Human actions are frequently correlated with particular scene classes due to functional and physical properties of the scenes:

- eating, kitchen
- eating, cafe

Moreover, some actions are defined by the scene context:

1. Discover relevant scene classes and their correlation with actions
2. Learn visual models for actions and scenes with automatic supervision
3. Exploit correlation of actions and scenes for visual recognition

Motivation and Approach

Human actions are frequently correlated with particular **scene classes** due to functional and physical properties of the scenes. This correlation is important for tasks such as action recognition in videos, where the context of the scene plays a crucial role in understanding the actions.

Movie Script Mining

We use movie scripts aligned with videos to:
- Discover co-occurrence relations between actions and scenes
- Automatically collect video samples for training

Subtitles

- **Script:** Written words
- **Video:** Recorded actions

Procedure

- Label action samples in scripts using action text classifier
- Find frequent words and word pairs in scene captions
- Perform semantic stemming using WordNet
- Select words with high co-occurrence w.r.t. given actions
- Re-order words by the entropy $S(x), x = \text{action/word}$

Dataset

- Video samples are obtained from 33 training and 36 test movies
- 12 action classes are distributed among 810 automatically generated training samples and 884 manually verified test samples (approx. 7 hours of video in total)
- 10 scene classes are distributed among 570 automatically generated training samples and 582 manually verified test samples (approx. 11 hours of video in total)

Actions and scenes co-occurrence is estimated from a large independent set of movie scripts.

The dataset is available from:

http://www.irit.fr/vista/actions/hollywood2

Visual Learning

Interest points for a movie frame. 3D Harris (left) focuses on motion, whereas 2D Harris (right) regions are distributed over the scene.

We use:
- Combination of local static and dynamic features:
 - 2D Harris detector + SIFT descriptor (static appearance)
 - 3D Harris detector + space-time HOG descriptor (dynamic appearance)
 - 3D Harris detector + space-time HOF descriptor (motion)
- Video representation by histograms of quantized local features
- SVMs with γ kernel for classification

Classification with Context

We integrate context by updating the classification score $g_0(x)$ for an action $a \in A$ with a linear combination of context scores $g_i(x)$ for scene classes $s \in S$:

$$g_0(x) = g_0(x) + \tau \sum_{s \in S} w_s g_s(x)$$

where τ is a global context weight and w_s are weights linking concepts a and s. We explore two ways to obtain w_s:

- From text – we set $w_s = p(s \in S|a)$
- From visual data – we train a second-order linear SVM

Exploiting scene context in action recognition. Note the consistent improvement for most action classes

Mean Average Precision (MAP) for action and scene classification with and without context. We also compare to chance level and try context only.

<table>
<thead>
<tr>
<th></th>
<th>MAP</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text context</td>
<td>0.555</td>
<td>0.443</td>
</tr>
<tr>
<td>Visual context</td>
<td>0.749</td>
<td>0.443</td>
</tr>
<tr>
<td>Text only</td>
<td>0.337</td>
<td>0.443</td>
</tr>
<tr>
<td>Scene only</td>
<td>0.597</td>
<td>0.443</td>
</tr>
<tr>
<td>Distance</td>
<td>0.176</td>
<td>0.443</td>
</tr>
</tbody>
</table>

Exploiting action context in scene recognition. Note the significant improvement for the leftmost categories

<table>
<thead>
<tr>
<th></th>
<th>MAP</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text context</td>
<td>0.18</td>
<td>0.12</td>
</tr>
<tr>
<td>Visual context</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>Text only</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Scene only</td>
<td>0.15</td>
<td>0.12</td>
</tr>
</tbody>
</table>

$p(S|a)$ (green) estimated from scripts and ground-truth visual annotation (yellow). Note that the discovered correlations are not only intuitive, but also consistent between text and vision.