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Abstract 1. Introduction

Image search has received increasing interest in recent
Burstiness, a phenomenon initially observed in text re- years. Most of the state-of-the-art approaches [1, 5, 14, 16]
trieval, is the property that a given visual element appears build upon the seminal paper by Sivic and Zisserman [20].
more times in an image than a statistically independent The idea is to describe an image by a bag-of-features (BOF)
model would predict. In the context of image search, bursti- representation, in the spirit of the bag-of-words representa-
ness corrupts the visual similarity measure, i.e., the scorestion used in text retrieval.
used to rank the images. In this paper, we propose a strat-  This representation is obtained by rst computing local
egy to handle visual bursts for bag-of-features based im- descriptors, such as SIFT [9], for regions of interest ex-
age search systems. Experimental results on three referencgacted with an invariant detector [13]. A codebook is then
datasets show that our method signi cantly and consistently constructed of ine by unsupervised clustering, typically a
outperforms the state of the art. k-means algorithm [20]. Several other construction meth-
ods, such as hierarchical k-means [14] or approximate k-



means [15], have been used for ef ciency. The resulting
codebook is usually referred to avigual vocabularyand

the centroids agisual words The BOF representation is
obtained by quantizing the local descriptors into the visual
vocabulary, resulting in frequency vectors. This representa-
tion can be re ned with a binary signature per visual word
and partial geometrical information [4].

Given that some visual words are more frequent than
others, most of the existing approaches useaerse doc-
ument frequencyidf) word weighting scheme, similar to
text retrieval [17]. It consists in computing an entropic
weight per vocabulary word which depends on its proba-
bility across images [20]. Althougtdlf weighting reduces
the impact of frequent visual words, it has two limitations.
First, it has been designed for a nite alphabet, not for a
continuous feature space. Consequently, it cannot measure
the quality of the matches based on the distances between
descriptors. Second and most importanitlf, weighting
does not take into account therstinessof the visual ele-
ments: a (visual) word is more likely to appear in an image
if it already appeared once in that image.

This paper is organized as follows. The burstiness phe-
nomenon in images is presented in Section 2. In Section 3
we introduce our image search framework and in Section 4
we propose three strategies that take into account bursti-
ness in the matching scores. The rst one removes mul-
tiple matches that are counted in a BOF framework. Due
to the burstiness of visual elements, such multiple matches
often occur when matching two images based on their vi-
sual words, see Fig. 2. The second and third strategies are
more sophisticated reducing the scores of intra- and inter-Figure 2. Example of non-corresponding images with multiple
images bursts, respectively. Finally, in the experimental point matches.. Lines of the same color represent matches based
section 5 we report our results for three reference datasets”" the same visual word.
They signi cantly and consistently outperform state-of-the-
art methods.

that many regions (detected by the Hessian-af ne detector)
2 The burstin henomenon are assigned to the same visual word, the maximum being
) € burstiness phenomeno 445 regions assigned to a single visual word on the “cards”

In the bag-of-words framework [7] terms are assumed to image. The examples include man-made objects such as
be conditionally independent. The overall frequency of a buildings, church windows and playing cards as well as tex-
term is the main information. The central problem with this tures such as a brick wall and corals. In both cases the
assumption is that words tend to appear in bursts [2, 6], as'epetitiveness stems from the scene property, for example
opposed to being emitted independently, i.e., if a word ap- the windows of the buildings are very similar and the bricks
pears once, it is more ||ke|y to appear again_ For instance,aré repeated. More Surprising is the burstiness of text. Here,
this article features a burst of 36 instances of the rare termthe main burst appears on a ner scale than that of the entire
“purstiness” ! Church and Gale [2] model burstiness by rep- letter, for example at the extremities of the O, R, D and S
resenting a term's distribution pattern with a Poisson distri- letters, which share similar parts.
bution. Katz [6] models the within-document burstiness us-  Fig. 3 presents a quantitative measure of burstiness. It
ing K-mixtures. Burstiness has recently been shown to im- shows the probability that a given word occurs in a docu-
prove performance in the context of text classi cation [10] ment exactlyx times in a real image database. It has been
and text clustering [3]. measured on one million images. This empirical distribu-

Here, we show that burstiness translates to images, se#ion is compared with a simulated distribution. To produce
Fig. 1. For each of the example images, we display featuresthis synthetic curve, we use the same number of descriptors
assigned the most frequent visual word. One can observeand visual word probabilities as in our one-million-image



1 T T T
T .
measured ——— b . f ; ' '
0.1 S independence model — . . ; : : .
0.01 - - 1 3 : 3 : :
\\ g $=32 ‘ 3 3
0.001 < =S I O R IO L I S SRR S
S 2 :
z 0.0001 gy s s=16
3 ‘
s 1e-05 B o B e A A S
e N& a : : : : . .
o le-06 W"‘M : . . . ; ;
1e-07 "o, 2 Ty e P e
1e-08 - : : ! ‘ ‘ ‘
i i I i i I
1le-09 10 20 30 40 50 60
16-10 Hamming distance
1 10 100 Figure 4. The match score as a function of the Hamming distance.

Number of occurences of a visual word in the same image
Figure 3. Probability distribution of the number of occurrences of
a visual word in an image. dataset of Flickrimages. Such a nearest-neighbor quantizer,
which assigns an index(x) to a descriptok, implicitly di-

) , _vides the feature space intells i.e., the regions of a a
database, assuming they are drawn independently. The difyorong diagram corresponding to the space partitioning.
ference between the synthetic and the observed dlstrlbutlon'?_I . . .

amming Embedding (HE). HE provides a more pre-

clearly shows the extent of the burstiness phenomenon. cise representation of the descriptors than the quantized in
In what follows, we distinguish between 1) tlstra- preser b qua .
dex [4], i.e., it adds a compact binary representation. This

image burstinesswhich usually appears due to repetitive . o . . .
patterns, i.e., when the same visual element appears Sevr_epresentanon subdivides each cell associated with a given

eral times in the same image, and 2) tier-image bursti- visual word into regions. Associating a binary signature

ness which corresponds to visual elements that appear infv(v)(()) xg;ra.l ?grssc(n;);%u rﬁ;‘; Shtir;etr?:sgr'gtg;garig'?g’ tiz
many images. Intra-image burstiness is related to the self—Same visuzl word. i g i6(x) = (y) and if t%e Ham-
similarity property used in [19] and obviously appears on e = dv),

near-regular textures [8]. Feature self-similarity was used ming distancéd(s(x); s(y)) between their binary signatures

in [18] to discard elements occuring more than 5 times in :S IOV\;]er or eqLéil tr_1an a thrgshdh_al. We set the signature
the same image using intra-image indexing, which is a sim- ength to64andh; =24, as done in [4].
ple way of handling bursts. Usually unbalanced visual word Weighting based on HE.In [4], the Hamming distance re-
frequencies are addressed by applyidigweights. How-  Sults in a binary decision, i.e., two descriptors match or not.
ever, theidf weights do not take into account the burstiness However, the distance re ects the closeness of descriptors
phenomenon. Moreover, they do not re ect the strength of @nd should be taken into account. Since we have higher con-
the matches, that can for example be obtained from the dis-dence in smaller distances, we weight them with a higher
tance measures between SIFT descriptors. Therefore, thécore. The fundamental difference between this weighting
burstiness of visual elements cannot be handled by simplyScheme and the soft assignment of [16] is that their weight-
translating the models introduced in text, where the under-iNg depends on the distance between the query descriptor
lying alphabet is discrete. In Section 4, the inter- and intra- @nd the visual word centroid, whereas our method uses a
burstiness phenomena will be addressed independently.  distance between the binary signatures, which re ects the
distance between the descriptors.

The weightw(hy) associated with a Hamming distance
hg = h(s(x);s(y)) between binary signaturex) and

Our baseline system builds upon the BOF image query-s(y) is obtained with a Gaussian function:
ing method [20] and recent extensions [4, 15]. In the fol- h?
lowing we brie y describe the steps used in this paper. w(hg) = exp Td : (1)
Local descriptors and assignment.We extract image re-
gions with the Hessian-af ne detector [13] and compute  Figure 4 shows the weighting functions obtained for dif-
SIFT descriptors [9] for these regions. To obtain a bag-of- ferent values of . In the following, we set = 16. Note
features representation for an image, we learn a 20k visualthat 16 is not the optimal value for a particular dataset, but
vocabulary and assign the descriptors to the closest visuals a good choice given that distances abbyve 24 are not
word (Euclidean distance). The visual vocabulary is ob- signi cant. For ef ciency, we keep a thresholdk above
tained by k-means clustering performed on an independentwhich the matching score is set to 0. The matching score is

3. Image search framework



nally multiplied by the squaré of theidf factor idf(x) as- Spatial veri cation (SP). Given a set of matching de-

sociated with the visual worg(x). This reduces the impact  scriptors, we use a robust estimation procedure to nd a
of the visual words that are more frequent over the entire subset of matches consistent with a 2D af ne transforma-
database. In summary, the matching score between two detion [4, 9, 16]. Since this procedure is costly, we only apply

scriptorsx andy is given by it to re-rank the 200 best results returned by our system.
) Because the estimation may fail to match some relevant im-
3 w(h(s(x);s(y))) if a(x) = a(y) ages, we append the remaining images to the list of SP-
; 2 ‘ :
ccorgyy= IR andR(S00:s) b veriedones
0 otherwise o 4 Burstiness management strategy
Weak Geometric Constraints (WGC).WGC uses partial In this section, we propose three strategies that penal-

geometric information for all images, even on a very large ize the scores associated with bursts. The rst one removes
scale [4]. Itis a simple veri cation that checks for consis- multiple matches that are intrinsically counted in a BOF
tency of the rotation and scale hypotheses obtained fromframework. The second and third approaches are more so-
matching point pairs. Furthermore, we use priors to fa- phisticated strategies that reduce the impact of intra- and
vor “natural” geometrical transformations between match- inter-images bursts.

ing points.

Weighting based on WGC.We have observed that points 4.1. Removing multiple matches

det;ec;ed a}IEhIargfer sctales r;[endtto_ p;roducia mc;r;eh rehapl;a The cosine measure between two bag-of-features is
matches. Therelore, the characteristic scales of € poIntS,, i ajent to a voting score [4]. Given this interpretation

are used to weight the scores obtained with our HE We'ght'we can see that multiple matches are not disambiguated in

lntg lsche;ne. This g'\t/ef a rrpode:t (l)r%%rsoven;ﬁ nt 'l’g?c'st'r?na BOF comparison: a single descriptor can “vote” several
at aimost no computational cost. ©. onthe m Orthe times for one image of the database. This phenomenon

Holidays dataset described in Section 5. clearly appears in Fig. 2, where the descriptors from the
Score normalization: We use L2 normalization, as in [4]. top image are matched with many of the descriptors from
The overall score of a database image with respect to thethe bottom image, dramatically altering the quality of the
guery image is obtained as the sum of the individual match- comparison.

ing scores of (2) divided by the L2 norm of the histogram  The multiple match removal (MMR) strategy proposed
of visual occurrences. in this subsection addresses this problem by removing mul-

Variant: multiple assignment (MA). As a variant, a given  (IPle matches. It is similar to [12], where each point
query descriptor is assigned to several visual words instead’t€S only once for an image in the database, i.e., for each
of only to one, i.e., to th& nearest neighbors. This gives an database image only the best match associated with a query
improvement when a noisy version of the descriptor is not descriptor is kept: a d.escrlptor can!”not vote several times
assigned to the same visual word as the original descriptorfor the same database image. MMR is performed on-the-y
This is in the spirit of the multiple assignment of [16], but when querying the inverted le, which makes it tractable for
does not use soft weighting. Instead, we use the weights'rge databases.
obtained from the Hamming distance as in the case of asin-  The best maich for a given database image is the one
gle assignment (SA). In contrast to the method of [5], MA Maximizing (2), i.e., the one corresponding to the smallest
is performed on the query side only. The memory usage Hamming distance between binary signatures. All the other
is, therefore, unchanged. The complexity is higher than for Matches associated with this particular query descriptor are
the standard SA method but lower than for symmetric mul- discarded. In case of a tie, we arbitrarily choose the rst
tiple/soft assignment strategies. descriptor. We measured that, on average, about 13% of the
We also require that the distandeof a candidate cen- descriptor matches are discarded with this approach. Note
troid satisesd < d o, whered, is the distance to the that this ;election only marginally increases the complexity
nearest neighbor. This avoids assignments to irrelevant cen©f the voting scheme.
troids when there is one clear nearest visual word. For our
experiments, we set = 1:2. On average, a descriptor is 4.2. Intra-image burstiness

assigned ta:3 visual words for a vocabulary size 80000 As we will show in the experimental section, the previ-
andk = 10. ous strategy improves the results. However, the penaliza-

Lsquaring the idf factor is not an arbitrary choice: it is consistent with tiOI.’I applied to sets of matches i.S too Stron_g compared with
the computation of the L2 distance between BOF. See [4] for details. unigue matches. Hereafter, we improve this strategy.




Letx; be thei'" descriptor of the query image aygl; be Dataset #images #queries # descriptors
thej ™ descriptor of the database imalgeln case of mul- Kentucky 10,200 10,200 19.4 M
tiple assignment we assume that we have distinct descrip- | Oxford 5,063 55 159 M
tors. The matching score betweenandyy,; is denoted by Holidays 1,491 500 4.4 M
m(i; b;j). This score i© if x; andyp; are not assigned to Distractors| 1,000,000 N/A 21G

the same visual word or if the Hamming distance between Table 1. Characteristics of the datasets used in our experiments.
the corresponding binary signatures is above the Hamming
thresholdh;. The score of a query descriptiofor imageb

is obtained as a sum of scores over matching descriptors: o )
the penalization is computed on-the- y to take into account

X
tq(isb) = m(i; b;j): () the particular amount of votes received by a given query
i=q (vs; )= a(xi) descriptor. This is more precise than assigning a weight at

) the visual word level only.
The score of a match is then updated as

o o > m(i;b:}) 5. Experiments
m(i;bij) = m@ibij)  — ) ,
tq(i; b) 5.1. Datasets and evaluation
If a query descriptor is matched to a single descriptor in ~ We present results for three reference datasets used in
the database image, the strength of the match is unchangedtate-of-the-art papers to evaluate image search systems.
Otherwise, its score is reduced. Inversely, if there are sev-All of them are available online. The characteristics of these

eral query descriptors assigned to the same visual word (adatasets are summarized in table 1.

burst), their scores are penalized. The choice of (4) is MO-The Kentucky object recognition benchmark depicts
tivate_d in the experimenta}l section., where we show results2550 objects. Each object is represented by 4 images taken
for different update functions. This strategy can be used \qer 4 gifferent viewpoints. The viewpoint changes are so
even if the scorem(i; b; ] ) are binary, thatis evenifno HE  joni cant that matching the images geometrically requires
weighting scheme is applied. wide baseline stereo techniques. However, there are neither
signi cant occlusions nor changes in scale. Each image of
the database is used as a query. The correct results are the
The two previous methods address the bursts within aimage itself and the three other images of the same object.
image. However, some visual elements are also frequentSince many distinct objects are taken in front of the same
acrossimages. This problem is usually addressed by using background, the algorithm should be robust to clutter.

idf weights. Although this strategy is useful, itis a pure text 1.0 5yford building dataset® contains photos from Flickr
retrieval approach that only takes into account the numberthat were tagged with keywords related to Oxford. Each
of descriptors associated with a given visual word in the query is a rectangular region delimiting the building in the

database, without exploiting the quality of the matches, i.e., image. The correct results for a query are the other im-

the closeness of the descriptors in feature space. Thereforeages of this building. The dataset is challenging because

it cannot exploit the scores provided by HE distances or any ¢ cropped and cluttered images, changes in imaging condi-

similarity measure between descriptors. tions (different seasons, cameras, viewpoints, etc), and im-

. The_strate_gy proposed here_after can be seen as an eXter?ige quality. The database contains only 55 query images,
sion ofidf weighting that takes into account these measures.,, v h may result in noisy performance measures. It has a

We rst de ne the.totaltb(i) of the matching scores of a bias towards building images and repeating scenes (some
given query descriptor for all the database images as buildings are represented more than 200 times).

4.3. Inter-image burstiness

X X
tp(i) = m(i; b;j): (5) The INRIA Holidays dataset* is divided in small groups
b j of photos of the same object or scene. The rst image of
. . .. .the group is the query, the others are the images which are
: 1;he r?atchln_g sc/_:lo.res are updated using the same We'ghtFeIevant for this query. There are viewpoint changes, oc-
ing function as in (4): clusions, photometric changes, blur, in-plane rotations, etc.
There is a bias on the image properties, as most groups have

(6) been shot with the same camera and on the same day.

s
m(i;b;j) == m(i;b;j) LA E

to(i)
. . . 2http://vis.uky.edu/%7Estewe/ukbench/
This update penalizes the descriptors that vote for many  spp:/mww.robots.ox.ac.uk/vgg/data.htm

images in the database. By contrast to pdfeweighting, “http://lear.inrialpes.fr/jegou/data.php
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Figure 6. Proportion of descriptors kept and corresponding mAP
For large-scale experimentsywe use the approach of [15] as a function of the Hamming threshold test when searching the
and [4], i.e., the Oxford and Holidays datasets are mergedOxford dataset. Results on the Holidays dataset are similar.
with a distractor set of up to one million random images
downloaded from Flickr. We assume that the distractor set . )
contains only irrelevant results for all queries (which occa- ings reported in [4] for the same vocabulary size.
sionally proves wrong because both the Oxford and Holi-
days datasets contain photos of landmarks that may appea?‘
in random photo collections). For all our experiments, we have mostly followed our
Evaluation measures.For all experiments we measure the previous experimental setup [4]. The software from [11]
mean average precision (mAP) of the search, as de nedwas used with default parameters to extract the Hessian-
in [15]. For the Kentucky dataset, we also report the av- Afne regions and compute the SIFT descriptors. For the
erage numbeNs of TPs retrieved in the 4 rst results, as Kentucky dataset, we adjusted the detector threshold in or-
this is the performance measure usually reported for thisder to obtain the same number of descriptors as in [5]. The

3. Impact of the parameters

dataset. visual vocabulary was learned on an independent dataset
downloaded from Flickr. We useklmean for clustering
5.2. Implementation details and20k visual words in all our experiments.

We handle information at the interest point level to eval- HE Weighting. The impact of the parameterintroduced
uate our matches. This information is available while scan- N (1) is shown in Fig. 5. One can see that the mAP scores
ning the inverted le, since we store one entry per database'® 8lmost equivalent for a large range of values (from
descriptor, including the binary signature and the geomet_1Oto =20). This beha_lwor is cons_|stent over all datasets.
rical quantities used by WGC. To handle the inter-image e choose to set = 16 in the following. .
burstiness, we store all the relevant descriptor matches ob- Fig. 6 shows that for very low Hamming thresholds, i.e.,
tained while scanning the inverted le. Each descriptor I kéeping only 0.1% of the points, we still get excellent
match generates an 11-byte structure containing the indexX€Sults. There is an optimal threshold of 24 for the stan-
of the query descriptor, the index of the database image,dard single assignment method (SA) and 22 for multiple
WGC-related information and a matching score. assignment (MA). The mAP Qecrease§ slightly f(_Jr higher

During the inverted le scan, the structures are stored in Y2lUes, because too many noisy descriptors are introduced
an array lexicographically ordered Biyb:j) (indexes are (espeleally with MA). We choose a threshold of 24 for all
de ned in Section 4). Due to the Itering of matches by the €XPeriments, which removes 93% of the matches.

HE check, this array (1100 MB on average for one million Burst weighting functions. Table 2 compares several func-
images and MA) is an order of magnitude smaller than the tions inspired by text processing techniques [17], here ap-
inverted le itself (24 GB). The inter-image burst weight- plied to handle intra-image burstiness. These functions cor-
ing stages are applied per database image, so the array mus¢spond to the right term in (4). Normalizing directly by
be “transposed” to be ifb;i;j)-order. This transposition the number of occurrences of the visual word (Function #2)
is performed in a cache-ef cient way using a blocked algo- improves the score, but this normalization is too hard. It is
rithm. The average query time (for description, quantiza- advantageously weakened by a square root (#3). It is also
tion, search and normalization, but without SP) in a one- bene cial to take into account the matching scores at this
million-image set is 6.2 s. This is a bit slower than the tim- stage, as done in (4), where the normalizer is the square



Oxford Holidays Holidays: our mAP 0f0:839signi cantly outperforms
) the mAP of0:751reported in [4].
function SA MA SA MA
#1 None 0563 0606| 0.768 0.815 The spatial veri cation takes a shortlist of the 200 best re-
4 ﬁ 0579 0.624| 0788 0816 Zults, hgre obtained with our burstiness mana_gement strat-
gy, and re nes the results by robustly estimating an af ne

#3 pﬁ 0.582 0.626| 0.793 0.824 2D model. The veri cation strongly improves the results for

IGTBE the Oxford dataset, which contains a lot of planar and geo-
#4 tq(ib) 0581 0625 0.790 0.826 metrical elements that are suitable for an af ne 2D model.
#5  log(l+ n:;i(:it;g))) 0.582 0.627| 0.792 0.820 Improvements on the two other databases are more modest.

Table 2. Comparison of intra-image burst normalization functions Combination with distractors. The curves in Fig. 7 show

in terms of MAP on two datasets. In addition to the notations of the results for the distractor dataset FlickrlM combined
Section 4N (i; b) denotes the number of occurrences of the visual with Oxford and Holidays. All our proposed methods im-
wordq(xi) in the imageb. prove the performance. On Holidays, the improvement is
higher for large databases, and the performance of our best
method decreases very slowly when the database grows.
Before SP, the accuracy obtained on the one-million-image
database is better than our previous result [4] on the Holi-
days dataset alone. On Oxford combined with 100,000 im-
ages, we obtain a better mAP value (0.628) than the query

5.4. Comparison with the state-of-the-art expansiof method of Chum et al. [1, 16].

Bgse_line:TabIe_ 3_shows the improvemt_—ants due to our con- 6. Conclusion

tributions. In similar setups, our baseline compares favor-

ably with the algorithms of [4, 5, 14, 16]. Results for the In this paper, we have shown the burstiness phenomenon
baseline BOF representation are reported for reference.  of visual elements and proposed a strategy to address this
HE weighting scheme and MA: The combination of the problem in the cqnte_xt ofime_lge search. The resulting image
Hamming distance weighting scheme with multiple assign- search system signi cantly improves over the state-of-the-
ment provides a signi cant improvement of 0.06 in mAP on &t on the three different reference datasets.

the Oxford and Holidays datasets. The mARO@06 that
we obtain using this combination is signi cantly better than
the score 0D:493reported in [16] for a similar setup, i.e. We would like to thank the ANR project RAFFUT and
without spatial veri cation or query expansion. the QUAERO project for their nancial support.
Burstiness: For each database image, the descriptor match-

ing scores are updated according to Section 4. The MMR References

approach, that removes multiple matches, is shown to be of
interest, but performs poorly when combined with the other
methods. Table 3, both the intra- and inter-burstiness meth-

root of the score divided by the sum of scores obtained by
this visual word (#4). Replacing the square root by a log
(#5) leads to similar results. Overall, the three normaliza-
tion function #3, #4 and #5 give equivalent results.
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' §J Kentucky Oxford Holidays
o L & R
s g §& 9 mAP Ns mAP mAP
Method *2(‘(/ SA MA SA MA SA MA SA MA
BOF 0.780 0.701 299 2.68 0.338 0.260| 0.469 0.313
BOF X 0.831 0.663 3.23 2.54 0.349 0.193]| 0.500 0.294
HE+WGC 0.867 0.888 3.36 3.45 0.542 0.585| 0.751 0.790
HE+WGC X 0.874 0.894 3.39 3.47 0563 0.606| 0.768 0.815
HE+WGC X 0.884 0.900 3.43 3.50 0.580 0.630| 0.780 0.817
HE+WGC X X 0.889 0.904 3.46 3.52 0.581 0.625| 0.790 0.826
HE+WGC X X 0.885 0.902 344 351 0586 0.635| 0.786 0.828
HE+WGC X X X 0.892 0.907 3.47 3.54 0.596 0.647| 0.807 0.839
HE+WGC X X X X | 0926 0.930 3.62 3.64 0.654 0.685 0.845 0.848

Table 3.
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Search results with various methods on the three datiisetKentucky speci ¢ score, mMAP=mean average precision, SA=single
assignment, MA=multiple assignment, SP=spatial veri cation, MMR=multiple match removal, intra and inter: see Section 4.
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