] contains 25 texture classeswith 40 imagesper class. Textures are viewed
under signi�can t scaleand viewpoint changes.Furthermore, the dataset includesnon-rigid deformations,
illumination changesand viewpoint-dependent appearancevariations. Fig. 2 presents four sampleimages
per class,each showing a textured surfaceviewed under di�eren t poses.

The KTH-TIPS dataset [24] contains 10 texture classes.Imagesare captured at nine scalesspanning
two octaves (relativ e scalechangesfrom 0.5 to 2), viewed under three di�eren t illumination directions
and three di�eren t poses,thus giving a total of 9 imagesper scale,and 81 imagesper material. Example
imageswith scaleand illumination changesare shown in Fig. 3. From this �gure, we can seethat scaling
and illumination changesincreasethe intra-class variabilit y and reduce the inter-class separability. For
example, the spongesurfaceunder scaleS3 looks somewhatsimilar to the cotton surfaceunder scaleS3.
This increasesthe di�culties of the classi�cation task.

S1 S2 S3 S1 S2 S3

I1

I2

Sponge Cotton

Figure 3: Image examplesof the KTH-TIPS database. S1, S2 and S3 indicate di�eren t scales,i.e., the
relative scales0.5, 1 and 2.0 respectively. I1, I2 represent two di�eren t illuminations. The databasemay
be downloaded from http://www.nada .kt h. se/cv ap/da ta bases/k th- ti ps.

The Bro datz texture album [3] is a well-known benchmark dataset. It contains 112di�eren t texture
classeswhere each classis represented by one image divided into nine sub-images(cf. Fig. 4). Note that
this dataset is somewhat limited, as it doesnot model viewpoint, scale,or illumination changes.

Figure 4: Image examplesof the Brodatz textures. Each image is divided into 9 non overlapping sub-
imagesfor experiments.

For the CUReT texture database [9] we use the same subset of images as [57, 58]. This subset
contains 61 texture classeswith 92 images for each class. These images are captured under di�eren t
illuminations with seven di�eren t viewing directions. The changesof viewpoint, and, to a greater extent,
of the illumination direction, signi�can tly a�ect the texture appearance,cf. Fig. 5.

For texture classi�cation, weevaluate the dependenceof performanceon the number of training images
per class. To avoid bias, we randomly select 100 di�eren t groups of n training images. The remaining
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Felt Plaster Styrofoam

Figure 5: Image examplesof CUReT textures under di�eren t illuminations and viewpoints.

imagesare used for testing. The results are reported as the averagevalue and standard deviation over
the 100 runs.

4.1.2 Ob ject category datasets

The Xero x7 dataset [61] consistsof 1776 imagesof seven classes:bikes, books, buildings, cars, faces,
phones and trees. This is a challenging dataset, as it includes images with highly variable pose and
background clutter, and the intra-class variabilit y is large. Someof the imagesare shown in Fig. 6. We
usethe samesetup as in [61], i.e., we perform multi-class classi�cation with ten-fold cross-validation and
report the averageaccuracy.

bikes books buildings cars faces phones trees

Figure 6: Imagesof categoriesbikes,books, buildings, cars, faces,phonesand treesof the Xerox7 dataset.
Note that all of them are classi�ed correctly with our approach.

airplanes cars (rear) cars (side) faces motorbikes wildcats

Figure 7: Image examplesof the six categoriesof CalTech6 dataset. The dataset may be downloaded
from http://www.robots .o x.a c. uk/~v gg/da ta .ht ml.
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The CalT ech6 database[18] contains airplanes (side) (1074 images),cars (rear) (1155 images),cars
(side)1 (720 images),faces(front) (450 images),motorbikes(side) (826 images),spotted cats (200 images),
and a background set (900 images). The original category of spotted cats is from the Corel image library
and contains 100images. Here we 
ipp ed the original imagesto have the sameset asusedin [18]. We use
the sametraining and test set for two-classclassi�cation (object vs. background) as [18]. Someimages
are presented in Fig. 7.

The Graz dataset [48] contains persons,bikesand a background class. Someof the imagesare shown
in Fig. 8. We use the sametraining and test set for two-classclassi�cation as [48], for a total of 350
images.

bikes people background bikes people background

Figure 8: Image examplesof the two categoriesand a background classof Graz dataset. The imageson
the left are correctly classi�ed with our approach, the imageson the right weremisclassi�ed. The dataset
may be obtained from http://www.emt.tu graz. at/ ~pin z/d at a.

bi
k

e
ca

rs
m

ot
or

bi
k

es
p

eo
pl

e

training test set 1 test set 2

Figure 9: Image examples with ground truth object annotation of di�er-
ent categories of the PASCAL challenge. The dataset may be obtained from
http://www.pasca l-n et work. or g/c halle nges/VOC/voc/i ndex. ht ml.

1The car (side) images are from the UIUC car dataset [1], http://l2r.cs.uiuc.edu/ ~cogcomp/Data/ Car.
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The PASCAL dataset [14] includes four categories: bicycles, cars, motorbikes and people. It has
one training dataset (684 images)and two test sets(test set 1: 689 images,test set 2: 956 images). The
goal of the challenge is to determine whether a given image contains an instance of a particular class,
i.e., there are four independent binary classi�cation tasks. Image examplesfrom the training set and the
two test sets of each category are shown in Fig. 9. In test set 1, expected to make an `easier'challenge,
imagesare taken from the samedistribution as the training images. In test set 2, imagesare collected
by Google search and thus comefrom a di�eren t distribution than the training data. This should make
a `harder' challenge. An additional complication is that many imagesin test set 2 contain instancesof
several classes.Note that in this dataset, ground truth annotations of each object are available. They are
shown asyellow rectanglesin Fig. 9. In Section5, we will usethis information to isolate the contributions
of foreground and background features.

The CalT ech101 dataset [15] contains 101 object categorieswith 40 to 800 images per category.
Some of the images are shown in Fig. 10.2 Most of the images in the database contain little or no
clutter. Furthermore, the objects tend to lie in the center of the image and to be present in similar
poses.Furthermore, someimages(see,e.g., the accordion and pagoda classesin Fig. 10) have a partially
black background due to arti�cial image rotations. We follow the experimental setup of Grauman et
al. [23], i.e., we randomly select30 training imagesper classand test on the remaining imagesreporting
the averageaccuracy. We repeat the random selection 10 times and report the average classi�cation
accuracy.

accordion carside pagoda scorpion ibis anchor
(93%) (92%) (89%) (15%) (8%) (7%)

Figure 10: Image examples of the CalTech101 dataset. On the left the three classeswith the best
classi�cation rates and on the right those with the lowest rates. The dataset may be downloaded from
http://www.visio n.c al te ch. edu/I mage Datasets/Caltech 101.

For object category classi�cation, we use the training and test settings speci�ed above except in
section 4.2. In this section we perform random splits for Graz and PASCAL to obtain statistically
signi�can t values. Note that we keepthe original split proportions, i.e., the number of training and test
images. As in the caseof textures 100di�eren t groupsare selectedand results are reported asthe average
value and standard deviation over the 100 runs.

4.2 Evaluation of implemen tation parameters

In this section we evaluate the main implementation choices of our approach, including the relative
performanceof di�eren t levelsof invariance,di�eren t detector/descriptor channels,and di�eren t typesof

2Note that the publicly available dataset contains two classesfor face|called face and faces easy|and that the zebra
category cited in [15] is missing.
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Databases
ScaleInvariance Scaleand Rotation A�ne Invariance

HS LS HS+LS HSR LSR HSR+LSR HA LA HA+LA
UIUCT ex 89.7� 1.5 91.2� 1.5 92.2� 1.4 97.1� 0.6 97.7� 0.6 98.0 � 0.5 97.5� 0.6 97.5� 0.7 98.0 � 0.6

KTH-TIPS 92.9� 1.6 94.9 � 1.6 94.4� 1.7 91.0� 1.7 92.5� 1.6 92.7� 1.6 87.6� 1.8 90.1� 1.8 90.0� 1.7

Brodatz 89.2� 1.0 94.9 � 0.7 94.4� 0.7 89.2� 1.0 94.1� 0.8 94.0� 0.9 84.7� 1.1 90.8� 0.9 91.3� 1.1

Xerox7 92.0� 2.0 93.9� 1.5 94.7 � 1.2 88.1� 2.1 92.4� 1.7 92.2� 2.3 88.2� 2.2 91.3� 2.1 91.4� 1.8

Graz bikes 90.9� 2.7 89.6� 2.6 91.9 � 2.6 89.4� 3.0 89.8� 2.6 91.3� 2.6 88.1� 3.4 89.8� 3.0 90.5� 3.0

PASCAL
92.5 � 0.9 91.6� 0.9 92.4� 0.9 87.7� 1.1 87.4� 1.1 89.0� 1.1 87.1� 1.1 87.6� 1.2 88.7� 1.1

cars set 1

Table 1: Evaluation of di�eren t levels of invariance. We use the SIFT descriptor and the EMD-k ernel.
The number of training imagesper classare 20 for UIUCT ex, 40 for KTH-TIPS, 3 for Brodatz. For Graz
and PASCAL we keepthe proportions of the original split. For Xerox7, we useten-fold cross-validation.

SVM kernels. To give a complete picture of the functioning of our system, we conclude this section by
reporting on the running time of di�eren t implementation components.

In the following we present results for 3 texture dataset and 3 object categoriessets. The PASCAL
dataset de�nes 8 sub-tasks. Due to spacelimitations we only present the results for the \cars set 1" task
which is representativ e of all the other results. For Graz we usethe \bik es" sub-task.
Evaluation of di�eren t lev els of in variance. First, we show the results of evaluating di�eren t levels
of invariance (S, SR, A) of our two keypoint detectors on several datasets. In this test, all regions
are described with the SIFT descriptor and the EMD kernel is used for classi�cation. Table 1 shows
that pure scale invariance (S) performs best for the Brodatz, KTH-TIPS, Xerox7, Graz and PASCAL
datasets,while for UIUCT ex, rotation invariance (SR) is important. The reasonis that Brodatz, KTH-
TIPS, Xerox7, Graz and PASCAL have no rotation or a�ne changes(in the Xerox7 imagesfor instance,
no face is rotated by more than 45 degreesand no car is upside down), while UIUCT ex has signi�can t
viewpoint changesand arbitrary rotations. Even in this case,a�ne-in variant features fail to outperform
the scale-and rotation-in variant ones. Thus, somewhatsurprisingly, a�ne invariance doesnot help even
for datasetswith signi�can t viewpoint changes,such as UIUCT ex.

There are two possiblecausesfor the apparent advantage enjoyed by the detectorswith lower levelsof
invariance. First, the normalization processnecessaryfor obtaining rotation- and a�ne-in variant features
may lose potentially discriminativ e information, resulting in weaker features in situations where such
invariance is not necessary. Second,detectors with a high degreeof invariance may be computationally
lessstable. However, independently of the cause,the practical choice is clear. Sinceusing local features
with the highest possiblelevel of invariancedoesnot yield the best performancefor most datasetsin our
evaluation, an e�ectiv e recognition systemshould not exceedthe local invariancelevel absolutely required
for a given application.
Evaluation of di�eren t channels. Next, we comparethe performanceof di�eren t detector/descriptor
channels and their combinations. We use the EMD kernel for classi�cation and report results for the
level of invariance achieving the best performancefor each dataset. Tables2 to 7 show results for three
texture datasets and three object datasets (the behavior of all the channels on the other datasets is
similar). We can see that the Laplacian detector tends to perform better than the Harris detector.
The most likely reason for this di�erence is that the Laplacian detector tends to extract four to �v e
times more regions per image than Harris-Laplace, thus producing a richer representation. Using the
two detectors together tends to further raise performance. SIFT performs better than SPIN and RIFT,
while the performance rank between SPIN and RIFT depends on dataset. It is not surprising that
RIFT performs worse than SIFT, since it averagesgradient orientations over a ring-shaped region and
therefore losesimportant spatial information. We have experimented with increasingthe dimensionality
of RIFT to 128, but this did not improve its performance. Combining SIFT with SPIN and RIFT with
SPIN boosts the overall performancebecausethe two descriptors capture di�eren t kinds of information
(gradients vs. intensity values). As expected,however, combining RIFT with SIFT and SPIN results only
in an insigni�can t improvement, as SIFT and RIFT capture the sametype of information. Overall, the
combination of Harris-Laplace and Laplacian detectors with SIFT and SPIN is the preferable choice in
terms of classi�cation accuracy, and this is the setupusedin Sections4.3and 4.4. In Section5, wedrop the
SPIN descriptor for computational e�ciency . Finally, it is interesting to note that in the nearest-neighbor
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Channels SIFT SPIN RIFT SIFT+SPIN RIFT+SPIN SIFT+SPIN+RIFT
HA 97.5 � 0.6 95.5 � 0.8 94.8 � 0.8 97.9 � 0.6 97.1 � 0.7 98.1 � 0.6

LA 97.5 � 0.7 96.0 � 0.9 96.4 � 0.7 98.1 � 0.6 97.8 � 0.6 98.5 � 0.5

HA+LA 98.0 � 0.6 97.0 � 0.7 97.0 � 0.7 98.5 � 0.5 98.0 � 0.6 98.7 � 0.4

HSR 97.1 � 0.6 93.9 � 1.1 95.1 � 0.9 97.4 � 0.6 96.5 � 0.8 97.8 � 0.7

LSR 97.7 � 0.6 93.9 � 1.0 94.8 � 1.0 98.2 � 0.6 96.9 � 0.8 98.4 � 0.5

HSR+LSR 98.0 � 0.5 96.2 � 0.8 96.0 � 0.9 98.3 � 0.5 97.7 � 0.7 98.5 � 0.5

Table 2: Detector and descriptor evaluation on UIUCT ex using 20 training imagesper class.

Channels SIFT SPIN RIFT SIFT+SPIN RIFT+SPIN SIFT+SPIN+RIFT
HS 89.2 � 1.0 86.1 � 1.1 82.7 � 1.0 93.7 � 0.8 89.8 � 1.1 94.2 � 0.9

LS 94.9 � 0.7 87.9 � 1.0 88.5 � 0.9 94.7 � 0.8 91.4 � 0.9 95.2 � 0.7

HS+LS 94.4 � 0.7 90.2 � 1.0 89.6 � 1.0 95.4 � 0.7 92.8 � 0.8 95.9 � 0.6

Table 3: Detector and descriptor evaluation on Brodatz using 3 training imagesper class.

Channels SIFT SPIN RIFT SIFT+SPIN RIFT+SPIN SIFT+SPIN+RIFT
HS 92.9 � 1.6 90.8 � 1.6 82.3 � 2.0 94.2 � 1.6 91.7 � 1.6 94.1 � 1.4

LS 94.9 � 1.6 94.7 � 1.2 86.5 � 1.9 96.1 � 1.2 95.0 � 1.3 96.1 � 1.1

HS+LS 94.4 � 1.7 94.2 � 1.4 86.7 � 1.8 95.5 � 1.3 94.3 � 1.4 95.6 � 1.2

Table 4: Detector and descriptor evaluation on KTH-TIPS using 40 training imagesper class.

Channels SIFT SPIN RIFT SIFT+SPIN RIFT+SPIN SIFT+SPIN+RIFT
HS 92.0 � 2.0 83.0 � 1.9 83.8 � 3.1 91.4 � 2.1 87.8 � 2.4 92.0 � 2.0

LS 93.9 � 1.5 88.6 � 2.0 89.1 � 1.1 94.3 � 0.9 90.8 � 1.4 93.9 � 1.5

HS+LS 94.7 � 1.2 89.5 � 1.4 89.3 � 1.5 94.3 � 1.1 91.5 � 1.0 94.7 � 1.3

Table 5: Detector and descriptor evaluation on Xerox7 using ten-fold cross-validation.

Channels SIFT SPIN RIFT SIFT+SPIN RIFT+SPIN SIFT+SPIN+RIFT
HS 90.9 � 2.7 83.3 � 3.9 88.9 � 3.6 91.0 � 2.9 88.5 � 3.2 91.5 � 2.6

LS 89.6 � 2.6 88.1 � 3.5 88.0 � 3.2 91.6 � 2.5 90.3 � 2.5 91.7 � 2.1

HS+LS 91.9 � 2.6 88.4 � 3.2 90.6 � 2.2 93.0 � 2.3 90.9 � 2.8 93.1 � 2.6

Table 6: Detector and descriptor evaluation on Graz bikes keeping original training set and test set
proportions.

Channels SIFT SPIN RIFT SIFT+SPIN RIFT+SPIN SIFT+SPIN+RIFT
HS 92.5 � 0.9 85.3 � 1.1 87.0 � 1.1 92.4 � 0.9 89.6 � 0.9 93.5 � 0.8

LS 91.6 � 0.9 84.3 � 1.1 90.9 � 0.9 91.5 � 1.0 90.3 � 1.0 93.0 � 0.8

HS+LS 92.4 � 0.9 86.4 � 1.1 90.5 � 1.0 92.6 � 0.9 91.0 � 0.9 93.6 � 0.8

Table 7: Detector and descriptor evaluation on PASCAL cars set 1 keepingoriginal training set and test
set proportions.
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classi�cation framework of [31], direct combination of di�eren t channelsfrequently results in a signi�can t
decreaseof overall performance. However, in a kernel-basedclassi�cation framework this problem is
encountered lessoften. In caseswhen the distance estimates provided by one of the channels are much
more noisy or unreliable than thoseof the others (i.e., when that channel is much lessdiscriminativ e than
the others), the noise degradesthe performanceof the nearest-neighbor classi�er, but not of the SVM.
This is probably due to the fact, that NN classi�er simply comparesthe averagedchannel distances,while
SVM combines the number of distancesto weighted training examplesincorporating the distance values
themselves. The robustnessof the SVM classi�er to noiseand irrelevant information is also con�rmed by
our background evaluation of Section 5, where it is shown that a classi�er trained on imagescontaining
both object and clutter features performs quite well on cleaner test images.
Evaluation of di�eren t kernels. The learning abilit y of a kernel classi�er depends on the type of
kernel used. Here we compareSVM with �v e di�eren t kernels, i.e, linear, quadratic, Radial Basis Func-
tion (RBF), � 2, and EMD. As a baseline,we also evaluate EMD-NN, i.e., EMD with nearest-neighbor
classi�cation3 [31]. For the signature-basedclassi�ers (EMD-NN and EMD kernel), we use 40 clusters
per image as before. For the other SVM kernels, which work on histogram representations, we create a
global vocabulary by concatenating 10 clusters per class. For UIUCT ex, KTH-TIPS, Brodatz, Xerox7,
Graz and PASCAL the vocabulary sizesare 250, 100, 1120, 70, 20 and 40, respectively. Table 8 shows
classi�cation results for the LSR+SIFT channel, which are representativ e of all other channels. We can
seethat EMD-NN always performs worsethan the EMD kernel, i.e., that a discriminativ e approach gives
a signi�can t improvement. The di�erence is particularly large for the Xerox7 database,which has wide
intra-class variabilit y. Among the vocabulary/histogram representations, the � 2 kernel performs better
than linear, quadratic, and RBF. Results for the EMD kernel and the � 2 kernel are comparable. Either
of the kernels seemto be a good choice for our framework, provided that a suitable vocabulary can be
built e�cien tly . To avoid the computational expenseof building global vocabulariesfor each dataset, we
usethe EMD kernel in the following experiments.

Databases
Vocabulary-Histogram Signature

Linear Quadratic RBF � 2 kernel EMD-NN EMD-Kernel
UIUCT ex 97.0 � 0.6 84.8 � 1.6 97.3 � 0.7 98.1 � 0.6 95.0 � 0.8 97.7 � 0.6

KTH-TIPS 91.9 � 1.4 75.8 � 1.9 94.0 � 1.2 95.0 � 1.2 88.2 � 1.6 92.5 � 1.5

Brodatz 96.1 � 0.8 86.3 � 1.5 96.2 � 0.7 96.0 � 0.7 86.5 � 1.2 94.1 � 0.8

Xerox7 79.8 � 3.0 70.9 � 2.4 86.2 � 2.2 89.2 � 2.1 59.4 � 4.1 92.4 � 1.7

Graz bikes 83.9 � 3.6 83.2 � 3.5 83.2 � 3.0 83.8 � 2.0 84.6 � 3.4 89.8 � 2.6

PASCAL cars set 1 76.8 � 1.3 77.4 � 1.3 77.0 � 1.8 80.6 � 1.3 74.1 � 1.6 87.4 � 1.1

Table 8: Classi�cation accuracy of di�eren t kernels for LSR+SIFT. The number of training images
per class are 20 for UIUCT ex, 40 for KTH-TIPS, 3 for Brodatz. For Graz and PASCAL we keep the
proportions of the original split. For Xerox7, we useten-fold cross-validation.

Evaluation of di�eren t signature sizes. Figure 11 shows the in
uence of signature length on the
classi�cation results for PASCAL test set 1 using SVM with EMD kernel. The results are given for a
(LS+HS)(SIFT+SPIN) image description with variable signature lengths. We can seethat a signature
length between20 and 40 is a good choice for this dataset. We have observed a similar behavior for the
other datasets. In general, very short signatures can lead to a signi�can t performancedrop, whereasa
signature length above 40 does not improve performance, but increasesthe computational complexity
signi�can tly .
Evaluation of running time. The implementation of our recognition system consistsof the following
major stages:regiondetection, description computation, clustering, training (computing the Gram matrix
basedon EMD or � 2 distancesbetweeneach pair of training images,and learning the SVM parameters),
and testing. Here we take the PASCAL dataset as an example to give a detailed evaluation of the
computational cost of each stage. The size of the vocabulary is 1000 (250 clusters per class), which
is su�cien t to have good results. All components of our system are implemented in C and run on a
computer with a 3 GHz Intel CPU and 1 GB of RAM. Tables 9 and 10 report averagerunning times
obtained by dividing the total running time of each stage by the number of imagesor comparisons. In

3We also tried k-nearest-neighbor with k > 1, but did not observe better performance.
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HS+SIFT LS+SIFT HS+SPIN LS+SPIN
Region Detection � (n + m) 0.62s 0.96s 0.62s 0.96s
Descriptor Computation � (n + m) 1.39s 3.29s 5.67s 12.64s
Clustering (signature) � (n + m) 0.27s 1.28s 0.235s 1.18s
Training � n(n � 1)=2 0.0024s 0.0024s 0.0026s 0.0026s
Testing � (]sv � m) 0.0023s 0.0021s 0.0024s 0.0024s

Table 9: Evaluation of computational cost on the PASCAL dataset using EMD kernel.

HS+SIFT LS+SIFT HS+SPIN LS+SPIN
Region Detection � (n + m) 0.62s 0.96s 0.62s 0.96s
Descriptor Computation � (n + m) 1.39s 3.29s 5.67s 12.64s
Clustering (vocabulary) � c 6.13m 6.13m 5.75m 6.25m
Histogramming � (n + m) 0.68s 2.18s 0.64s 1.93s
Training � n(n � 1)=2 0.00022s 0.00022s 0.00020s 0.00022s
Testing � (]sv � m) 0.00034s 0.00034s 0.00031s 0.00032s

Table 10: Evaluation of computational cost on PASCAL dataset using � 2 kernel. Note that the �rst two
rows of this table are the sameas those of Table 9.

the tables, n = 684 is the number of training images,m = 1645is the number of test images(test sets1
and 2 combined), c = 4 is the number of classes,and ]sv is the number of support vectors. The range of
]sv is 382 to 577 for the EMD kernel, and 268 to 503 for the � 2 kernel. Note that in listing the running
time of the training stage,we neglect the time for training the SVM, i.e., determining the parameters� i

and b of eq. (1), sinceit is dominated by the time for computing the Gram matrix.
We can see that the Laplacian channel is usually slower than the Harris-Laplace channel due to

its much denser representation. Also, the computation of SPIN is a bit slower than SIFT becausewe
implement SPIN as a soft histogram [31], which involves a large number of exponential computations.
Furthermore, we can seethat the bottleneck of the computation cost for the � 2 method is the stage of
forming the global texton vocabulary, whereasfor the EMD the computation of Gram matrices (necessary
during training and testing) is quite time-consuming. In our implementation, we usea standard k-means
program with 8 di�eren t initializations, and select the one with the lowest error at convergence(the
clustering times reported in the tables are the averagesfor one round).

Taking the (HS+LS)(SIFT+SPIN) combination of the channels, the total training time for n = 684
including 8 runs of k-meansis 9h49m for the EMD kernel and 18h42m for the � 2 kernel. The average
time for classifying a test image of the PASCAL databasewith (HS+LS)(SIFT+SPIN) is 53.1sfor the
EMD kernel and 30.7s for the � 2 kernel. Overall, the � 2 kernel is slower than the EMD kernel when
considering the vocabulary construction time. This is the main reasonthat we have preferred the EMD
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Figure 11: PASCAL test set 1 classi�cation results in
uenced by signature length.
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kernel for most of our evaluations. In the future, we plan to experiment with e�cien t clustering methods,
such as x-meanswith kd-trees [49], to improve the speedof vocabulary construction.

4.3 Texture classi�cation

In this section, we present a comparative evaluation of our approach with four state-of-the-art texture
classi�cation methods: Lazebnik's method [31], VZ-join t [58], Hayman's method [24], and global Gabor
�lters [38]. Lazebnik's method uses(HA+LA)(SPIN+RIFT) for imagedescription, and nearestneighbor
classi�cation with EMD. VZ-join t [58] usesN � N pixel neighborhoods asimagedescriptorsand performs
clustering on a denserepresentation. In our experiments we use N = 7, i.e., a 49-dimensional feature
vector as suggestedin [58]. Each pixel is labeled by its nearest texton center, and the representation
is the distribution of all of the texton labels. � 2 distance is used as similarit y measureand combined
with nearest-neighbor classi�cation. Hayman's method [24] is an extension of the VZ approach. They
use the VZ-MR8 (maximum �lter response independent of orientation) descriptor [57] and SVM with
� 2 kernel for classi�cation. In our implementation we use the VZ-join t descriptor instead of VZ-MR8,
as VZ-join t has been shown to give better results [58]. Compared with the results for the KTH-TIPS
databasereported in [24], our implementation gives slightly higher classi�cation accuracy for the same
training and test set. Finally, global Gabor �lters [38] is a \traditional" texture analysis method using
global meanand standard deviation of the responsesof Gabor �lters. We usethe sameGabor �lters as in
[38], i.e., 6 orientations and 4 scales.Classi�cation is nearestneighbor basedon the Mahalanobisdistance.
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Figure 12: Comparison of di�eren t methods on the UIUCT ex database.

Comparison on UIUCT ex database. Fig. 12 shows the classi�cation accuracy of the �v e di�eren t
methods for a varying number of training images. We can observe that both our method and Lazebnik's
method work much better than Hayman's method and VZ-join t, while Hayman's method works better
than VZ-join t. Overall, the improved performanceof our method over Lazebnik's and of Hayman over
VZ-join t shows that discriminativ e learning helps to achieve robustnessto intra-class variabilit y. On this
dataset, global Gabor featuresperform the worst, sincethey are not invariant and averagingthe features

T02 (0.94) T08 (0.03) T09 (0.94) T10 (0.04) T21 (0.94) T24 (0.02)

Figure 13: Example imagesof the most di�cult texture classesof UIUC databaseand their confused
classes.The left exampleof each pair shows the di�cult texture classand its classi�cation accuracy. The
right exampleshows the most confusedclassand the confusion rate for the classon the left.
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over all pixels losesdiscriminativ e information. Overall, the three non-invariant densemethods in our
evaluation have relatively weak performanceon this database,especially for smaller numbers of training
images,where they cannot take advantage of multiple exemplars to learn intra-class variations that are
not compensatedfor at the representation level. Finally, Fig. 13 shows three classesthat get the lowest
classi�cation rates with our approach and the classesmost often confusedwith those. We can seethat
perceptual similarit y helps to account for this confusion.
Comparison on KTH-TIPS database. Fig. 14 shows the classi�cation accuracyof the �v e di�eren t
methods on the KTH-TIPS database for a varying number of training images. We can observe that
our method works best, Hayman's comessecond,and VZ-join t and Lazebnik's method are below them.
Lazebnik's method performs worseon this databasethan on UIUCT ex becauseits image representation
is not invariant to illumination changes,and it does not incorporate a discriminativ e learning step to
compensatefor this weakness.Global Gabor �lters comein last, though they still give good results and
their performance is signi�can tly higher for this databasethan for UIUCT ex. This may be due to the
relative homogeneity of the KTH-TIPS texture classes.Note the increasein performanceof the global
Gabor method between10 and 40 training images,which con�rms that a method with a non-invariant
representation needsmultiple exemplarsto achieve high performancein the presenceof signi�can t intra-
classvariations due to lighting changes.
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Figure 14: Comparison of di�eren t methods on the whole KTH-TIPS texture database

Comparison on Bro datz database. Table 11 shows results for one and three training images per
class. Our method performs best, closely followed by Hayman's method. We can seethat Hayman's
method performs better than VZ-join t, and our method better than Lazebnik's method. This shows that
kernel-basedlearning improvesthe performanceover nearestneighbor classi�cation.

methods
training images

per class
1 3

ours: (HS+LS)
88.8 � 1.0 95.4 � 0.3

(SIFT+SPIN)
Hayman 88.7 � 1.0 95.0 � 0.8

Lazebnik 80.0 � 1.3 89.8 � 1.0

VZ-join t 87.1 � 0.9 92.9 � 0.8

Global Gabor
80.4 � 1.2 87.9 � 1.0

mean+std

Table 11: Comparison on the Brodatz database

Comparison on CUReT database. Fig. 15 shows that Hayman's method obtains the best results,
followed by VZ-join t, our method, global Gabor �lters, and Lazebnik's method. On this dataset, local
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Figure 15: Comparison of di�eren t methods on the CUReT texture database

feature methods are at a disadvantage. Since most of the CUReT textures are very homogeneousand
high-frequency, lacking salient structures such asblobs and corners,keypoint extraction doesnot produce
very good image representations. A simple patch descriptor seemsto be more appropriate.

Discussion. Our method achieves the highest accuracy on three texture databasesand comparablere-
sults on the CUReT dataset. Its robustnessto viewpoint and scalechangeshasbeenclearly demonstrated
on the UIUCT ex and the KTH-TIPS datasets. Our results show that for most datasets,combining geo-
metric invariance at the representation level with a discriminativ e classi�er at the learning level, results
in a very e�ectiv e texture recognition system. Note that even though impressive results are obtained
using VZ-join t (patch descriptors) on the CUReT and Brodatz datasets, this method does not perform
as well on the other datasets, thus showing its limited applicabilit y. An important factor a�ecting the
performance of local feature methods is image resolution, since keypoint extraction tends to not work
well on low-resolution images. For example,CUReT imagesof size200� 200have on average236Harris-
Laplace regionsand 908 Laplacian regions,while UIUCT ex imagesof size640� 480 have an averageof
2152and 8551regions,respectively. As in our earlier tests showing the advantage of the denserLaplacian
detector over the sparserHarris-Laplace, extracting larger numbers of keypoints seemsto lead to better
performance.

4.4 Ob ject category classi�cation

In this section we evaluate our approach for object category classi�cation and compare it to the results
reported in the literature. In the following experiments, we use the combination of the Harris-Laplace
and Laplacian detectors described with SIFT and SPIN unlessstated otherwise. The EMD kernel and
SVM are usedfor classi�cation.

Comparison on Xero x7 . Table 12 shows overall results for multi-class classi�cation on the Xerox7
database. Our method outperforms the Xerox bag-of-keypoints method [61] in the sameexperimental
setting. This is due to the fact that we use a combination of detectors and descriptors, a more robust
kernel (EMD vs. linear, seethe bottom line of table 8) and scaleinvarianceasopposedto a�ne invariance
(seetable 1). Fig. 6 shows someimagescorrectly classi�ed by our method. Table 13 shows the confusion

ours: (HS+LS)
Xerox [61]

(SIFT+SPIN)
overall rate 94.3 82.0

Table 12: Classi�cation accuracyon the Xerox7 database.

18



category bi
ke

s

b
oo

ks

bu
ild

in
gs

ca
rs

fa
ce

s

ph
on

es

tr
ee

s

ra
te

bikes 122 1 2 97.6
books 116 1 9 12 4 81.7

buildings 1 5 123 5 10 1 5 82.0
cars 3 178 14 6 88.6
faces 1 1 787 3 99.4

phones 5 1 3 4 203 94.0
trees 1 1 2 146 97.3

Table 13: Confusion matrix for the Xerox7 dataset.

matrix and the classi�cation rates for the individual categories4. The most di�cult categoriesare books,
buildings and cars. Fig. 16 shows someof the misclassi�ed images for these categories. The �rst row
of Fig. 16 shows book imagesmisclassi�ed as face and building. The secondrow shows building images
misclassi�ed as face and tree: there are trees in front of the buildings. The third row shows car images
misclassi�ed as building and phone. The image on the left does contain buildings. This shows the
limitation of a whole-imageclassi�cation method whena test imagecontains instancesof multiple objects.

misclassi�ed books (faces,faces,buildings)

misclassi�ed buildings (faces,trees, trees)

misclassi�ed cars (buildings, phones,phones)

Figure 16: Misclassi�ed imagesof the Xerox7 dataset.

Comparison on Caltec h6 and Graz . Results for two-classclassi�cation (object vs. background) on
the CalTech6 and Graz databasesare reported with the ROC equal error rate.5 Table 14 comparesour
CalTech6 results to three of the state-of-the-art methods|the Xerox approach [61], Fergus et al. [18]
and Deselaerset al. [11]. We can seethat our method performs best on four out of six object classes
and achieves comparable results on the remaining two. The results obtained by the other methods
are also quite high, indicating the relatively low level of di�cult y of the CalTech6 dataset. We also
tested our method for two-classclassi�cation on the Graz dataset [48] (Table 15). Our method performs
signi�can tly better than Opelt et al. [48]. Fig. 8 shows someimagescorrectly classi�ed by our method
and misclassi�ed ones. Misclassi�ed bikesare either observed from the front, very small, or only partially

4Note that the overall rate is the average over the individual rates weighted by the number of images in the category.
5Point on the ROC curves for which p(T r ueP ositiv es) = 1 � p(F alsePositiv es).
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ours: (HS+LS)(SPIN+SIFT) Xerox [61] Fergus [18] Deselaers[11]
airplanes 98.8 97.1 90.2 98.6

cars (rear) 98.3 98.6 90.3 N/A
cars (side) 95.0 87.3 88.5 N/A

faces 100 99.3 96.4 96.3
motorbikes 98.5 98.0 92.5 98.9
spotted cats 97.0 N/A 90.0 N/A

Table 14: ROC equal error rates on the CalTech6 dataset.

ours: (HS+LS)
Opelt [48]

(SPIN+SIFT)
bikes 92.0 86.5

people 88.0 80.8

Table 15: ROC equal error rates on the Graz database.

visible. Misclassi�ed peopleare either observed from the back, occluded, or very small.
Comparison on the PASCAL database . We also evaluate our approach for the object category
classi�cation task of the PASCAL challenge[14], sampleimagesfrom which wereshown in Fig. 9. Table16
shows ROC equal error rates of our method for detecting each classvs. the others6 aswell asof the other
best method reported in the PASCAL challenge. For test set 1 the best results, slightly better than ours,
were obtained by Larlus [29]. This approach usesa denseset of multi-scale patches instead of a sparse
set of descriptors computed at interest points. For test set 2 best results, below ours, were obtained by
Deselaerset al. [10]. They use a combination of patches around interest points and patches on a �xed
grid. A short description of all the participating methods may be found in [14].

test set 1 test set 2
HS LS HS+LS Larlus [29] HS LS HS+LS Deselaers[10]

bikes 87.7 89.4 90.3 93.0 67.3 68.4 68.1 66.7
cars 92.7 92.3 93.0 96.1 71.2 72.3 74.1 71.6

motorbikes 93.0 95.8 96.2 97.7 75.7 79.7 79.7 76.9
people 90.4 90.4 91.6 91.7 73.3 72.8 75.3 66.9

Table 16: ROC equal error rates for object detection on the PASCAL challenge using the combination
of SIFT and SPIN descriptors and EMD kernel.

Comparison on the CalT ech101 . Table 17 shows the results for multi-class classi�cation on Cal-
Tech101dataset. Our approach outperforms Grauman et al. [23] for the samesetup. The best results on
this dataset (48%) are currently reported by Berg et al. [2]. However, theseresults are not comparableto
ours, sincethey were obtained in a supervisedsetting with manually segmented training images. Fig. 10
presents the categorieswith the best and worst classi�cation rates. We can observe that some of the
lowest rates are obtained for categoriesthat are characterized by their shape as opposedto texture, such
as anchors.

ours: (HS+LS)
Berg [2]

Grauman
(SIFT+SPIN) [23]

avg. 53.9 48 43

Table 17: Classi�cation accuracyon the CalTech101 dataset.

Discussion. Our method achieves the highest accuracy on Xerox7, Graz, CalTech6, CalTech101 and
PASCAL test set 2. Slightly better results on PASCAL test set 1 wereachievedusing a densemethod [29].

6Note that the results reported here di�er slightly from those of the PASCAL challenge. Here we have used the same
parameter settings as in the rest of the paper, which are not exactly the same as those in the submission to the PASCAL
challenge.
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Results for this method are o�cially published only for PASCAL test set 1, but a recent unpublished
evaluation on PASCAL test set 2 reports results slightly worse than ours. It is also worth noting, that
the complexity of the mentioned densemethod is noticeably higher than ours.

We can observevarying levelsof di�cult y of the di�eren t datasets. Almost perfect results are achieved
on the CalTech6, whereassigni�can t room for improvement exists for PASCAL test set 2 and CalTech101.

5 Ob ject category classi�cation|in
uence of background

Figure 17: Image examplesof the constant natural scenebackground. They are captured with lighting
changesand the movement of clouds and trees.

Our method recognizesobject categoriesin the presenceof various backgroundswithout segmentation.
Thus, it takes both foreground and background features as input. In the following, we examine the
roles of these features in discriminating the object categoriesfrom the PASCAL challenge. All of the
experiments here are done using the signature/EMD kernel framework. Imagesare characterized with
(HS+LS)(SIFT), SPIN is dropped for computational e�ciency . Signature size is set to 40 per image.

PASCAL imagesare annotated with ground truth object regions,asshown in Fig. 9. For each image,
we extract two setsof features: foreground features (FF) are those located within the object region, and
background features (BF) are those located outside the object region. Note that many object categories
have fairly characteristic backgrounds. In the caseof cars, for example, most of the imagescontain a
street, a parking lot, or a building. To determine whether this information provides additional cuesfor
classi�cation, we examinethe changein classi�cation performancewhen the original background features
from an image are replaced by two specially constructed alternativ e sets: random and constant natural
scenebackgrounds (referred to asBF-RAND and BF-CONST, respectively). BF-RAND are obtained by
randomly shu�ing background features among all of the imagesin the PASCAL dataset. For example,
the background of a face image may be replaced by the background of a car image. Note that the
total number of features and the relative amount of clutter in an image may be altered as a result of
this procedure. BF-CONST are background features extracted from imagescaptured by a �xed camera
observing a natural sceneover an extended period of time, so they include continuous lighting changes
and the movement of trees and clouds (Fig. 17).
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Figure 18: ROC curvesof object classi�cation on the PASCAL challengeobtained by training and testing
on background features only. The left �gure corresponds to test set 1, and the right one to test set 2.
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Fig. 18 showsROC curvesobtained by training and testing categorieson only the background features
(BF) for all four classesin test sets1 and 2. We can observe that the background features contain a lot
of discrimination information for test set 1, i.e., using the background featuresalone is often su�cien t to
determine the category of the image. Background features are signi�can tly lessdiscriminant for test set
2. For example, the performanceof background features for bicycles is closeto chance level. Thus, one
of the reasonswhy test set 2 is consideredmore di�cult than test set 1, is the fact that its background
features are much less correlated with the foreground. The performance of the BF-RAND and BF-
CONST feature sets is at chance level as one would expect, since they do not contain any information
about the foreground object classby construction.

Figs. 19, 20 and 21 evaluate combinations of foreground features with di�eren t typesof background
features. For the sake of brevity, we show only the results for test sets 1 and 2 of the people category,
which is representativ e of the others. The rest of the curves may be found in our technical report [63].
AF denotesthe featuresextracted from the original image, i.e., a combination of FF and BF; AF-RAND
denotesthe combination of foreground featureswith randomly selectedbackground features, i.e., FF and
BF-RAND; and AF-CONST denotesthe combination of foreground featureswith identically distributed
background features, i.e., FF and BF-CONST. Fig. 19 shows ROC curvesfor a situation where training
and testing are performed on the samefeature combination. In order of decreasingperformance, these
combinations are: FF, AF-CONST, AF, AF-RAND. FF always gives the highest results, indicating
that object features play the key role for recognition, and recognition with segmented imagesachieves
better performance than without segmentation. Mixing background features with foreground features
does not give higher recognition rates than FF alone. For images with roughly constant backgrounds
(AF-CONST), the performance is almost the same as for images with foreground features only. It is
intuitiv ely obvious that classifying imageswith �xed backgrounds is as easyas classifying imageswith
no background clutter at all. Finally, the ROC curves for AF-RAND are the lowest, which shows that
objects with uncorrelated backgrounds are harder to recognize.

Fig. 20showsROC curvesfor a setup wherethe training set hasdi�eren t typesof backgroundsand the
test set hasits original background. We can observe that training on AF or AF-RAND and testing on AF
gives the highest results. Thus, even under randomly changed training backgrounds, the SVM can �nd
decisionboundaries that generalizewell to the original training set. Training on FF or AF-CONST and
testing on AF gives lower results, most likely becausethe lack of clutter in FF set and the monotonous
backgrounds in AF-CONST causethe SVM to over�t the training set. By contrast, varying the object
background during training, even by random shu�ing, results in a more robust classi�er.

Finally, Fig. 21 shows ROC curvesfor a situation where the training set has the original backgrounds
and the test set has di�eren t typesof backgrounds. Testing on FF givesbetter results than when testing
on the original dataset AF, while testing on AF-RAND givesmuch worseresults. Thus, when the test set
is \easier" than the training one,performanceimproves,and when it is \harder," the performancedrops.
This is consistent with the results of Fig. 20, where training on the \harder" setsAF or AF-RAND gave
much better results than training on the \easier" sets FF and AF-CONST. Next, we can observe that
the results of testing on AF-CONST are better than those of testing on AF.

Basedon our evaluation of the role of background features in bag-of-keypoints classi�cation, we can
venture two general observations. First, while the backgrounds in most available datasets have non-
negligible correlations with the foreground objects, using both foreground and background features for
learning and recognition does not result in better performance for our method. In our experimental
setting, the recognition problem is easier in the absenceof clutter. This highlights the limitations as
evaluation platforms of datasets with simple backgrounds, such as ETH-80 [32] and COIL-100 [44]:
Basedon the insights of our evaluation, high performanceon thesedatasetswould not necessarilymean
high performanceon real imageswith varying backgrounds. Second,when the statistics of the test set
are unknown at training time, it is usually bene�cial to pick the most di�cult training set available,
since the presenceof varied backgrounds during training helps to improve the generalization abilit y of
the classi�er.

6 Discussion

In this paper we have investigated the performance of a kernel-baseddiscriminativ e approach for tex-
ture and object category classi�cation using local image features. Results on challenging datasets have
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Figure 19: ROC curves of our method on the PASCAL challenge. The method is trained and tested
with four combinations of the foreground features with di�eren t typesof background. The sametype of
background is usedfor training and testing.
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Figure 20: ROC curves of our method on the PASCAL challenge. The method is trained with four
combinations of the foreground features with di�eren t types of background, and tested on the original
test set of the PASCAL challenge.
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Figure 21: ROC curves of our method on PASCAL challenge. The method is trained on the original
training set of PASCAL challenge, and tested on four combinations of the foreground features with
di�eren t typesof background.
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shown that surprisingly high levels of performancecan be achieved with an image representation that is
essentially an orderlesshistogram. This is true not only for texture images,which are clutter-free and rel-
atively statistically homogeneous,but also for object images,even in the caseof completely uncorrelated
backgrounds.

One of the contributions of our paper is a comprehensive evaluation of multiple keypoint detector
types, levels of geometric invariance, feature descriptors, and classi�er kernels. This evaluation has
revealed several general trends, which should prove useful for computer vision practitioners designing
high-accuracy recognition systems for real-world applications. For example, we show that to achieve
the best possibleperformance, it is necessaryto use a combination of several detectors and descriptors
together with a classi�er that can make e�ectiv e useof the complementary typesof information contained
in them. Also, we show that using local featureswith the highest possiblelevel of invarianceusually does
not yield the best performance. Thus, a practical recognition systemshould seekto incorporate multiple
types of complementary features, as long as their local invariance properties do not exceedthe level
absolutely required for a given application.

In testing our method on four texture and �v eobject databases,we havefollowedan evaluation regime
far more rigorous than that of most other comparableworks. In fact, our evaluation of multiple texture
recognition methods highlights the dangerof the currently widespreadpractice of developing and testing
a recognition method with only one or two databasesin mind. For example, methods tuned to achieve
high performance on the CUReT database (e.g., the VZ method) have weaker performance on other
texture databases,such as UIUCT ex, and vice versa,methods tuned to UIUCT ex and Brodatz (e.g., the
Lazebnik method) perform poorly on CUReT.

Another contribution of our paper is the evaluation of the in
uence of background features. It shows
the pitfalls of training on datasets with uncluttered or highly correlated backgrounds, since this causes
over�tting and yields disappointing results on test sets with more complex backgrounds. On the other
hand, training a method on a harder dataset typically improves the generalization power of a classi�er
and doesnot hurt performanceeven on a clutter-free dataset.

Future research should focus on designing improved feature representations. We believe that signi�-
cant performancegains are still to be realized from developing more e�ectiv e detectors and descriptors,
for example for representing shape. Another promising area is the development of hybrid sparse/dense
representations. For example, the recent successesof the novel feature extraction schemesof [10, 28]
suggestthat increasingthe density and redundancyof local feature setsmay be bene�cial for recognition.
Additional research directions include designing kernels that incorporate geometrical relations between
local features (see [22] for preliminary work along these lines) and feature selection methods that can
separate foreground from background. In the longer term, successfulcategory-level object recognition
and localization is likely to require more sophisticated models that capture the 3D shape of real-world
object categoriesas well as their appearance. In the development of such models and in the collection of
new datasets,simpler bag-of-keypoints methods can serve as e�ectiv e baselinesand calibration tools.
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